1
|
Rathore M, Curry K, Huang W, Wright M, Martin D, Baek J, Taylor D, Miyagi M, Tang W, Feng H, Li Y, Wang Z, Graor H, Willis J, Bryson E, Boutros CS, Desai O, Islam BN, Ellis LM, Moss SE, Winter JM, Greenwood J, Wang R. Leucine-Rich Alpha-2-Glycoprotein 1 Promotes Metastatic Colorectal Cancer Growth Through Human Epidermal Growth Factor Receptor 3 Signaling. Gastroenterology 2024:S0016-5085(24)05566-5. [PMID: 39393543 DOI: 10.1053/j.gastro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND & AIMS Therapy failure in patients with metastatic colorectal cancer (mCRC, ∼80% occur in the liver) remains an overarching challenge. Preclinical studies demonstrated that human epidermal growth factor receptor 3 (HER3) promotes colorectal cancer (CRC) cell survival, but therapies blocking the neuregulin-induced canonical HER3 signaling have made little impact in the clinic. Recent studies suggest that the liver microenvironment promotes CRC growth by activating HER3 in a neuregulin-independent fashion, thus elucidation of these mechanisms may reveal new strategies for treating patients with mCRC. METHODS Patient-derived primary liver endothelial cells (ECs) were used to interrogate EC-CRC crosstalk. We conducted proteomic analysis to identify EC-secreted factor(s) that triggers noncanonical HER3 activation in CRC and determined the subsequent effects on mCRC using diverse murine mCRC models. In vitro studies with genetic and pharmacological interventions were used to map the noncanonical HER3 pathway. RESULTS We demonstrated that EC-secreted leucine-rich alpha-2-glycoprotein 1 (LRG1) directly binds and activates HER3 and promotes CRC growth distinct from neuregulin, the canonical HER3 ligand. Blocking host-derived LRG1 by gene knockout or a neutralizing antibody impaired mCRC outgrowth in the liver and prolonged mouse survival. We identified protein synthesis activated by the PI3K-PDK1-RSK-eIF4B axis as the biologically relevant signaling cascade downstream of the LRG1-HER3 interaction, which was not blocked by conventional HER3-specific antibodies that failed in prior clinical trials. CONCLUSIONS LRG1 is a novel HER3 ligand and mediates liver-mCRC crosstalk. The LRG1-HER3 signaling axis is distinct from canonical HER3 signaling and represents a new therapeutic opportunity to treat patients with mCRC, and potentially other types of liver metastases.
Collapse
Affiliation(s)
- Moeez Rathore
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Kimberly Curry
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Michel'le Wright
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Jiyeon Baek
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Derek Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Wen Tang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Hao Feng
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Yamu Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Zhenghe Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Hallie Graor
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Joseph Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Elizabeth Bryson
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Christina S Boutros
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Omkar Desai
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Bianca N Islam
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Medicine, Division of Gastroenterology and Liver Disease, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jordan M Winter
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
2
|
Hsa_circ_0000851 promotes PDK1/p-AKT-mediated cell proliferation and migration by regulating miR-1183 in triple-negative breast cancer. Cell Signal 2023; 101:110494. [PMID: 36241055 DOI: 10.1016/j.cellsig.2022.110494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Breast cancer (BC) is the most common cause of cancer-related mortality in women worldwide. Circular RNAs (circRNAs), a type of non-coding RNA, have garnered interest because of their unique looped structure. In recent years, circRNAs have been shown to be involved in various diseases, including carcinogenesis, and to serve as biomarkers for early risk assessment and survival prediction of different tumour types. This study aimed to identify a novel circRNA, hsa_circ_0000851, generated from the sixth intron of the oncogene TCF4, reported to be involved in BC pathogenesis. Our study showed that hsa_circ_0000851 was mainly located in the cytoplasm of BC cells and upregulated in BC cell lines and tissue samples. Higher hsa_circ_0000851 expression levels resulted in increased proliferation of BC cells both in vitro and in vivo, while treatment of BC cells with hsa_circ_0000851 siRNA decreased their proliferation. We found that hsa_circ_0000851 bound directly to miR-1183, accelerating the expression of its target gene PDK1, which facilities BC cell proliferation and migration through PDK1/p-AKT.
Collapse
|
3
|
The Landscape of PDK1 in Breast Cancer. Cancers (Basel) 2022; 14:cancers14030811. [PMID: 35159078 PMCID: PMC8834120 DOI: 10.3390/cancers14030811] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Given that 3-phosphoinositide-dependent kinase 1 (PDK1) plays a crucial role in the malignant biological behaviors of a wide range of cancers, we review the influence of PDK1 in breast cancer (BC). First, we describe the power of PDK1 in cellular behaviors and characterize the interaction networks of PDK1. Then, we establish the roles of PDK1 in carcinogenesis, growth and survival, metastasis, and chemoresistance in BC cells. More importantly, we sort the current preclinical or clinical trials of PDK1-targeted therapy in BC and find that, even though no selective PDK1 inhibitor is currently available for BC therapy, the combination trials of PDK1-targeted therapy and other agents have provided some benefit. Thus, there is increasing anticipation that PDK1-targeted therapy will have its space in future therapeutic approaches related to BC, and we hope the novel approaches of targeted therapy will be conducive to ameliorating the dismal prognosis of BC patients.
Collapse
|
4
|
He Y, Du J, Dong Z. Myeloid deletion of phosphoinositide-dependent kinase-1 enhances NK cell-mediated antitumor immunity by mediating macrophage polarization. Oncoimmunology 2020; 9:1774281. [PMID: 32923133 PMCID: PMC7458637 DOI: 10.1080/2162402x.2020.1774281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A large number of heterogeneous macrophages can be observed in solid tumor lesions. Classically activated M1 macrophages are a powerful killer of cancer cells. In contrast, tumor-associated macrophages (TAMs) are often referred to as M2 phenotype and usually impair tumor immunity mediated by cytotoxic lymphocytes, natural killer (NK) cells and CD8+ T cells. Therefore, orchestrating M2 to M1 reprogramming will provide a promising approach to tumor immunotherapy. Here we used a PyMT-induced spontaneous breast cancer model in which M2-polarized macrophages were abundant. This M2 phenotype was closely related to tumor progression and immune dysfunction of NK cells and CD8+ T cells. We then found that these TAMs showed increased energy expenditure and over-activation of two kinases, Akt and mammalian target of rapamycin (mTOR). Myeloid inactivation of phosphoinositide-dependent kinase-1 (PDK1), the upstream regulator for Akt and mTOR signaling, significantly reduced excessive metabolic activation of macrophages. Notably, the loss of PDK1 significantly led to regression of breast cancer and prevented lung metastasis. Mechanistically, PDK1 deficiency mainly inhibited the activation of mTOR complex 1 (mTORC1), transforming TAMs into M1 phenotype, thereby reversing tumor-related dysfunction of T cells and NK cells. Therefore, targeting PDK1 may be a new approach for M2 macrophage-enriched solid tumor immunotherapy.
Collapse
Affiliation(s)
- Yuexi He
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Abstract
INTRODUCTION 3-Phosphoinositide-dependent kinase 1 (PDK1), the 'master kinase of the AGC protein kinase family', plays a key role in cancer development and progression. Although it has been rather overlooked, in the last decades a growing number of molecules have been developed to effectively modulate the PDK1 enzyme. AREAS COVERED This review collects different PDK1 inhibitors patented from October 2014 to December 2018. The molecules have been classified on the basis of the chemical structure/type of inhibition, and for each general structure, examples have been discussed in extenso. EXPERT OPINION The role of PDK1 in cancer development and progression as well as in metastasis formation and in chemoresistance has been confirmed by many studies. Therefore, the pharmaceutical discovery in both public and private institutions is still ongoing despite the plentiful molecules already published. The majority of the new molecules synthetized interact with binding sites different from the ATP binding site (i.e. PIF pocket or DFG-out conformation). However, many researchers are still looking for innovative PDK1 modulation strategy such as combination of well-known inhibitory agents or multitarget ligands, aiming to block, together with PDK1, other different critical players in the wide panorama of proteins involved in tumor pathways.
Collapse
Affiliation(s)
- Simona Sestito
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | | |
Collapse
|
6
|
Luo D, Xu X, Li J, Chen C, Chen W, Wang F, Xie Y, Li F. The PDK1/c‑Jun pathway activated by TGF‑β induces EMT and promotes proliferation and invasion in human glioblastoma. Int J Oncol 2018; 53:2067-2080. [PMID: 30106127 DOI: 10.3892/ijo.2018.4525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/23/2018] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant tumor affecting the human brain. Despite improvements in therapeutic technologies, patients with GBM have a poor clinical result and the molecular mechanisms responsible for the development of GBM have not yet been fully elucidated. 3-phosphoinositide dependent protein kinase 1 (PDK1) is upregulated in various tumors and promotes tumor invasion. In glioma, transforming growth factor-β (TGF‑β) promotes cell invasion; however, whether TGF‑β directly regulates PDK1 protein and promotes proliferation and invasion is not yet clear. In this study, PDK1 levels were measured in glioma tissues using tissue microarray (TMA) by immunohistochemistry (IHC) and RT‑qPCR. Kaplan-Meier analyses were used to calculate the survival rate of patients with glioma. In vitro, U251 and U87 glioma cell lines were used for functional analyses. Cell proliferation and invasion were analyzed using siRNA transfection, MTT assay, RT‑qPCR, western blot analysis, flow cytometry and invasion assay. In vivo, U251 glioma cell xenografts were established. The results revealed that PDK1 protein was significantly upregulated in glioma tissues compared with non-tumorous tissues. Furthermore, the higher PDK1 levels were associated with a large tumor size (>5.0 cm), a higher WHO grade and a shorter survival of patients with GBM. Univariate and multivariate analyses indicated that PDK1 was an independent prognostic factor. In vivo, PDK1 promoted glioma tumor xenograft growth. In vitro, functional analyses confirmed that TGF‑β upregulated PDK1 protein expression and PDK1 promoted cell migration and invasion, and functioned as an oncogene in GBM, by upregulating c‑Jun protein and inducing epithelial-mesenchymal transition (EMT). c‑Jun protein were overexpressed in glioma tissues and positively correlated with PDK1 levels. Moreover, our findings were further validated by the online Oncomine database. On the whole, the findings of this study indicate that in GBM, PDK1 functions as an oncogene, promoting proliferation and invasion.
