1
|
Oh JH, Rhyu MG, Kim SI, Yun MR, Shin JH, Hong SJ. Gastric Mucosal Atrophy Impedes Housekeeping Gene Methylation in Gastric Cancer Patients. Cancer Res Treat 2018; 51:267-279. [PMID: 29747491 PMCID: PMC6334004 DOI: 10.4143/crt.2018.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Helicobacter pylori infection induces phenotype-stabilizing methylation and promotes gastric mucosal atrophy that can inhibit CpG-island methylation. Relationship between the progression of gastric mucosal atrophy and the initiation of CpG-island methylation was analyzed to delineate epigenetic period for neoplastic transformation. Materials and Methods Normal-appearing gastric mucosa was biopsied from 110 H. pylori-positive controls, 95 H. pylori-negative controls, 99 gastric cancer patients, and 118 gastric dysplasia patients. Gastric atrophy was assessed using endoscopic-atrophic-border score. Methylation-variable sites of eight CpG-island genes adjacent to Alu (CDH1, ARRDC4, PPARG, and TRAPPC2L) or LTR (MMP2, CDKN2A, RUNX2, and RUNX3) retroelements and stomach-specific TFF3 gene were analyzed using radioisotope-labeled methylation-specific polymerase chain reaction. RESULTS Mean ages of H. pylori-positive controls with mild, moderate, and severe atrophy were 51, 54, and 65 years and those of H. pylori-associated TFF3 overmethylation at the three atrophic levels (51, 58, and 63 years) tended to be periodic. Alu-adjacent overmethylation (50 years) was earlier than TFF3 overmethylation (58 years) in H. pylori-positive controls with moderate atrophy. Cancer patients with moderate atrophy showed late Alu-adjacent (58 years) overmethylation and frequent LTR-adjacent overmethylation. LTR-adjacent overmethylation was frequent in cancer (66 years) and dysplasia (68 years) patients with severe atrophy. CONCLUSION Atrophic progression is associated with gastric cancer at moderate level by impeding the initiation of Alu-adjacent methylation. LTR-adjacent methylation is increased in cancer patients and subsequently in dysplasia patients.
Collapse
Affiliation(s)
- Jung-Hwan Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Suk-Il Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-Ri Yun
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Ha Shin
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Rhyu MG, Oh JH, Hong SJ. Species-specific role of gene-adjacent retroelements in human and mouse gastric carcinogenesis. Int J Cancer 2017; 142:1520-1527. [PMID: 29055047 DOI: 10.1002/ijc.31120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (HP) infection promotes the recruitment of bone marrow stem cells into chronic gastritis lesions. Some of these marrow stem cells can differentiate into gastric epithelial cells and neoplastic cells. We propose that HP-associated methylation could stabilize trans-differentiation of marrow-derived stem cells and that an unstable methylation status is associated with a risk of gastric cancer. Pathobiologic behavior of experimental mouse gastric cancer is mild compared to invasive and metastatic human gastric cancer. Differences in epigenetic stabilization of adult cell phenotypes between humans and mice could provide a foundation to explore the development of invasive and metastatic gastric cancer. Retroelements are highly repetitive sequences that play an essential role in the generation of species diversity. In this review, we analyzed retroelements adjacent to human and mouse housekeeping genes and proposed a possible epigenetic mechanism for HP-associated carcinogenesis.
