1
|
Kul Köprülü T, Balkan J, Gezer B, Erkal Çam B. Glycolytic pathway analysis and gene expression profiles of combination of aloe vera and paclitaxel on non-small cell lung cancer and breast cancer. Med Oncol 2024; 41:277. [PMID: 39400682 DOI: 10.1007/s12032-024-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
The purpose of this study is to enhance the effectiveness of known anticancer medications using natural compounds. The study investigated the impact of combining AVE with PAX on non-small cell lung cancer (A549) and breast cancer (MCF7). In this study, A549 and MCF7 cells were treated with PAX (5 μM), AVE (24 μg/mL), and a combination of PAX and AVE (5 μM + 24 μg/mL). The glucose consumption rates of the cells were determined by extracellular acidification rate (ECAR) thanks to the SeaHorse XFe24 instrument. In addition, gene expression profiles were determined by performing Total RNA sequencing with the Novaseq 6000 instrument. Finally, the expressions of GAPDH, BAX, and BCL-2 genes involved in the apoptotic pathway were detected by RT-qPCR. The combined application of PAX and AVE reduced the ECAR value in both cell lines. According to the RT-qPCR results, the expression level of the apoptotic gene BAX increased in both cell lines (p < 0.05). Total RNA sequencing revealed that the combination effects of PAX and AVE play a role in the ribosome mechanism, thereby affecting the protein translation system in MCF7 while apoptosis and cell cycle have come to the forefront in A549.
Collapse
Affiliation(s)
- Tuğba Kul Köprülü
- Experimental Medicine Application and Research Center, Validebağ Research Park, University of Health Sciences, Altunizade, Kalfaçeşme Street, Üsküdar, 34622, Istanbul, Turkey.
- Division of Medical Laboratory Techniques, Department of Medical Services and Techniques, University of Health Sciences, Istanbul, Turkey.
| | - Jülide Balkan
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, 34622, Istanbul, Turkey
| | - Bahar Gezer
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, 34622, Istanbul, Turkey
| | - Burçin Erkal Çam
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
2
|
Jiang X, Wang W, Wang Z, Wang Z, Shi H, Meng L, Pang S, Fan M, Lin R. Gamma-glutamyl transferase secreted by Helicobacter pylori promotes the development of gastric cancer by affecting the energy metabolism and histone methylation status of gastric epithelial cells. Cell Commun Signal 2024; 22:402. [PMID: 39148040 PMCID: PMC11328474 DOI: 10.1186/s12964-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is critical in the development and occurrence of gastric cancer. H. pylori secretes gamma-glutamyl transferase (GGT), which affects energy metabolism and histone methylation in mesenchymal stem cells. However, its effect on human gastric epithelial cells remains unclear. This study aimed to investigate the effects of GGT on energy metabolism and histone methylation in gastric epithelial cells and determine its role in the development and progression of H. pylori-induced gastric cancer. METHODS A GGT knockout H. pylori strain and mouse gastric cancer model were constructed, and alpha-ketoglutarate (α-KG) was added. The underlying mechanism was investigated using proteomics, immunohistochemistry, Western blotting, and other experimental assays. RESULTS H. pylori can colonize the host's stomach and destroy the gastric epithelium. GGT secreted by H. pylori decreased the concentration of glutamine in the stomach and increased H3K9me3 and H3K27me3 expression, which promoted the proliferation and migration of gastric epithelial cells. Additionally, α-KG reversed this effect. GGT increased the tumorigenic ability of nude mice. GGT, secreted by H. pylori, promoted the expression of ribosomal protein L15 (RPL15), while GGT knockout and supplementation with α-KG and trimethylation inhibitors reduced RPL15 expression and Wnt signaling pathway expression. CONCLUSIONS H. pylori secreted GGT decreased the expression of glutamine and α-KG in gastric epithelial cells, increased the expression of histones H3K9me3 and H3K27me3, and activated the Wnt signaling pathway through RPL15 expression, ultimately changing the biological characteristics of the gastric epithelium and promoting the occurrence of gastric cancer. Altered energy metabolism and histone hypermethylation are important factors involved in this process.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijun Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zeyu Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingjun Meng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Li S, Jin Z, Song X, Ma J, Peng Z, Yu H, Song J, Zhang Y, Sun X, He M, Yu X, Jin F, Zheng A. The small nucleolar RNA SNORA51 enhances breast cancer stem cell-like properties via the RPL3/NPM1/c-MYC pathway. Mol Carcinog 2024; 63:1117-1132. [PMID: 38421204 DOI: 10.1002/mc.23713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer stem cells (BCSCs) are key players in carcinogenesis and development. Small nucleolar RNAs (snoRNAs) seem to have a crucial influence on regulating stem cell-like properties in various cancers, but the underlying mechanism in breast cancer has not been determined. In this study, we first found that the expression of SNORA51 might be strongly and positively related to BCSCs-like properties. SNORA51 expression was assessed in breast cancer tissues (n = 158 patients) by in situ hybridization. Colony formation, cell counting kit-8, and sphere formation assays were used to detect cell proliferation and self-renewal, respectively. Wound healing and transwell assays were used to detect cell migration. Coimmunoprecipitation and molecular docking were used to determine the underlying mechanism through which SNORA51 regulates BCSCs-like properties. High SNORA51 expression was associated with a worse prognosis, overall survival, and disease-free survival, in 158 breast cancer patients and was also closely related to lymph node status, ER status, the Ki-67 index, histological grade, and TNM stage. Further analysis proved that SNORA51 could enhance and maintain stem cell-like properties, including cell proliferation, self-renewal, and migration, in breast cancer. Moreover, high SNORA51 expression could reduce nucleolar RPL3 expression, induce changes in the expression of NPM1 in the nucleolus and nucleoplasm, and ultimately increase c-MYC expression. Taken together, our findings demonstrated that SNORA51 could enhance BCSCs-like properties via the RPL3/NPM1/c-MYC pathway both in vitro and in vivo. Therefore, SNORA51 might be a significant biomarker and potential therapeutic target and might even provide a new viewpoint on the regulatory mechanism of snoRNAs in breast cancer or other malignant tumors.