Collapse
Affiliation(s)
- Dingyuan Luo
- Department of Vascular and Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Wei Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fangyu Wang
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Yanping Xie
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
7
|
Manne BK, Münzer P, Badolia R, Walker-Allgaier B, Campbell RA, Middleton E, Weyrich AS, Kunapuli SP, Borst O, Rondina MT. PDK1 governs thromboxane generation and thrombosis in platelets by regulating activation of Raf1 in the MAPK pathway. J Thromb Haemost 2018; 16:1211-1225. [PMID: 29575487 PMCID: PMC5984143 DOI: 10.1111/jth.14005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 01/02/2023]
Abstract
Essentials Phosphoinositide 3-kinase and MAPK pathways crosstalk via PDK1. PDK1 is required for adenosine diphosphate-induced platelet activation and thromboxane generation. PDK1 regulates RAF proto-oncogene Ser/Thr kinase (Raf1) activation in the MAPK pathway. Genetic ablation of PDK1 protects against platelet-dependent thrombosis in vivo. SUMMARY Background Platelets are dynamic effector cells with functions that span hemostatic, thrombotic and inflammatory continua. Phosphoinositide-dependent protein kinase 1 (PDK1) regulates protease-activated receptor 4-induced platelet activation and thrombus formation through glycogen synthase kinase3β. However, whether PDK1 also signals through the ADP receptor and its functional importance in vivo remain unknown. Objective To establish the mechanism of PDK1 in ADP-induced platelet activation and thrombosis. Methods We assessed the role of PDK1 on 2MeSADP-induced platelet activation by measuring aggregation, thromboxane generation and phosphorylation events in the presence of BX-795, which inhibits PDK1, or by using platelet-specific PDK1 knockout mice and performing western blot analysis. PDK1 function in thrombus formation was assessed with an in vivo pulmonary embolism model. Results PDK1 inhibition with BX-795 reduced 2-methylthio-ADP (2MeSADP)-induced aggregation of human and murine platelets by abolishing thromboxane generation. Similar results were observed in pdk1-/- mice. PDK1 was also necessary for the phosphorylation of mitogen-activated protein kinase kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2, and cytosolic phospholipase A2, indicating that PDK1 regulates an upstream kinase in the mitogen-activated protein kinase (MAPK) pathway. We next determined that this upstream kinase is Raf-1, a serine/threonine kinase that is necessary for the phosphorylation of MEK1/2, as pharmacological inhibition and genetic ablation of PDK1 were sufficient to prevent Raf1 phosphorylation. Furthermore, in vivo inhibition or genetic ablation of PDK1 protected mice from collagen/epinephrine-induced pulmonary embolism. Conclusion PDK1 governs thromboxane generation and thrombosis in platelets that are stimulated with 2MeSADP by regulating activation of the MAPK pathway.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Patrick Münzer
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, 72076 Germany
| | - Rachit Badolia
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, 19140 USA
| | - Britta Walker-Allgaier
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, 72076 Germany
| | - Robert A Campbell
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Elizabeth Middleton
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Andrew S Weyrich
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, 19140 USA
| | - Oliver Borst
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, 72076 Germany
| | - Matthew T. Rondina
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Internal Medicine, GRECC, George E. Wahlen VAMC, Salt Lake City, UT, 84148
| |
Collapse
|
8
|
Spatial alterations of De Novo purine biosynthetic enzymes by Akt-independent PDK1 signaling pathways. PLoS One 2018; 13:e0195989. [PMID: 29668719 PMCID: PMC5905998 DOI: 10.1371/journal.pone.0195989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/04/2018] [Indexed: 11/19/2022] Open
Abstract
A macromolecular complex of the enzymes involved in human de novo purine biosynthesis, the purinosome, has been shown to consist of a core assembly to regulate the metabolic activity of the pathway. However, it remains elusive whether the core assembly itself can be selectively controlled in the cytoplasm without promoting the purinosome. Here, we reveal that pharmacological inhibition of the cytoplasmic activity of 3-phosphoinositide-dependent protein kinase 1 (PDK1) selectively promotes the formation of the core assembly, but not the purinosome, in cancer cells. However, alternative signaling cascades that are associated with the plasma membrane-bound PDK1 activity, including Akt-mediated cascades, regulate neither the core assembly nor the purinosome in our conditions. Along with immunofluorescence microscopy and a knock-down study against PDK1 using small interfering RNAs, we reveal that cytoplasmic PDK1-associated signaling pathways regulate subcellular colocalization of three enzymes that form the core assembly of the purinosome in an Akt-independent manner. Collectively, this study reveals a new mode of compartmentalization of purine biosynthetic enzymes controlled by spatially resolved signaling pathways.
Collapse
|
9
|
Gagliardi PA, Puliafito A, Primo L. PDK1: At the crossroad of cancer signaling pathways. Semin Cancer Biol 2018; 48:27-35. [DOI: 10.1016/j.semcancer.2017.04.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/28/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
|
10
|
PDK1 promotes apoptosis of chondrocytes via modulating MAPK pathway in osteoarthritis. Tissue Cell 2017; 49:719-725. [DOI: 10.1016/j.tice.2017.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 11/21/2022]
|
11
|
Hurtado E, Cilleros V, Just L, Simó A, Nadal L, Tomàs M, Garcia N, Lanuza MA, Tomàs J. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction. Front Mol Neurosci 2017; 10:270. [PMID: 28890686 PMCID: PMC5574929 DOI: 10.3389/fnmol.2017.00270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.
Collapse
Affiliation(s)
- Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laia Just
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
12
|
Di Blasio L, Gagliardi PA, Puliafito A, Primo L. Serine/Threonine Kinase 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) as a Key Regulator of Cell Migration and Cancer Dissemination. Cancers (Basel) 2017; 9:cancers9030025. [PMID: 28287465 PMCID: PMC5366820 DOI: 10.3390/cancers9030025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 02/03/2023] Open
Abstract
Dissecting the cellular signaling that governs the motility of eukaryotic cells is one of the fundamental tasks of modern cell biology, not only because of the large number of physiological processes in which cell migration is crucial, but even more so because of the pathological ones, in particular tumor invasion and metastasis. Cell migration requires the coordination of at least four major processes: polarization of intracellular signaling, regulation of the actin cytoskeleton and membrane extension, focal adhesion and integrin signaling and contractile forces generation and rear retraction. Among the molecular components involved in the regulation of locomotion, the phosphatidylinositol-3-kinase (PI3K) pathway has been shown to exert fundamental role. A pivotal node of such pathway is represented by the serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDPK1 or PDK1). PDK1, and the majority of its substrates, belong to the AGC family of kinases (related to cAMP-dependent protein kinase 1, cyclic Guanosine monophosphate-dependent protein kinase and protein kinase C), and control a plethora of cellular processes, downstream either to PI3K or to other pathways, such as RAS GTPase-MAPK (mitogen-activated protein kinase). Interestingly, PDK1 has been demonstrated to be crucial for the regulation of each step of cell migration, by activating several proteins such as protein kinase B/Akt (PKB/Akt), myotonic dystrophy-related CDC42-binding kinases alpha (MRCKα), Rho associated coiled-coil containing protein kinase 1 (ROCK1), phospholipase C gamma 1 (PLCγ1) and β3 integrin. Moreover, PDK1 regulates cancer cell invasion as well, thus representing a possible target to prevent cancer metastasis in human patients. The aim of this review is to summarize the various mechanisms by which PDK1 controls the cell migration process, from cell polarization to actin cytoskeleton and focal adhesion regulation, and finally, to discuss the evidence supporting a role for PDK1 in cancer cell invasion and dissemination.