Collapse
Affiliation(s)
- Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Hwan Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
3
|
Morgan RG, Venturelli M, Gross C, Tarperi C, Schena F, Reggiani C, Naro F, Pedrinolla A, Monaco L, Richardson RS, Donato AJ. Age-Associated ALU Element Instability in White Blood Cells Is Linked to Lower Survival in Elderly Adults: A Preliminary Cohort Study. PLoS One 2017; 12:e0169628. [PMID: 28060910 PMCID: PMC5218400 DOI: 10.1371/journal.pone.0169628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND ALU element instability could contribute to gene function variance in aging, and may partly explain variation in human lifespan. OBJECTIVE To assess the role of ALU element instability in human aging and the potential efficacy of ALU element content as a marker of biological aging and survival. DESIGN Preliminary cohort study. METHODS We measured two high frequency ALU element subfamilies, ALU-J and ALU-Sx, by a single qPCR assay and compared ALU-J/Sx content in white blood cell (WBCs) and skeletal muscle cell (SMCs) biopsies from twenty-three elderly adults with sixteen healthy sex-balanced young adults; all-cause survival rates of elderly adults predicted by ALU-J/Sx content in both tissues; and cardiovascular disease (CVD)- and cancer-specific survival rates of elderly adults predicted by ALU-J/Sx content in both tissues, as planned subgroup analyses. RESULTS We found greater ALU-J/Sx content variance in WBCs from elderly adults than young adults (P < 0.001) with no difference in SMCs (P = 0.94). Elderly adults with low WBC ALU-J/Sx content had worse four-year all-cause and CVD-associated survival than those with high ALU-J/Sx content (both P = 0.03 and hazard ratios (HR) ≥ 3.40), while WBC ALU-J/Sx content had no influence on cancer-associated survival (P = 0.42 and HR = 0.74). SMC ALU-J/Sx content had no influence on all-cause, CVD- or cancer -associated survival (all P ≥ 0.26; HR ≤ 2.07). CONCLUSIONS These initial findings demonstrate that ALU element instability occurs with advanced age in WBCs, but not SMCs, and imparts greater risk of all-cause mortality that is likely driven by an increased risk for CVD and not cancer.
Collapse
Affiliation(s)
- R. Garrett Morgan
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Massimo Venturelli
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Cole Gross
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Cantor Tarperi
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Schena
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Fabio Naro
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University, Rome, Italy
| | | | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Russell S. Richardson
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, Utah, United States of America
| | - Anthony J. Donato
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
4
|
Oh JH, Rhyu MG, Jung SH, Choi SW, Kim SI, Hong SJ. Slow Overmethylation of Housekeeping Genes in the Body Mucosa Is Associated with the Risk for Gastric Cancer. Cancer Prev Res (Phila) 2014; 7:585-95. [DOI: 10.1158/1940-6207.capr-13-0320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Hong SJ, Lee HJ, Oh JH, Jung SH, Min KO, Choi SW, Rhyu MG. Age-related methylation patterning of housekeeping genes and tissue-specific genes is distinct between the stomach antrum and body. Epigenomics 2013; 5:283-99. [PMID: 23750644 DOI: 10.2217/epi.13.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM The methylation-variable sites around CpG islands are frequently overmethylated in Helicobacter pylori-infected stomachs. Age-related patterns of the overmethylation changes were compared between the fast-growing antrum cells and the slow-growing body cells. MATERIALS & METHODS A total of 316 H. pylori-positive tissues and 380 H. pylori-negative tissues were obtained by endoscopic biopsy. The methylation-variable sites of ten housekeeping genes and nine tissue-specific genes were semiquantitatively analyzed, based on the ten-level classification of methylation-specific PCR intensity. The overmethylated genes were scored when their methylation levels were higher than an intermediate level of each gene common in the H. pylori-negative mucosa. RESULTS The age-dependent methylation level of the inactive APC gene observed similarly in the antrum and the body was used as an age standard of methylation variation in a biopsy tissue. The overmethylation of housekeeping genes and stomach-specific genes rapidly increased to a high plateau frequency in the young-aged APC methylation cases (mean age: 43 years) in the H. pylori-positive antrum. In the H. pylori-positive body, most of the overmethylated housekeeping genes slowly increased to a peak frequency in the middle-aged APC methylation cases (mean age: 53 years). The housekeeping gene pairs showed high correlations (Spearman's correlation coefficient > 0.4) in both the antrum and the body. CONCLUSION The overmethylation of housekeeping genes rapidly and slowly increased to a high frequency in concordance with a rapid and slow growth of epithelial cells in the H. pylori-infected stomach.