Collapse
Affiliation(s)
- Shan Li
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Jinfei Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziqi Peng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Song
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiqi Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ang Zheng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Chen Z, Wang C, Ding J, Yu T, Li N, Ye C. Construction and analysis of competitive endogenous RNA networks and prognostic models associated with ovarian cancer based on the exoRBase database. PLoS One 2024; 19:e0291149. [PMID: 38603733 PMCID: PMC11008902 DOI: 10.1371/journal.pone.0291149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVE To construct a competitive endogenous RNA (ceRNA) regulatory network in blood exosomes of patients with ovarian cancer (OC) using bioinformatics and explore its pathogenesis. METHODS The exoRbase2.0 database was used to download blood exosome gene sequencing data from patients OC and normal controls and the expression profiles of exosomal mRNA, long non-coding RNA (lncRNA), and circular RNA (circRNA) were detected independently using R language for differential expression analysis. TargetScan and miRanda databases were combined for the prediction and differential expression of mRNA-binding microRNAs (miRNA). The miRcode and starBase databases were used to predict miRNAs that bind to differentially expressed lncRNAs and circRNAs repectively. The relevant mRNA, circRNA, lncRNA and their corresponding miRNA prediction data were imported into Cytoscape software for visualization of the ceRNA network. The R language and KEGG Orthology-based Annotation System (KOBAS) were used to execute and illustrate the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Hub genes were identified using The CytoHubba plugin. RESULTS Thirty-one differentially expressed mRNAs, 17 differentially expressed lncRNAs, and 24 differentially expressed circRNAs were screened. Cytoscape software was used to construct the ceRNA network with nine mRNA nodes, two lncRNA nodes, eight circRNA nodes, and 51 miRNA nodes. Both GO and KEGG were focused on the Spliceosome pathway, indicating that spliceosomes are closely linked with the development of OC, while heterogenous nuclear ribonucleoprotein K and RNA binding motif protein X-linked genes were the top 10 score Hub genes screened by Cytoscape software, including two lncRNAs, four mRNAs, and four circRNAs. In patients with OC, the expression of eukaryotic translation initiation factor 4 gamma 2 (EIF4G2), SERPINE 1 mRNA binding protein 1 (SERBP1), ribosomal protein L15 (RPL15) and human leukocyte antigen complex P5 (HCP5) was significantly higher whereas that of testis expressed transcript, Y-linked 15 and DEAD-box helicase 3 Y-linked genes was lower compared to normal controls Immunocorrelation scores revealed that SERBP1 was significantly and negatively correlated with endothelial cells and CD4+ T cells and positively correlated with natural killer (NK) cells and macrophages, respectively; RPL15 was significantly positively correlated with macrophages and endothelial cells and negatively correlated with CD8+ T cells and uncharacterized cells, respectively. EIF4G2 was significantly and negatively correlated with endothelial cells and CD4+ T cells, and positively correlated with uncharacterized cells, respectively. Based on the survival data and the significant correlation characteristics derived from the multifactorial Cox analysis (P < 0.05), the survival prediction curves demonstrated that the prognostic factors associated with 3-year survival in patients with OC were The prognostic factors associated with survival were Macrophage, RPL15. CONCLUSION This study successfully constructs a ceRNA regulatory network in blood exosomes of OV patients, which provides the specific targets for diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Zanhao Chen
- Department of Medicine, Xinglin College, Nantong University, Nantong City, Jiangsu Province, China
| | - Chongyu Wang
- Department of Medicine, Xinglin College, Nantong University, Nantong City, Jiangsu Province, China
| | - Jianing Ding
- Department of Medicine, Xinglin College, Nantong University, Nantong City, Jiangsu Province, China
| | - Tingting Yu
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People’s Hospital of Taicang), Suzhou City, Jiangsu Province, China
| | - Na Li
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People’s Hospital of Taicang), Suzhou City, Jiangsu Province, China
| | - Cong Ye
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People’s Hospital of Taicang), Suzhou City, Jiangsu Province, China
| |
Collapse
|
5
|