Collapse
Affiliation(s)
- Laura Di Blasio
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | | | | | - Luca Primo
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
13
|
Daniele S, Sestito S, Pietrobono D, Giacomelli C, Chiellini G, Di Maio D, Marinelli L, Novellino E, Martini C, Rapposelli S. Dual Inhibition of PDK1 and Aurora Kinase A: An Effective Strategy to Induce Differentiation and Apoptosis of Human Glioblastoma Multiforme Stem Cells. ACS Chem Neurosci 2017; 8:100-114. [PMID: 27797168 DOI: 10.1021/acschemneuro.6b00251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of glioblastoma multiforme (GBM) is mainly attributed to drug resistance mechanisms and to the existence of a subpopulation of glioma stem cells (GSCs). Multitarget compounds able to both affect different deregulated pathways and the GSC subpopulation could escape tumor resistance and, most importantly, eradicate the stem cell reservoir. In this respect, the simultaneous inhibition of phosphoinositide-dependent kinase-1 (PDK1) and aurora kinase A (AurA), each one playing a pivotal role in cellular survival/migration/differentiation, could represent an innovative strategy to overcome GBM resistance and recurrence. Herein, the cross-talk between these pathways was investigated, using the single-target reference compounds MP7 (PDK1 inhibitor) and Alisertib (AurA inhibitor). Furthermore, a new ligand, SA16, was identified for its ability to inhibit the PDK1 and the AurA pathways at once, thus proving to be a useful tool for the simultaneous inhibition of the two kinases. SA16 blocked GBM cell proliferation, reduced tumor invasiveness, and triggered cellular apoptosis. Most importantly, the AurA/PDK1 blocker showed an increased efficacy against GSCs, inducing their differentiation and apoptosis. To the best of our knowledge, this is the first report on combined targeting of PDK1 and AurA. This drug represents an attractive multitarget lead scaffold for the development of new potential treatments for GBM and GSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Danilo Di Maio
- Scuola Normale Superiore, Piazza
dei Cavalieri 7, I-56126 Pisa, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples Federico II, Napoli, Italy
| | | | | |
Collapse
|
14
|
Sun C, Sun Y, Jiang D, Bao G, Zhu X, Xu D, Wang Y, Cui Z. PDK1 promotes the inflammatory progress of fibroblast-like synoviocytes by phosphorylating RSK2. Cell Immunol 2016; 315:27-33. [PMID: 28314444 DOI: 10.1016/j.cellimm.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 10/12/2016] [Accepted: 10/30/2016] [Indexed: 12/12/2022]
Abstract
This study investigated the role of PDK1 in inflammatory response which is initiated by TNF-α and analyzed the association between PDK1 and RSK2. TNF-α were added into MH7A cells to induce inflammation condition. Through overexpressing or suppressing PDK1 in MH7A cells, the role of PDK1 in cell invasiveness and inflammatory factors was determined. Levels of MMPs protein and inflammatory cytokines were assessed with PDK1 siRNA and TNF-α treatment. Inhibition of RSK2 was used to investigate the function of RSK2 on PDK1-induced inflammation. The phosphorylation of RSK2 was detected when PDK1 was inhibited. Luciferase reporter assay was performed to detect the transcriptional activity of NF-κB. We found highly expressed PDK1 could promote cell invasion and secretion of IL-1β and IL-6 in MH7A cells. Inhibition of RSK2 reduced the PDK1-induced cell invasion and cytokines secretion in MH7A cells. In response to TNF-α, PDK1 could phosphorylate RSK2 and activated RSK2, then promoting the activation of NF-κB. This may be a possible therapeutic option of rheumatoid arthritis.
Collapse
Affiliation(s)
- Chi Sun
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Nantong 226001, People's Republic of China
| | - Yu Sun
- Department of Spine Surgery, the Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Dingjun Jiang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Nantong 226001, People's Republic of China
| | - Guofeng Bao
- Department of Spine Surgery, the Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Xinhui Zhu
- Department of Spine Surgery, the Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Dawei Xu
- Department of Spine Surgery, the Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Youhua Wang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Nantong 226001, People's Republic of China.
| | - Zhiming Cui
- Department of Spine Surgery, the Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
15
|
Fan Y, Wang Y, Wang K. Prostaglandin E2 stimulates normal bronchial epithelial cell growth through induction of c-Jun and PDK1, a kinase implicated in oncogenesis. Respir Res 2015; 16:149. [PMID: 26684827 PMCID: PMC4699375 DOI: 10.1186/s12931-015-0309-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023] Open
Abstract
Background Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. Method The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. Results We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. Conclusion PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell hyperplasia induced by PGE2.
Collapse
Affiliation(s)
- Yu Fan
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China. .,Department of Radiotherapy, Sichuan Cancer Hospital, Chengdu, Sichuan Province, 610041, China.
| | - Ye Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Ke Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
16
|
PDK1: A signaling hub for cell migration and tumor invasion. Biochim Biophys Acta Rev Cancer 2015; 1856:178-88. [DOI: 10.1016/j.bbcan.2015.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 01/22/2023]
|
17
|
PDK1 promotes tumor growth and metastasis in a spontaneous breast cancer model. Oncogene 2015; 35:3314-23. [DOI: 10.1038/onc.2015.393] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022]
|
18
|
Hossen MJ, Kim SC, Yang S, Kim HG, Jeong D, Yi YS, Sung NY, Lee JO, Kim JH, Cho JY. PDK1 disruptors and modulators: a patent review. Expert Opin Ther Pat 2015; 25:513-37. [PMID: 25684022 DOI: 10.1517/13543776.2015.1014801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION 3-Phosphoinositide-dependent kinase 1 (PDK1) is a master regulator of the AGC protein kinase family and is a critical activator of multiple pro-survival and oncogenic protein kinases, for which it has garnered considerable interest as an oncology drug target. AREAS COVERED This manuscript reviews small molecule patent literature disclosures between October 2011 and September 2014 for both PDK1 activators and inhibitors and restates the selective patents published before September 2011. PDK1 modulators are organized according to pharmaceutical company and chemical structural class. EXPERT OPINION Many academic institutions and pharmaceutical companies continue to research into the development of small molecules that can function as PDK1 inhibitors or modulators. To date, >50 patent publications on PDK1 disruptors and modulators have been published since the protein was first discovered in 1998. Most of these molecules act as ATP mimetics, forming similar hydrogen bonding patterns to PDK1 as ATP and functioning as hydrophobic pharmacophores. To achieve selectivity in PDK1 inhibition, the discovery of binding pockets structurally distinctive from the ATP site is a challenging but promising strategy.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Sungkyunkwan University, Department of Genetic Engineering , 300 Chuncheon-Dong, Suwon 440-746 , Korea +82 31 290 7868 ; +82 31 290 7870 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Park MT, Kim MJ, Suh Y, Kim RK, Kim H, Lim EJ, Yoo KC, Lee GH, Kim YH, Hwang SG, Yi JM, Lee SJ. Novel signaling axis for ROS generation during K-Ras-induced cellular transformation. Cell Death Differ 2014; 21:1185-97. [PMID: 24632950 DOI: 10.1038/cdd.2014.34] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are well known to be involved in oncogene-mediated cellular transformation. However, the regulatory mechanisms underlying ROS generation in oncogene-transformed cells are unclear. In the present study, we found that oncogenic K-Ras induces ROS generation through activation of NADPH oxidase 1 (NOX1), which is a critical regulator for the K-Ras-induced cellular transformation. NOX1 was activated by K-Ras-dependent translocation of p47(phox), a subunit of NOX1 to plasma membrane. Of note, PKCδ, when it was activated by PDPK1, directly bound to the SH3-N domain of p47(phox) and catalyzed the phosphorylation on Ser348 and Ser473 residues of p47(phox) C-terminal in a K-Ras-dependent manner, finally leading to its membrane translocation. Notably, oncogenic K-Ras activated all MAPKs (JNK, ERK and p38); however, only p38 was involved in p47(phox)-NOX1-dependent ROS generation and consequent transformation. Importantly, K-Ras-induced activation of p38 led to an activation of PDPK1, which then signals through PKCδ, p47(phox) and NOX1. In agreement with the mechanism, inhibition of p38, PDPK1, PKCδ, p47(phox) or NOX1 effectively blocked K-Ras-induced ROS generation, anchorage-independent colony formation and tumor formation. Taken together, our findings demonstrated that oncogenic K-Ras activates the signaling cascade p38/PDPK1/PKCδ/p47(phox)/NOX1 for ROS generation and consequent malignant cellular transformation.
Collapse
Affiliation(s)
- M-T Park
- 1] Laboratory of Molecular Biochemistry, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea [2] Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - M-J Kim
- 1] Laboratory of Molecular Biochemistry, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea [2] Low Dose Radiation Research Center, National Radiation Emergency Medical Science, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Y Suh
- Laboratory of Molecular Biochemistry, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - R-K Kim
- Laboratory of Molecular Biochemistry, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - H Kim
- Laboratory of Molecular Biochemistry, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - E-J Lim
- Laboratory of Molecular Biochemistry, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - K-C Yoo
- Laboratory of Molecular Biochemistry, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - G-H Lee
- Laboratory of Molecular Biochemistry, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Y-H Kim
- Laboratory of Molecular Biochemistry, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - S-G Hwang
- Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - J-M Yi
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - S-J Lee
- Laboratory of Molecular Biochemistry, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
20
|
Tan J, Li Z, Lee PL, Guan P, Aau MY, Lee ST, Feng M, Lim CZ, Lee EYJ, Wee ZN, Lim YC, Karuturi RKM, Yu Q. PDK1 signaling toward PLK1-MYC activation confers oncogenic transformation, tumor-initiating cell activation, and resistance to mTOR-targeted therapy. Cancer Discov 2013; 3:1156-71. [PMID: 23887393 DOI: 10.1158/2159-8290.cd-12-0595] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Although 3-phosphoinositide-dependent protein kinase-1 (PDK1) has been predominately linked to the phosphoinositide 3-kinase (PI3K)-AKT pathway, it may also evoke additional signaling outputs to promote tumorigenesis. Here, we report that PDK1 directly induces phosphorylation of Polo-like kinase 1 (PLK1), which in turn induces MYC phosphorylation and protein accumulation. We show that PDK1-PLK1-MYC signaling is critical for cancer cell growth and survival, and small-molecule inhibition of PDK1/PLK1 provides an effective approach for therapeutic targeting of MYC dependency. Intriguingly, PDK1-PLK1-MYC signaling induces an embryonic stem cell-like gene signature associated with aggressive tumor behaviors and is a robust signaling axis driving cancer stem cell (CSC) self-renewal. Finally, we show that a PLK1 inhibitor synergizes with an mTOR inhibitor to induce synergistic antitumor effects in colorectal cancer by antagonizing compensatory MYC induction. These findings identify a novel pathway in human cancer and CSC activation and provide a therapeutic strategy for targeting MYC-associated tumorigenesis and therapeutic resistance. SIGNIFICANCE This work identifies PDK1–PLK1-MYC signaling as a new oncogenic pathway driving oncogenic transformation and CSC self-renewal. Targeted inhibition of PDK1/PLK1 is robust in targeting MYC dependency in cancer cells. Thus, our findings provide important insights into cancer and CSC biology and have significant therapeutic implications.