Collapse
Affiliation(s)
- Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong Socho-gu, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Rhyu MG, Oh JH, Hong SJ. Epigenetic implication of gene-adjacent retroelements in Helicobacter pylori-infected adults. Epigenomics 2013; 4:527-35. [PMID: 23130834 DOI: 10.2217/epi.12.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A chronic inflammatory condition of gastric mucosa can facilitate the influx of new stem cells into the stomach. Epigenetic codes, such as DNA methylation, may be responsible for the stable maintenance of epigenetic phenotypes established in the new stomach-adapted stem cells. A number of hypotheses have been made for the role of CpG-island methylation, which is common in the Helicobacter pylori-infected stomach. However, they could not explain the plausible role of CpG-island methylation in the re-establishment of epigenetic phenotypes. These islands are highly repetitive sequences densely methylated throughout the human genome, the so-called parasitic retroelements, which expand a number of cDNA copies with reverse transcriptase. The densely methylated retroelements adjacent to the host genes can form the transitional-CpG sites around gene-control regions that are barely methylated. This review focuses on the putative role of transitional CpG methylation in the adaptive differentiation of new stem cells in the H. pylori-infected stomach.
Collapse
Affiliation(s)
- Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong Socho-gu, Seoul 137-701, Korea
| | | | | |
Collapse
|
7
|
Hong SJ, Oh JH, Jeon EJ, Min KO, Kang MI, Choi SW, Rhyu MG. The overmethylated genes in Helicobacter pylori-infected gastric mucosa are demethylated in gastric cancers. BMC Gastroenterol 2010; 10:137. [PMID: 21092120 PMCID: PMC2995475 DOI: 10.1186/1471-230x-10-137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/20/2010] [Indexed: 11/21/2022] Open
Abstract
Background The transitional-CpG sites between weakly methylated genes and densely methylated retroelements are overmethylated in the gastric mucosa infected with Helicobacter pylori (H. pylori) and they are undermethylated in the gastric cancers depending on the level of loss of heterozygosity (LOH) events. This study delineated the transitional-CpG methylation patterns of CpG-island-containing and -lacking genes in view of the retroelements. Methods The transitional-CpG sites of eight CpG-island-containing genes and six CpG-island-lacking genes were semi-quantitatively examined by performing radioisotope-labelling methylation-specific PCR under stringent conditions. The level of LOH in the gastric cancers was estimated using the 40 microsatellite markers on eight cancer-associated chromosomes. Each gene was scored as overmethylated or undermethylated based on an intermediate level of transitional-CpG methylation common in the H. pylori-negative gastric mucosa. Results The eight CpG-island genes examined were overmethylated depending on the proximity to the nearest retroelement in the H. pylori-positive gastric mucosa. The six CpG-island-lacking genes were similarly methylated in the H. pylori-positive and -negative gastric mucosa. In the gastric cancers, long transitional-CpG segments of the CpG-island genes distant from the retroelements remained overmethylated, whereas the overmethylation of short transitional-CpG segments close to the retroelements was not significant. Both the CpG-island-containing and -lacking genes tended to be decreasingly methylated in a LOH-level-dependent manner. Conclusions The overmethylated genes under the influence of retroelement methylation in the H. pylori-infected stomach are demethylated in the gastric cancers influenced by LOH.
Collapse
Affiliation(s)
- Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Hong SJ, Jeon EJ, Oh JH, Seo EJ, Choi SW, Rhyu MG. The gene-reduction effect of chromosomal losses detected in gastric cancers. BMC Gastroenterol 2010; 10:138. [PMID: 21092121 PMCID: PMC2994793 DOI: 10.1186/1471-230x-10-138] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/20/2010] [Indexed: 11/10/2022] Open
Abstract
Background The level of loss of heterozygosity (LOH) that reduces a gene dose and exerts a cell-adverse effect is known to be a parameter for the genetic staging of gastric cancers. This study investigated if the cell-adverse effect induced with the gene reduction was a rate-limiting factor for the LOH events in two distinct histologic types of gastric cancers, the diffuse- and intestinal-types. Methods The pathologic specimens obtained from 145 gastric cancer patients were examined for the level of LOH using 40 microsatellite markers on eight cancer-associated chromosomes (3p, 4p, 5q, 8p, 9p, 13q, 17p and 18q). Results Most of the cancer-associated chromosomes were found to belong to the gene-poor chromosomes and to contain a few stomach-specific genes that were highly expressed. A baseline-level LOH involving one or no chromosome was frequent in diffuse-type gastric cancers. The chromosome 17 containing a relatively high density of genes was commonly lost in intestinal-type cancers but not in diffuse-type cancers. A high-level LOH involving four or more chromosomes tended to be frequent in the gastric cancers with intestinal and mixed differentiation. Disease relapse was common for gastric cancers with high-level LOH through both the hematogenous (38%) and non-hematogenous (36%) routes, and for the baseline-level LOH cases through the non-hematogenous route (67%). Conclusions The cell-adverse effect of gene reduction is more tolerated in intestinal-type gastric cancers than in diffuse-type cancers, and the loss of high-dose genes is associated with hematogenous metastasis.