Collapse
Affiliation(s)
- Jing Tan
- 1Cancer Therapeutics and Stratified Oncology, 2Information and Mathematical Science, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Biopolis; 3Graduate School for Integrative Sciences and Engineering; 4Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; and 5Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fyffe C, Falasca M. 3-Phosphoinositide-dependent protein kinase-1 as an emerging target in the management of breast cancer. Cancer Manag Res 2013; 5:271-80. [PMID: 24039447 PMCID: PMC3771848 DOI: 10.2147/cmar.s35026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It should be noted that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is a protein encoded by the PDPK1 gene, which plays a key role in the signaling pathways activated by several growth factors and hormones. PDK1 is a crucial kinase that functions downstream of phosphoinositide 3-kinase activation and activates members of the AGC family of protein kinases, such as protein kinase B (Akt), protein kinase C (PKC), p70 ribosomal protein S6 kinases, and serum glucocorticoid-dependent kinase, by phosphorylating serine/threonine residues in the activation loop. AGC kinases are known to play crucial roles in regulating physiological processes relevant to metabolism, growth, proliferation, and survival. Changes in the expression and activity of PDK1 and several AGC kinases have been linked to human diseases including cancer. Recent data have revealed that the alteration of PDK1 is a critical component of oncogenic phosphoinositide 3-kinase signaling in breast cancer, suggesting that inhibition of PDK1 can inhibit breast cancer progression. Indeed, PDK1 is highly expressed in a majority of human breast cancer cell lines and both PDK1 protein and messenger ribonucleic acid are overexpressed in a majority of human breast cancers. Furthermore, overexpression of PDK1 is sufficient to transform mammary epithelial cells. PDK1 plays an essential role in regulating cell migration, especially in the context of phosphatase and tensin homologue deficiency. More importantly, downregulation of PDK1 levels inhibits migration and experimental metastasis of human breast cancer cells. Thus, targeting PDK1 may be a valuable anticancer strategy that may improve the efficacy of chemotherapeutic strategies in breast cancer patients. In this review, we summarize the evidence that has been reported to support the idea that PDK1 may be a key target in breast cancer management.
Collapse
Affiliation(s)
- Chanse Fyffe
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Inositide Signallling Group, London, UK
| | | |
Collapse
|
22
|
3-phosphoinositide-dependent kinase 1 controls breast tumor growth in a kinase-dependent but Akt-independent manner. Neoplasia 2013; 14:719-31. [PMID: 22952425 DOI: 10.1593/neo.12856] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/25/2012] [Accepted: 06/28/2012] [Indexed: 01/09/2023] Open
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1) is the pivotal element of the phosphatidylinositol 3 kinase (PI3K) signaling pathway because it phosphorylates Akt/PKB through interactions with phosphatidylinositol 3,4,5 phosphate. Recent data indicate that PDK1 is overexpressed in many breast carcinomas and that alterations of PDK1 are critical in the context of oncogenic PI3K activation. However, the role of PDK1 in tumor progression is still controversial. Here, we show that PDK1 is required for anchorage-independent and xenograft growth of breast cancer cells harboring either PI3KCA or KRAS mutations. In fact, PDK1 silencing leads to increased anoikis, reduced soft agar growth, and pronounced apoptosis inside tumors. Interestingly, these phenotypes are reverted by PDK1 wild-type but not kinase-dead mutant, suggesting a relevant role of PDK1 kinase activity, even if PDK1 is not relevant for Akt activation here. Indeed, the expression of constitutively active forms of Akt in PDK1 knockdown cells is unable to rescue the anchorage-independent growth. In addition, Akt down-regulation and pharmacological inhibition do not inhibit the effects of PDK1 overexpression. In summary, these results suggest that PDK1 may contribute to breast cancer, even in the absence of PI3K oncogenic mutations and through both Akt-dependent and Akt-independent mechanisms.
Collapse
|
23
|
Antitumor and antimetastatic activities of grape skin polyphenols in a murine model of breast cancer. Food Chem Toxicol 2012; 50:3462-7. [DOI: 10.1016/j.fct.2012.07.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/06/2012] [Accepted: 07/19/2012] [Indexed: 12/26/2022]
|
24
|
Xu YY, Bao YY, Zhou SH, Fan J. Effect on the expression of MMP-2, MT-MMP in laryngeal carcinoma Hep-2 cell line by antisense glucose transporter-1. Arch Med Res 2012; 43:395-401. [PMID: 22835601 DOI: 10.1016/j.arcmed.2012.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND AIMS Glucose transporter protein-1 (Glut-1) is correlated with biological behaviors of malignant tumors. However, there was no evidence that overexpression of Glut-1 mechanistically lead to invasion or metastasis of cancer cells. We hypothesized that Glut-1 regulates the expression of membrane type 1-MMP (MT1-MMP) and matrix metalloproteinase-2 (MMP-2). METHODS Analysis of the expression of Glut-1, MMP-2, β-actin, and MT1-MMP was performed using RT-PCR. Expression of Glut-1 protein, MMP-2, and MT1-MMP was detected by Western blotting. RESULTS At mRNA and protein levels, Glut-1 and MMP-2 were co-expressed in the Hep-2 laryngeal carcinoma cell line. After transfection, Glut-1 antisense oligodeoxynucleotide (AS-ODN) decreased the expression of MMP-2 mRNA and protein as well as Glut-1 mRNA and protein. Glut-1 AS-ODN also decreased the expression of MT1-MMP mRNA. CONCLUSIONS Co-expression of Glut-1 and MMP-2 in Hep-2 laryngeal carcinoma cells and Glut-1 may regulate MMP-2 and MT1-MMP expression.
Collapse
Affiliation(s)
- Ying-Ying Xu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
25
|
Role of phosphatidylinositol-3-kinase pathway in head and neck squamous cell carcinoma. JOURNAL OF ONCOLOGY 2012; 2012:450179. [PMID: 22666248 PMCID: PMC3362130 DOI: 10.1155/2012/450179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/14/2012] [Indexed: 01/04/2023]
Abstract
Activation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most frequently observed molecular alterations in many human malignancies, including head and neck squamous cell carcinoma (HNSCC). A growing body of evidence demonstrates the prime importance of the PI3K pathway at each stage of tumorigenesis, that is, tumor initiation, progression, recurrence, and metastasis. Expectedly, targeting the PI3K pathway yields some promising results in both preclinical studies and clinical trials for certain cancer patients. However, there are still many questions that need to be answered, given the complexity of this pathway and the existence of its multiple feedback loops and interactions with other signaling pathways. In this paper, we will summarize recent advances in the understanding of the PI3K pathway role in human malignancies, with an emphasis on HNSCC, and discuss the clinical applications and future direction of this field.
Collapse
|
26
|
Blanchard S, Soh CK, Lee CP, Poulsen A, Bonday Z, Goh KL, Goh KC, Goh MK, Pasha MK, Wang H, Williams M, Wood JM, Ethirajulu K, Dymock BW. 2-anilino-4-aryl-8H-purine derivatives as inhibitors of PDK1. Bioorg Med Chem Lett 2012; 22:2880-4. [PMID: 22437109 DOI: 10.1016/j.bmcl.2012.02.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 01/21/2023]
Abstract
A series of 2-anilino substituted 4-aryl-8H-purines were prepared as potent inhibitors of PDK1, a serine-threonine kinase thought to play a role in the PI3K/Akt signaling pathway, a key mediator of cancer cell growth, survival and tumorigenesis. The synthesis, SAR and ADME properties of this series of compounds are discussed culminating in the discovery of compound 6 which possessed sub-micromolar cell proliferation activity and 65% oral bioavailability in mice.
Collapse
Affiliation(s)
- Stéphanie Blanchard
- S*BIO Pte. Ltd, The Capricorn, Singapore Science Park II, Singapore, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fatima K, Paracha RZ, Qadri I. Post-transcriptional silencing of Notch2 mRNA in chronic lymphocytic [corrected] leukemic cells of B-CLL patients. Mol Biol Rep 2011; 39:5059-67. [PMID: 22161246 DOI: 10.1007/s11033-011-1301-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 11/30/2011] [Indexed: 12/20/2022]
Abstract
Environmental and genomic stresses induce different pathological conditions and one of them is blood cancer. This escalating load of disease with a constant threat to life requires an intensive comprehensive response. For our understanding about the cancer treatment capabilities, novel medicinal platforms should be strived to explore among the existing conventional and molecular approaches that have already been proven to be successful in fighting against genetic diseases. Several DNA therapeutics previously studied are currently in clinical settings. RNA interfering antisense oligonucleotide (AS-ODN) is the most experimentally advanced molecular therapeutic which has the potential to modify the gene activity resulting in the down regulation of particular protein. In this study, we focused on the inhibition of Notch2 function in B-cell chronic lymphocytic leukemia (B-CLL) by AS-ODN (phosphorothioate oligomers) targeted to the initiation codon region of the Notch2 mRNA. We investigated the in vitro ability of four such oligomers to reduce the expression of Notch2 gene in peripheral blood mononuclear cells from B-CLL patients. Our findings implicate that AS-ODNs specifically designed for the region of 314-333 neucleotides (AS1) of Notch2 inhibits its gene expression better than other AS-ODNs designed for other regions and respond in a dose dependent manner. The results of cell proliferation assay for the evaluation of AS1 in gene silencing, infer that the number of cells were reduced to 80% (P < 0.001). Our results implicate that using the AS-ODNs against specific Notch2 nucleotide sequence can be used as future therapeutic agent with the ability of Notch2 down regulation, which is the root problem in the pathogenicity of B-CLL.
Collapse
Affiliation(s)
- Kaneez Fatima
- NUST Centre of Virology and Immunology (NCVI), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | | | | |
Collapse
|
28
|
Hua Y, Duan S, Murmann AE, Larsen N, Kjems J, Lund AH, Peter ME. miRConnect: identifying effector genes of miRNAs and miRNA families in cancer cells. PLoS One 2011; 6:e26521. [PMID: 22046300 PMCID: PMC3202536 DOI: 10.1371/journal.pone.0026521] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/28/2011] [Indexed: 12/14/2022] Open
Abstract
micro(mi)RNAs are small non-coding RNAs that negatively regulate expression of most mRNAs. They are powerful regulators of various differentiation stages, and the expression of genes that either negatively or positively correlate with expressed miRNAs is expected to hold information on the biological state of the cell and, hence, of the function of the expressed miRNAs. We have compared the large amount of available gene array data on the steady state system of the NCI60 cell lines to two different data sets containing information on the expression of 583 individual miRNAs. In addition, we have generated custom data sets containing expression information of 54 miRNA families sharing the same seed match. We have developed a novel strategy for correlating miRNAs with individual genes based on a summed Pearson Correlation Coefficient (sPCC) that mimics an in silico titration experiment. By focusing on the genes that correlate with the expression of miRNAs without necessarily being direct targets of miRNAs, we have clustered miRNAs into different functional groups. This has resulted in the identification of three novel miRNAs that are linked to the epithelial-to-mesenchymal transition (EMT) in addition to the known EMT regulators of the miR-200 miRNA family. In addition, an analysis of gene signatures associated with EMT, c-MYC activity, and ribosomal protein gene expression allowed us to assign different activities to each of the functional clusters of miRNAs. All correlation data are available via a web interface that allows investigators to identify genes whose expression correlates with the expression of single miRNAs or entire miRNA families. miRConnect.org will aid in identifying pathways regulated by miRNAs without requiring specific knowledge of miRNA targets.
Collapse
Affiliation(s)
- Youjia Hua
- Feinberg School of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, Illinois, United States of America
| | - Shiwei Duan
- Department of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Andrea E. Murmann
- Feinberg School of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, Illinois, United States of America
| | - Niels Larsen
- Department of Molecular Biology, Aarhus University, Århus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology, Aarhus University, Århus, Denmark
| | - Anders H. Lund
- Biotech Research and Innovation Centre and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Marcus E. Peter
- Feinberg School of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Yamaguchi H, Yoshida S, Muroi E, Yoshida N, Kawamura M, Kouchi Z, Nakamura Y, Sakai R, Fukami K. Phosphoinositide 3-kinase signaling pathway mediated by p110α regulates invadopodia formation. ACTA ACUST UNITED AC 2011; 193:1275-88. [PMID: 21708979 PMCID: PMC3216328 DOI: 10.1083/jcb.201009126] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inhibition of p110α or of the downstream PI3K signaling pathway components PDK1 and Akt, as well as phosphoinositide sequestration, blocks invadopodia formation in breast cancer cells. Invadopodia are extracellular matrix–degrading protrusions formed by invasive cancer cells that are thought to function in cancer invasion. Although many invadopodia components have been identified, signaling pathways that link extracellular stimuli to invadopodia formation remain largely unknown. We investigate the role of phosphoinositide 3-kinase (PI3K) signaling during invadopodia formation. We find that in human breast cancer cells, both invadopodia formation and degradation of a gelatin matrix were blocked by treatment with PI3K inhibitors or sequestration of D-3 phosphoinositides. Functional analyses revealed that among the PI3K family proteins, the class I PI3K catalytic subunit p110α, a frequently mutated gene product in human cancers, was selectively involved in invadopodia formation. The expression of p110α with cancerous mutations promoted invadopodia-mediated invasive activity. Furthermore, knockdown or inhibition of PDK1 and Akt, downstream effectors of PI3K signaling, suppressed invadopodia formation induced by p110α mutants. These data suggest that PI3K signaling via p110α regulates invadopodia-mediated invasion of breast cancer cells.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu J, Dauchy RT, Tirrell PC, Wu SS, Lynch DT, Jitawatanarat P, Burrington CM, Dauchy EM, Blask DE, Greene MW. Light at night activates IGF-1R/PDK1 signaling and accelerates tumor growth in human breast cancer xenografts. Cancer Res 2011; 71:2622-31. [PMID: 21310824 DOI: 10.1158/0008-5472.can-10-3837] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regulation of diurnal and circadian rhythms and cell proliferation are coupled in all mammals, including humans. However, the molecular mechanisms by which diurnal and circadian rhythms regulate cell proliferation are relatively poorly understood. In this study, we report that tumor growth in nude rats bearing human steroid receptor-negative MCF-7 breast tumors can be significantly accelerated by exposing the rats to light at night (LAN). Under normal conditions of an alternating light/dark cycle, proliferating cell nuclear antigen (PCNA) levels in tumors were maximal in the early light phase but remained at very low levels throughout the daily 24-hour cycle period monitored. Surprisingly, PCNA was expressed in tumors continually at a high level throughout the entire 24-hour period in LAN-exposed nude rats. Daily fluctuations of Akt and mitogen activated protein kinase activation in tumors were also disrupted by LAN. These fluctuations did not track with PCNA changes, but we found that activation of the Akt stimulatory kinase phosphoinositide-dependent protein kinase 1 (PDK1) directly correlated with PCNA levels. Expression of insulin-like growth factor 1 receptor (IGF-1R), an upstream signaling molecule for PDK1, also correlated with fluctuations of PDK1/PCNA in the LAN group. In addition, circulating IGF-1 concentrations were elevated in LAN-exposed tumor-bearing nude rats. Finally, RNAi-mediated knockdown of PDK1 led to a reduction in PCNA expression and cell proliferation in vitro and tumor growth in vivo, indicating that PDK1 regulates breast cancer growth in a manner correlated with PCNA expression. Taken together, our findings demonstrate that LAN exposure can accelerate tumor growth in vivo, in part through continuous activation of IGF-1R/PDK1 signaling.
Collapse
Affiliation(s)
- Jinghai Wu
- Bassett Research Institute and Department of Internal Medicine, Bassett Healthcare Network, Cooperstown, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pollock CB, Yin Y, Yuan H, Zeng X, King S, Li X, Kopelovich L, Albanese C, Glazer RI. PPARδ activation acts cooperatively with 3-phosphoinositide-dependent protein kinase-1 to enhance mammary tumorigenesis. PLoS One 2011; 6:e16215. [PMID: 21297860 PMCID: PMC3020974 DOI: 10.1371/journal.pone.0016215] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/10/2010] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptorδ (PPARδ) is a transcription factor that is associated with metabolic gene regulation and inflammation. It has been implicated in tumor promotion and in the regulation of 3-phosphoinositide-dependent kinase-1 (PDK1). PDK1 is a key regulator of the AGC protein kinase family, which includes the proto-oncogene AKT/PKB implicated in several malignancies, including breast cancer. To assess the role of PDK1 in mammary tumorigenesis and its interaction with PPARδ, transgenic mice were generated in which PDK1 was expressed in mammary epithelium under the control of the MMTV enhancer/promoter region. Transgene expression increased pT308AKT and pS9GSK3β, but did not alter phosphorylation of mTOR, 4EBP1, ribosomal protein S6 and PKCα. The transgenic mammary gland also expressed higher levels of PPARδ and a gene expression profile resembling wild-type mice maintained on a diet containing the PPARδ agonist, GW501516. Both wild-type and transgenic mice treated with GW501516 exhibited accelerated rates of tumor formation that were more pronounced in transgenic animals. GW501516 treatment was accompanied by a distinct metabolic gene expression and metabolomic signature that was not present in untreated animals. GW501516-treated transgenic mice expressed higher levels of fatty acid and phospholipid metabolites than treated wild-type mice, suggesting the involvement of PDK1 in enhancing PPARδ-driven energy metabolism. These results reveal that PPARδ activation elicits a distinct metabolic and metabolomic profile in tumors that is in part related to PDK1 and AKT signaling.
Collapse
Affiliation(s)
- Claire B. Pollock
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Yuzhi Yin
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Xiao Zeng
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Sruthi King
- Department of Pharmacology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Xin Li
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Levy Kopelovich
- Chemoprevention Agent Development and Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Chris Albanese
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Robert I. Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| |
Collapse
|
32
|
Bayascas JR. PDK1: the major transducer of PI 3-kinase actions. Curr Top Microbiol Immunol 2011; 346:9-29. [PMID: 20563709 DOI: 10.1007/82_2010_43] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most of the cellular responses to phosphatidylinositol 3-kinase activation and phosphatidylinositol 3,4,5-trisphosphate production are mediated by the activation of a group of AGC kinases comprising PKB, S6K, RSK, SGK and PKC isoforms, which play essential roles in regulating physiological processes related to cell growth, proliferation, survival and metabolism. All these growth-factor-stimulated AGC kinases possess a common upstream activator, namely PDK1, a master kinase, which, being constitutively active, is still able to phosphorylate and activate its AGC substrates in response to rises in the levels of the PtdIns(3,4,5)P(3) second messenger. In this chapter, the biochemical, structural and genetic data on the mechanism of action and physiological roles of PDK1 are reviewed, and its potential as a pharmaceutical target for the design of drugs therapeutically beneficial to treat human disease such us diabetes and cancer is discussed.