Collapse
Affiliation(s)
- Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Hong SJ, Oh JH, Jung YC, Kim YH, Kim SJ, Kang SJ, Seo EJ, Choi SW, Kang MI, Rhyu MG. DNA methylation patterns of ulcer-healing genes associated with the normal gastric mucosa of gastric cancers. J Korean Med Sci 2010; 25:405-17. [PMID: 20191040 PMCID: PMC2826743 DOI: 10.3346/jkms.2010.25.3.405] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 07/14/2009] [Indexed: 01/20/2023] Open
Abstract
Recent evidence suggests that gastric mucosal injury induces adaptive changes in DNA methylation. In this study, the methylation status of the key tissue-specific genes in normal gastric mucosa of healthy individuals and cancer patients was evaluated. The methylation-variable sites of 14 genes, including ulcer-healing genes (TFF1, TFF2, CDH1, and PPARG), were chosen from the CpG-island margins or non-island CpGs near the transcription start sites. The healthy individuals as well as the normal gastric mucosa of 23 ulcer, 21 non-invasive cancer, and 53 cancer patients were examined by semiquantitative methylation-specific polymerase chain reaction (PCR) analysis. The ulcer-healing genes were concurrently methylated with other genes depending on the presence or absence of CpG-islands in the normal mucosa of healthy individuals. Both the TFF2 and PPARG genes were frequently undermethylated in ulcer patients. The over- or intermediate-methylated TFF2 and undermethylated PPARG genes was more common in stage-1 cancer patients (71%) than in healthy individuals (10%; odds ratio [OR], 21.9) and non-invasive cancer patients (21%; OR, 8.9). The TFF2-PPARG methylation pattern of cancer patients was stronger in the older-age group (> or =55 yr; OR, 43.6). These results suggest that the combined methylation pattern of ulcer-healing genes serves as a sensitive marker for predicting cancer-prone gastric mucosa.
Collapse
Affiliation(s)
- Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Hwan Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu-Chae Jung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Ho Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Ja Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok-Jin Kang
- Department of Clinical Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Joo Seo
- Department of Clinical Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Wook Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Moo-Il Kang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Clinical Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
10
|
Hong SJ, Kang MI, Oh JH, Jung YC, Kim YH, Kim SJ, Choi SH, Seo EJ, Choi SW, Rhyu MG. DNA methylation and expression patterns of key tissue-specific genes in adult stem cells and stomach tissues. J Korean Med Sci 2009; 24:918-29. [PMID: 19794993 PMCID: PMC2752778 DOI: 10.3346/jkms.2009.24.5.918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 07/01/2009] [Indexed: 11/25/2022] Open
Abstract
CpG-island margins and non-island-CpG sites round the transcription start sites of CpG-island-positive and -negative genes are methylated to various degrees in a tissue-specific manner. These methylation-variable CpG sites were analyzed to delineate a relationship between the methylation and transcription of the tissue-specific genes. The level of tissue-specific transcription was estimated by counting the number of the total transcripts in the SAGE (serial analysis of gene expression) database. The methylation status of 12 CpG-island margins and 21 non-island CpG sites near the key tissue-specific genes was examined in pluripotent stromal cells obtained from fat and bone marrow samples as well as in lineage-committed cells from marrow bulk, stomach, colon, breast, and thyroid samples. Of the 33 CpG sites examined, 10 non-island-CpG sites, but none of the CpG-island margins were undermethylated concurrent with tissue-specific expression of their nearby genes. The net methylation of the 33 CpG sites and the net amount of non-island-CpG gene transcripts were high in stomach tissues and low in stromal cells. The present findings suggest that the methylation of the non-island-CpG sites is inversely associated with the expression of the nearby genes, and the concert effect of transitional-CpG methylation is linearly associated with the stomach-specific genes lacking CpG-islands.