Collapse
Affiliation(s)
- José Ramón Bayascas
- Institut de Neurociències & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
33
|
Nagashima K, Shumway SD, Sathyanarayanan S, Chen AH, Dolinski B, Xu Y, Keilhack H, Nguyen T, Wiznerowicz M, Li L, Lutterbach BA, Chi A, Paweletz C, Allison T, Yan Y, Munshi SK, Klippel A, Kraus M, Bobkova EV, Deshmukh S, Xu Z, Mueller U, Szewczak AA, Pan BS, Richon V, Pollock R, Blume-Jensen P, Northrup A, Andersen JN. Genetic and pharmacological inhibition of PDK1 in cancer cells: characterization of a selective allosteric kinase inhibitor. J Biol Chem 2010; 286:6433-48. [PMID: 21118801 DOI: 10.1074/jbc.m110.156463] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.
Collapse
|
34
|
Li Y, Yang KJ, Park J. Multiple implications of 3-phosphoinositide-dependent protein kinase 1 in human cancer. World J Biol Chem 2010; 1:239-47. [PMID: 21537480 PMCID: PMC3083972 DOI: 10.4331/wjbc.v1.i8.239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/13/2010] [Accepted: 07/20/2010] [Indexed: 02/05/2023] Open
Abstract
3-phosphoinositide-dependent protein kinase-1 (PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases, including protein kinase B, p70 ribosomal S6 kinase, serum and glucocorticoid-inducible kinase, and protein kinase C. PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop. Here, we review the regulatory mechanisms of PDK1 and its roles in cancer. PDK1 is activated by autophosphorylation in the activation loop and other serine residues, as well as by phosphorylation of Tyr-9 and Tyr-373/376. Src appears to recognize PDK1 following tyrosine phosphorylation. The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed. Furthermore, we summarize the subcellular distribution of PDK1. Finally, an important role for PDK1 in cancer chemotherapy is proposed. In conclusion, a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers, and will contribute to the development of novel cancer chemotherapies.
Collapse
Affiliation(s)
- Yuwen Li
- Yuwen Li, Keum-Jin Yang, Jongsun Park, Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Cancer Research Institute, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-131, South Korea
| | | | | |
Collapse
|
35
|
Lu Z, Cox-Hipkin MA, Windsor WT, Boyapati A. 3-Phosphoinositide–Dependent Protein Kinase-1 Regulates Proliferation and Survival of Cancer Cells with an Activated Mitogen-Activated Protein Kinase Pathway. Mol Cancer Res 2010; 8:421-32. [PMID: 20197379 DOI: 10.1158/1541-7786.mcr-09-0179] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhuomei Lu
- Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | | | | | |
Collapse
|
36
|
Yao Z, Mishra L. Cancer stem cells and hepatocellular carcinoma. Cancer Biol Ther 2010; 8:1691-8. [PMID: 19901516 DOI: 10.4161/cbt.8.18.9843] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide, with a median survival of 6-16 m. Factors responsible for the poor prognosis include late onset diagnosis, underlying cirrhosis and resistance to chemotherapy; 40% of HCCs are clonal and therefore potentially arise from progenitor/stem cells. New insights are provided from several signaling pathways, such as STAT3, NOTCH, hedgehog and transforming growth factor-beta (TGFbeta), which are involved in stem cell renewal, differentiation, survival, and are commonly deregulated in HCC. Control of stem cell proliferation by the TGFbeta, Notch, Wnt and Hedgehog pathways to suppress hepatocellular cancer and to form the endoderm suggest a dual role for this pathway in tumor suppression as well as progression of differentiation from a stem or progenitor stage. This review provides a rationale for detecting and analyzing tumor stem cells as one of the most effective ways to treat cancers such as hepatocellular cancer.
Collapse
Affiliation(s)
- Zhixing Yao
- Laboratory of Cancer Genetics, Digestive Diseases and Developmental Molecular Biology, Georgetown University, Washington, DC 20007, USA
| | | |
Collapse
|
37
|
Maurer M, Su T, Saal LH, Koujak S, Hopkins BD, Barkley CR, Wu J, Nandula S, Dutta B, Xie Y, Chin YR, Kim DI, Ferris JS, Gruvberger-Saal SK, Laakso M, Wang X, Memeo L, Rojtman A, Matos T, Yu JS, Cordon-Cardo C, Isola J, Terry MB, Toker A, Mills GB, Zhao JJ, Murty VVVS, Hibshoosh H, Parsons R. 3-Phosphoinositide-dependent kinase 1 potentiates upstream lesions on the phosphatidylinositol 3-kinase pathway in breast carcinoma. Cancer Res 2009; 69:6299-306. [PMID: 19602588 PMCID: PMC2727605 DOI: 10.1158/0008-5472.can-09-0820] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lesions of ERBB2, PTEN, and PIK3CA activate the phosphatidylinositol 3-kinase (PI3K) pathway during cancer development by increasing levels of phosphatidylinositol-3,4,5-triphosphate (PIP(3)). 3-Phosphoinositide-dependent kinase 1 (PDK1) is the first node of the PI3K signal output and is required for activation of AKT. PIP(3) recruits PDK1 and AKT to the cell membrane through interactions with their pleckstrin homology domains, allowing PDK1 to activate AKT by phosphorylating it at residue threonine-308. We show that total PDK1 protein and mRNA were overexpressed in a majority of human breast cancers and that 21% of tumors had five or more copies of the gene encoding PDK1, PDPK1. We found that increased PDPK1 copy number was associated with upstream pathway lesions (ERBB2 amplification, PTEN loss, or PIK3CA mutation), as well as patient survival. Examination of an independent set of breast cancers and tumor cell lines derived from multiple forms of human cancers also found increased PDK1 protein levels associated with such upstream pathway lesions. In human mammary cells, PDK1 enhanced the ability of upstream lesions to signal to AKT, stimulate cell growth and migration, and rendered cells more resistant to PDK1 and PI3K inhibition. After orthotopic transplantation, PDK1 overexpression was not oncogenic but dramatically enhanced the ability of ERBB2 to form tumors. Our studies argue that PDK1 overexpression and increased PDPK1 copy number are common occurrences in cancer that potentiate the oncogenic effect of upstream lesions on the PI3K pathway. Therefore, we conclude that alteration of PDK1 is a critical component of oncogenic PI3K signaling in breast cancer.
Collapse
Affiliation(s)
- Matthew Maurer
- Department of Medicine, Columbia University, New York, New York, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Tao Su
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Lao H. Saal
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Susan Koujak
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Benjamin D. Hopkins
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Christina R. Barkley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jiaping Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Subhadra Nandula
- Department of Pathology, Columbia University, New York, New York
| | - Bhaskar Dutta
- Department of Systems Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yuli Xie
- Department of Medicine, Columbia University, New York, New York
| | - Y. Rebecca Chin
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Da-In Kim
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jennifer S. Ferris
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Sofia K. Gruvberger-Saal
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Mervi Laakso
- Seinajoki Central Hospital, Seinajoki, Finland, Institute of Medical Technology, University and University Hospital of Tampere, Tampere, Finland
| | - Xiaomei Wang
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Catania, Italy
| | - Albert Rojtman
- Department of Pathology, Columbia University, New York, New York
| | - Tulio Matos
- Department of Pathology, Columbia University, New York, New York
| | - Jennifer S. Yu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, New York, Department of Pathology, Columbia University, New York, New York
| | - Carlos Cordon-Cardo
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, Department of Pathology, Columbia University, New York, New York
| | - Jorma Isola
- Institute of Medical Technology, University and University Hospital of Tampere, Tampere, Finland
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vundavalli V. V. S. Murty
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, Department of Pathology, Columbia University, New York, New York
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, Department of Pathology, Columbia University, New York, New York
| | - Ramon Parsons
- Department of Medicine, Columbia University, New York, New York, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, New York, Department of Pathology, Columbia University, New York, New York
| |
Collapse
|
38
|
Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, Shetty K, Johnson L, Reddy EP. Liver stem cells and hepatocellular carcinoma. HEPATOLOGY (BALTIMORE, MD.) 2009. [PMID: 19111019 DOI: 10.1002/hep.22704.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the existence of cancer stem cells (CSCs) was first proposed over 40 years ago, only in the past decade have these cells been identified in hematological malignancies, and more recently in solid tumors that include liver, breast, prostate, brain, and colon. Constant proliferation of stem cells is a vital component in liver tissues. In these renewing tissues, mutations will most likely result in expansion of the altered stem cells, perpetuating and increasing the chances of additional mutations and tumor progression. However, many details about hepatocellular cancer stem cells that are important for early detection remain poorly understood, including the precise cell(s) of origin, molecular genetics, and the mechanisms responsible for the highly aggressive clinical picture of hepatocellular carcinoma (HCC). Exploration of the difference between CSCs from normal stem cells is crucial not only for the understanding of tumor biology but also for the development of specific therapies that effectively target these cells in patients. These ideas have drawn attention to control of stem cell proliferation by the transforming growth factor beta (TGF-beta), Notch, Wnt, and Hedgehog pathways. Recent evidence also suggests a key role for the TGF-beta signaling pathway in both hepatocellular cancer suppression and endoderm formation, suggesting a dual role for this pathway in tumor suppression as well as progression of differentiation from a stem or progenitor stage. This review provides a rationale for detecting and analyzing tumor stem cells as one of the most effective ways to treat cancers such as HCC.
Collapse
Affiliation(s)
- Lopa Mishra
- Laboratory of Cancer Genetics, Digestive Diseases, and Developmental Molecular Biology, Department of Surgery, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, Shetty K, Johnson L, Reddy EP. Liver stem cells and hepatocellular carcinoma. Hepatology 2009; 49:318-29. [PMID: 19111019 PMCID: PMC2726720 DOI: 10.1002/hep.22704] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the existence of cancer stem cells (CSCs) was first proposed over 40 years ago, only in the past decade have these cells been identified in hematological malignancies, and more recently in solid tumors that include liver, breast, prostate, brain, and colon. Constant proliferation of stem cells is a vital component in liver tissues. In these renewing tissues, mutations will most likely result in expansion of the altered stem cells, perpetuating and increasing the chances of additional mutations and tumor progression. However, many details about hepatocellular cancer stem cells that are important for early detection remain poorly understood, including the precise cell(s) of origin, molecular genetics, and the mechanisms responsible for the highly aggressive clinical picture of hepatocellular carcinoma (HCC). Exploration of the difference between CSCs from normal stem cells is crucial not only for the understanding of tumor biology but also for the development of specific therapies that effectively target these cells in patients. These ideas have drawn attention to control of stem cell proliferation by the transforming growth factor beta (TGF-beta), Notch, Wnt, and Hedgehog pathways. Recent evidence also suggests a key role for the TGF-beta signaling pathway in both hepatocellular cancer suppression and endoderm formation, suggesting a dual role for this pathway in tumor suppression as well as progression of differentiation from a stem or progenitor stage. This review provides a rationale for detecting and analyzing tumor stem cells as one of the most effective ways to treat cancers such as HCC.
Collapse
Affiliation(s)
- Lopa Mishra
- Laboratory of Cancer Genetics, Digestive Diseases, and Developmental Molecular Biology, Department of Surgery, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kurata A, Katayama R, Watanabe T, Tsuruo T, Fujita N. TUSC4/NPRL2, a novel PDK1-interacting protein, inhibits PDK1 tyrosine phosphorylation and its downstream signaling. Cancer Sci 2008; 99:1827-34. [PMID: 18616680 PMCID: PMC11159638 DOI: 10.1111/j.1349-7006.2008.00874.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK1) is a key regulator of cell proliferation and survival signal transduction. PDK1 is known to be constitutively active and is further activated by Src-mediated phosphorylation at the tyrosine-9, -373, and -376 residues. To identify novel regulators of PDK1, we performed E. coli-based two-hybrid screening and revealed that tumor suppressor candidate 4 (TUSC4), also known as nitrogen permease regulator-like 2 (NPRL2), formed a complex with PDK1 and suppressed Src-dependent tyrosine phosphorylation and activation of PDK1 in vitro and in cells. The NH(2)-terminal 133 amino acid residues of TUSC4 were involved in binding to PDK1. The deletion mutant of TUSC4 that lacked the NH(2)-terminal domain showed no inhibitory effects on PDK1 tyrosine phosphorylation or activation. Thus, complex formation is indispensable for TUSC4-mediated PDK1 inactivation. The siRNA-mediated down-regulation of TUSC4 induced cell proliferation, while ectopic TUSC4 expression inactivated the PDK1 downstream signaling pathway, including Akt and p70 ribosomal protein S6 kinase, and increased cancer cell sensitivity to several anticancer drugs. Our results suggest that TUSC4/NPRL2, a novel PDK1-interacting protein, plays a role in regulating the Src/PDK1 signaling pathway and cell sensitivity to multiple cancer chemotherapeutic drugs.
Collapse
Affiliation(s)
- Atsuo Kurata
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | |
Collapse
|
41
|
Winfield LL, Smith DM, Halemano K, Leggett CS. A Preliminary Assessment of the Structure-Activity Relationship of Benzimidazole-Based Anti-Proliferative Agents. LETT DRUG DES DISCOV 2008; 5:369-376. [PMID: 25568641 DOI: 10.2174/157018008785777324#sthash.5mpkacrr.dpuf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PDK1 is pivotal in the development and progression of several cancers. A 3D pharmacophore was developed for pyrazole derivatives displaying anti-proliferative activity and PDK1 inhibition. The pharmacophore was utilized in the design of benzimidazole analogs. Our preliminary results indicate the pharmacophore should be useful in designing PDK1 inhibitors and anti-proliferative agents.
Collapse
Affiliation(s)
- Leyte L Winfield
- Department of Chemistry, Spelman College, Atlanta, GA 30314, USA
| | - Dayle M Smith
- Department of Physics, Whitman College, Walla Walla, WA 99362, USA
| | - Kalani Halemano
- Department of Physics, Whitman College, Walla Walla, WA 99362, USA
| | | |
Collapse
|
42
|
Durmuş Tekir S, Yalçin Arga K, Ulgen KO. Drug targets for tumorigenesis: insights from structural analysis of EGFR signaling network. J Biomed Inform 2008; 42:228-36. [PMID: 18790083 DOI: 10.1016/j.jbi.2008.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 07/15/2008] [Accepted: 08/17/2008] [Indexed: 02/01/2023]
Abstract
Deciphering the complex network structure is crucial in drug target identification. This study presents a framework incorporating graph theoretic and network decomposition methods to analyze system-level properties of the comprehensive map of the epidermal growth factor receptor (EGFR) signaling, which is a good candidate model system to study the general mechanisms of signal transduction. The graph theoretic analysis of the EGFR network indicates that it has small-world characteristics with scale-free topology. The employment of network decomposition analysis enlightened the system-level properties, such as network cross-talk, specific molecules in each pathway and participation of molecules in the network. Participating in a significant fraction of the fundamental paths connecting the ligands to the phenotypes, cofactor GTP and complex Gbeta/Ggamma were identified as "housekeeping" molecules, through which all pathways of EGFR network are cross-talking. c-Src-Shc complex is identified as important due to its role in all fundamental paths through tumorigenesis and being specific to this phenotype. Inhibitors of this complex may be good anti-cancer agents having very little or no effect on other phenotypes.
Collapse
Affiliation(s)
- Saliha Durmuş Tekir
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek-Istanbul, Turkey.
| | | | | |
Collapse
|
43
|
AbdulHameed MDM, Hamza A, Liu J, Zhan CG. Combined 3D-QSAR modeling and molecular docking study on indolinone derivatives as inhibitors of 3-phosphoinositide-dependent protein kinase-1. J Chem Inf Model 2008; 48:1760-72. [PMID: 18717540 DOI: 10.1021/ci800147v] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK1) is a promising target for developing novel anticancer drugs. In order to understand the structure-activity correlation of indolinone-based PDK1 inhibitors, we have carried out a combined molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling study. The study has resulted in two types of satisfactory 3D-QSAR models, including the CoMFA model (r(2)=0.907; q(2)=0.737) and CoMSIA model (r(2)=0.991; q(2)=0.824), for predicting the biological activity of new compounds. The detailed microscopic structures of PDK1 binding with inhibitors have been studied by molecular docking. We have also developed docking-based 3D-QSAR models (CoMFA with q(2)=0.729; CoMSIA with q(2)=0.79). The contour maps obtained from the 3D-QSAR models in combination with the docked binding structures help to better interpret the structure-activity relationship. All of the structural insights obtained from both the 3D-QSAR contour maps and molecular docking are consistent with the available experimental activity data. This is the first report on 3D-QSAR modeling of PDK1 inhibitors. The satisfactory results strongly suggest that the developed 3D-QSAR models and the obtained PDK1-inhibitor binding structures are reasonable for the prediction of the activity of new inhibitors and in future drug design.
Collapse
Affiliation(s)
- Mohamed Diwan M AbdulHameed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
44
|
Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways. Mol Cell Biol 2008; 28:3589-99. [PMID: 18362162 DOI: 10.1128/mcb.00040-08] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The RNA-binding protein Musashi1 (Msi1) is a positive regulator of Notch-mediated transcription in Drosophila melanogaster and neural progenitor cells and has been identified as a putative human breast stem cell marker. Here we describe a novel functional role for Msi1: its ability to drive progenitor cell expansion along the luminal and myoepithelial lineages. Expression of Msi1 in mammary epithelial cells increases the abundance of CD24(hi) Sca-1(+), CD24(hi) CD29(+), CK19, CK6, and double-positive CK14/CK18 progenitor cells. Proliferation is associated with increased proliferin-1 (PLF1) and reduced Dickkopf-3 (DKK3) secretion into the conditioned medium from Msi-expressing cells, which is associated with increased colony formation and extracellular signal-regulated kinase (ERK) phosphorylation. Treatment with the MEK inhibitor U0126 inhibits ERK activation and decreases Notch and beta-catenin/T-cell factor (TCF) reporter activity resulting from Msi1 expression. Reduction of DKK3 in control cells with a short hairpin RNA (shRNA) increases Notch and beta-catenin/TCF activation, whereas reduction of PLF1 with a shRNA in Msi1-expressing cells inhibits these pathways. These results identify Msi1 as a key determinant of the mammary lineage through its ability to coordinate cell cycle entry and activate the Notch and Wnt pathways by a novel autocrine process involving PLF1 and DKK3.