Collapse
Affiliation(s)
- Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Moo-Il Kang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Hwan Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu-Chae Jung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Ho Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Ja Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hye Choi
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Joo Seo
- Department of Clinical Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Wook Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
Jung YC, Hong SJ, Kim YH, Kim SJ, Kang SJ, Choi SW, Rhyu MG. Chromosomal losses are associated with hypomethylation of the gene-control regions in the stomach with a low number of active genes. J Korean Med Sci 2008; 23:1068-89. [PMID: 19119454 PMCID: PMC2612760 DOI: 10.3346/jkms.2008.23.6.1068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 04/01/2008] [Indexed: 11/20/2022] Open
Abstract
Transitional-CpG methylation between unmethylated promoters and nearby methylated retroelements plays a role in the establishment of tissue-specific transcription. This study examined whether chromosomal losses reducing the active genes in cancers can change transitional-CpG methylation and the transcription activity in a cancer-type-dependent manner. The transitional-CpG sites at the CpG-island margins of nine genes and the non-island-CpG sites round the transcription start sites of six genes lacking CpG islands were examined by methylation-specific polymerase chain reaction (PCR) analysis. The number of active genes in normal and cancerous tissues of the stomach, colon, breast, and nasopharynx were analyzed using the public data in silico. The CpG-island margins and non-island CpG sites tended to be hypermethylated and hypomethylated in all cancer types, respectively. The CpG-island margins were hypermethylated and a low number of genes were active in the normal stomach compared with other normal tissues. In gastric cancers, the CpG-island margins and non-island-CpG sites were hypomethylated in association with high-level chromosomal losses, and the number of active genes increased. Colon, breast, and nasopharyngeal cancers showed no significant association between the chromosomal losses and methylation changes. These findings suggest that chromosomal losses in gastric cancers are associated with the hypomethylation of the gene-control regions and the increased number of active genes.
Collapse
Affiliation(s)
- Yu-Chae Jung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Ho Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Ja Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok-Jin Kang
- Department of Clinical Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Wook Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Kang MI, Kim HS, Jung YC, Kim YH, Hong SJ, Kim MK, Baek KH, Kim CC, Rhyu MG. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J Cell Biochem 2007; 102:224-39. [PMID: 17352407 DOI: 10.1002/jcb.21291] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In general, methylation of the promoter regions is inversely correlated with gene expression. The transitional CpG area between the promoter-associated CpG islands and the nearby retroelements is often methylated in a tissue-specific manner. This study analyzed the relationship between gene expression and the methylation of the transitional CpGs in two human stromal cells derived from the bone marrow (BMSC) and adipose tissue (ATSC), both of which have a multilineage differentiation potential. The transitional CpGs of the osteoblast-specific (RUNX2 and BGLAP), adipocyte-specific (PPARgamma2), housekeeping (CDKN2A and MLH1), and mesenchyme-unrelated (RUNX3) genes were examined by methylation-specific PCR. The expression of each gene was measured using reverse-transcription PCR analysis. The RUNX2, BGLAP, and CDKN2A genes in the BMSC, and the PPARgamma2 gene in the ATSC exhibited hypomethylation of the transitional CpGs along with the strong expression. The CpG island of RUNX3 gene not expressed in both BMSC and ATSC was hypermethylated. Transitional hypomethylation of the MLH1 gene was accompanied by the higher expression in the BMSC than in the ATSC. The weakly methylated CpGs of the PPARgamma2 gene in the BMSC became hypomethylated along with the strong expression during the osteoblastic differentiation. There were no notable changes in the transitional methylation and expression of the genes other than PPARgamma2 after the differentiation. Therefore, the transitional methylation and gene expression established in mesenchymal cells tend to be consistently preserved under the induction of differentiation. Weak transitional methylation of the PPARgamma2 gene in the BMSC suggests a methylation-dependent mechanism underlying the adiopogenesis of bone marrow.
Collapse
Affiliation(s)
- Moo-Il Kang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|