Collapse
|
45
|
An immunohistochemical perspective of PPAR beta and one of its putative targets PDK1 in normal ovaries, benign and malignant ovarian tumours. Br J Cancer 2008; 98:1415-24. [PMID: 18349831 PMCID: PMC2361706 DOI: 10.1038/sj.bjc.6604306] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Peroxisome proliferator-activated receptor beta (PPAR beta) is a member of the nuclear hormone receptor family and is a ligand-activated transcription factor with few known molecular targets including 3-phosphoinositide-dependent protein kinase 1(PDK1). In view of the association of PPAR beta and PDK1 with cancer, we have examined the expression of PPAR beta and PDK1 in normal ovaries and different histological grades of ovarian tumours. Normal ovaries, benign, borderline, grades 1, 2 and 3 ovarian tumours of serous, muciuous, endometrioid, clear cell and mixed subtypes were analysed by immunohistochemistry for PPAR beta and PDK1 expression. All normal ovarian tissues, benign, borderline and grade 1 tumours showed PPAR beta staining localised in the epithelium and stroma. Staining was predominantly nuclear, but some degree of cytoplasmic staining was also evident. Approximately 20% of grades 2 and 3 tumours lacked PPAR beta staining, whereas the rest displayed some degree of nuclear and cytoplasmic staining of the scattered epithelium and stroma. The extent of epithelial and stromal PPAR beta staining was significantly different among the normal and the histological grades of tumours (chi(2)=59.25, d.f.=25, P<0.001; chi(2)=64.48, d.f.=25, P<0.001). Significantly different staining of PPAR beta was observed in the epithelium and stroma of benign and borderline tumours compared with grades 1, 2 and 3 tumours (chi(2)=11.28, d.f.=4, P<0.05; chi(2)=16.15, d.f.=4, P<0.005). In contrast, PDK1 immunostaining was absent in 9 out of 10 normal ovaries. Weak staining for PDK1 was observed in one normal ovary and 40% of benign ovarian tumours. All borderline and malignant ovarian tumours showed positive cytoplasmic and membrane PDK1 staining. Staining of PDK1 was confined to the epithelium and the blood vessels, and no apparent staining of the stroma was evident. Significantly different PDK1 staining was observed between the benign/borderline and malignant ovarian tumours (chi(2)=22.45, d.f.=5, P<0.001). In some borderline and high-grade tumours, staining of the reactive stroma was also evident. Our results suggest that unlike the colon, the endometrial, head and neck carcinomas, overexpression of PPAR beta does not occur in ovarian tumours. However, overexpression of PDK1 was evident in borderline and low- to high-grade ovarian tumours and is consistent with its known role in tumorigenesis.
Collapse
|
46
|
Pinner S, Sahai E. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat Cell Biol 2008; 10:127-37. [PMID: 18204440 DOI: 10.1038/ncb1675] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/06/2007] [Indexed: 02/06/2023]
Abstract
In three-dimensional matrices cancer cells move with a rounded, amoeboid morphology that is controlled by ROCK-dependent contraction of acto-myosin. In this study, we show that PDK1 is required for phosphorylation of myosin light chain and cell motility, both on deformable gels and in vivo. Depletion of PDK1 alters the localization of ROCK1 and reduces its ability to drive cortical acto-myosin contraction. This form of ROCK1 regulation does not require PDK1 kinase activity, but instead involves direct binding of PDK1 to ROCK1 at the plasma membrane; PDK1 competes directly with RhoE for binding to ROCK1. In the absence of PDK1, negative regulation by RhoE predominates, causing reduced acto-myosin contractility and motility. This work uncovers a novel non-catalytic role for PDK1 in regulating cortical acto-myosin and cell motility.
Collapse
Affiliation(s)
- Sophie Pinner
- Tumour Cell Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| | | |
Collapse
|
47
|
Yang KJ, Shin S, Piao L, Shin E, Li Y, Park KA, Byun HS, Won M, Hong J, Kweon GR, Hur GM, Seok JH, Chun T, Brazil DP, Hemmings BA, Park J. Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) by Src involves tyrosine phosphorylation of PDK1 and Src homology 2 domain binding. J Biol Chem 2007; 283:1480-1491. [PMID: 18024423 DOI: 10.1074/jbc.m706361200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1-Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti-phospho-Tyr(9) antibodies showed that the level of Tyr(9) phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr(9), distinct from Tyr(373/376), is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr(9) phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.
Collapse
Affiliation(s)
- Keum-Jin Yang
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Sanghee Shin
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Longzhen Piao
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Eulsoon Shin
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Yuwen Li
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Kyeong Ah Park
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Hee Sun Byun
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Minho Won
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Janghee Hong
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, College of Medicine, Chungnam National University, Taejeon 301-131, South Korea
| | - Gang Min Hur
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Jeong Ho Seok
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Taehoon Chun
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Derek P Brazil
- University College Dublin School of Biomolecular and Biomedical Science, University College Dublin Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Brian A Hemmings
- Friedrich Miescher Institute for Biomedical Research, Basel CH-4058, Switzerland
| | - Jongsun Park
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea.
| |
Collapse
|
48
|
Inverse In Silico Screening for Identification of Kinase Inhibitor Targets. ACTA ACUST UNITED AC 2007; 14:1207-14. [DOI: 10.1016/j.chembiol.2007.10.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/17/2007] [Accepted: 10/10/2007] [Indexed: 01/26/2023]
|
49
|
Cen L, Hsieh FC, Lin HJ, Chen CS, Qualman SJ, Lin J. PDK-1/AKT pathway as a novel therapeutic target in rhabdomyosarcoma cells using OSU-03012 compound. Br J Cancer 2007; 97:785-91. [PMID: 17848913 PMCID: PMC2360380 DOI: 10.1038/sj.bjc.6603952] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common paediatric soft-tissue sarcoma including two major subtypes, alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma (ERMS). Increasing evidence suggests that oncogenesis of RMS involves multistages of signalling protein dysregulation which may include prolonged activation of serine/threonine kinases such as phosphoinositide-dependant kinase-1 (PDK-1) and AKT. To date, whether PDK-1/AKT pathway is activated in RMS is unknown. This study was to examine phosphorylation status of AKT and to evaluate a novel small molecular inhibitor, OSU-03012 targeting PDK-1 in RMS. We examined phosphorylation levels of AKT using ARMS and ERMS tissue microarray and immunohistochemistry staining. Our results showed phospho-AKTThr308 level is elevated 42 and 35% in ARMS and ERMS, respectively. Phospho-AKTSer473 level is also increased 43% in ARMS and 55% in ERMS. Furthermore, we showed that OSU-03012 inhibits cell viability and induces apoptosis in ARMS and ERMS cell lines (RH30, SMS-CTR), which express elevated phospho-AKT levels. Normal cells are much less sensitive to OSU-03012 and in which no detectable apoptosis was observed. This study showed, for the first time, that PDK-1/AKT pathway is activated in RMS and may play an important role in survival of RMS. PDK-1/AKT pathway may be an attractive therapeutic target for cancer intervention in RMS using OSU-03012.
Collapse
Affiliation(s)
- L Cen
- Center for Childhood Cancer, Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43205, USA
| | - F-C Hsieh
- Center for Childhood Cancer, Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - H-J Lin
- Division of Medical Technology, School of Allied Medical Professions, The Ohio State University, Columbus, OH 43205, USA
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43205, USA
| | - C-S Chen
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43205, USA
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43205, USA
| | - S J Qualman
- Center for Childhood Cancer, Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43205, USA
| | - J Lin
- Center for Childhood Cancer, Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43205, USA
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43205, USA
- Center for Childhood Cancer, Columbus Children's Research Institute, The Ohio State University, Columbus, OH 43205, USA; E-mail:
| |
Collapse
|
50
|
Sargeant AM, Klein RD, Rengel RC, Clinton SK, Kulp SK, Kashida Y, Yamaguchi M, Wang X, Chen CS. Chemopreventive and bioenergetic signaling effects of PDK1/Akt pathway inhibition in a transgenic mouse model of prostate cancer. Toxicol Pathol 2007; 35:549-61. [PMID: 17562488 DOI: 10.1080/01926230701338966] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The phosphoinositide-dependent kinase 1 (PDK1)/Akt pathway is an important regulator of multiple biological processes including cell growth, survival, and glucose metabolism. In light of the mechanistic link between Akt signaling and prostate tumorigenesis, we evaluated the chemopreventive relevance of inhibiting this pathway in the transgenic adenocarcinoma of the model prostate (TRAMP) mouse with OSU03012, a celecoxib-derived, but COX-2-inactive, PDK1 inhibitor. Beginning at ten weeks of age when prostatic intraepithelial neoplasia (PIN) lesions are well developed, TRAMP mice received OSU03012 via daily oral gavage for 8 weeks. The drug treatment significantly decreased the weight of all 4 prostate lobes as well as the grade of epithelial proliferation in the dorsal and lateral lobes compared to vehicle-treated control mice. The incidences of carcinoma and metastasis were decreased, although not to statistically significant levels. Treated mice lost body fat and failed to gain weight independent of food intake. This change and periportal hepatocellular atrophy can be linked to sustained PDK1 inhibition through downstream inactivation of glycogen synthase. Centrilobular hepatocellular hypertrophy and necrosis of Type II skeletal myofibers were also compound-related effects. We conclude that targeting of the PDK1/Akt pathway has chemopreventive relevance in prostate cancer and causes other in vivo effects mediated in part by an alteration of bioenergetic signaling.
Collapse
Affiliation(s)
- Aaron M Sargeant
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210-1291, USA
| | | | | | | | | | | | | | | | | |
Collapse
|