Jiang H, Li X, Li Y, Liu X, Zhang S, Li H, Zhang M, Wang L, Yu M, Qiao Z. Molecular and functional characterization of ribosome protein S24 in ovarian development of Macrobrachium nipponense. Int J Biol Macromol 2024; 254:127934. [PMID: 37939777 DOI: 10.1016/j.ijbiomac.2023.127934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Ribosomal proteins (RPs) have mang extraribosomal functions including regulation of ovarian development in some organisms. In order to solve the problem of rapid ovarian maturation in Macrobrachium nipponense aquaculture, this study identified a RPS24 (MnRPS24) gene from M. nipponense, which encodes a protein of ββαβαααα folding structure type. MnRPS24 exhibited the greatest expressions in the female adult stage among the six growth stages, in the ovary among the nine tissues, and in the stage I ovary among the six ovarian development stages. The MnRPS24 protein located in the cytoplasm of oogonia, previtellogenic and early-vitellogenic oocytes, and the follicular cells surrounding the oocytes. The expression of the vitellogenin (MnVg), vitellogenin receptor (MnVgr), cell cycle protein B (MnCyclin B) and cell division cyclin 2 (MnCdc2) genes were increased by recombinant MnRPS24 protein incubation. Conversely, the expression of the Wee1 kinase (MnWee1) gene was decreased. MnRPS24 gene silencing downregulated the expression for MnVg, MnVgr, MnCyclin B and MnCdc2 and upregulated the expression for MnWee1. Furthermore, MnRPS24 gene silencing delayed the vitellogenesis of oocytes, halting the progression of ovarian development. The findings of this research demonstrate that MnRPS24 could potentially function as a stimulator in promoting the development of ovaries in M. nipponense.
Collapse
Affiliation(s)
- Hongxia Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiao Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yizheng Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuewei Liu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuaishuai Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huanxin Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Meng Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lei Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Miao Yu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhigang Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Xu W, Sun Y, Zhao S, Zhao J, Zhang J. Identification and validation of autophagy-related genes in primary open-angle glaucoma. BMC Med Genomics 2023; 16:287. [PMID: 37968618 PMCID: PMC10648356 DOI: 10.1186/s12920-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND As the most common type of glaucoma, the etiology of primary open-angle glaucoma (POAG) has not been unified. Autophagy may affect the occurrence and development of POAG, while the specific mechanism and target need to be further explored. METHODS The GSE27276 dataset from the Gene Expression Omnibus (GEO) database and the autophagy gene set from the GeneCards database were selected to screen differentially expressed autophagy-related genes (DEARGs) of POAG. Hub DEARGs were selected by constructing protein-protein interaction (PPI) networks and utilizing GSE138125 dataset. Subsequently, immune cell infiltration analysis, genome-wide association study (GWAS) analysis, gene set enrichment analysis (GSEA) and other analyses were performed on the hub genes. Eventually, animal experiments were performed to verify the mRNA levels of the hub genes by quantitative real time polymerase chain reaction (qRT-PCR). RESULTS A total of 67 DEARGs and 2 hub DEARGs, HSPA8 and RPL15, were selected. The hub genes were closely related to the level of immune cell infiltration. GWAS analysis confirmed that the causative regions of the 2 hub genes in glaucoma were on chromosome 11 and chromosome 3, respectively. GSEA illustrated that pathways enriched for highly expressed HSPA8 and RPL15 contained immunity, autophagy, gene expression and energy metabolism-related pathways. qRT-PCR confirmed that the expression of Hspa8 and Rpl15 in the rat POAG model was consistent with the results of bioinformatics analysis. CONCLUSIONS This study indicated that HSPA8 and RPL15 may affect the progression of POAG by regulating autophagy and provided new ideas for the pathogenesis and treatment of POAG.
Collapse
Affiliation(s)
- Wanjing Xu
- Ophthalmology Department of QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Yuhao Sun
- Otolaryngology Department of QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuang Zhao
- Graduate School of Shandong First Medical University, Jinan, China
| | - Jun Zhao
- Ophthalmology Department of Linyi People's Hospital, Linyi, China
| | - Juanmei Zhang
- Ophthalmology Department of Linyi People's Hospital, Linyi, China
| |
Collapse
|
7
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
8
|
Taylor AH, Konje JC, Ayakannu T. Identification of Potentially Novel Molecular Targets of Endometrial Cancer Using a Non-Biased Proteomic Approach. Cancers (Basel) 2023; 15:4665. [PMID: 37760635 PMCID: PMC10527058 DOI: 10.3390/cancers15184665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The present study was aimed at identifying novel proteins in endometrial cancer (EC), employing proteomic analysis of tissues obtained after surgery. A differential MS-based proteomic analysis was conducted from whole tissues dissected from biopsies from post-menopausal women, histologically confirmed as endometrial cancer (two endometrioid and two serous; n = 4) or normal atrophic endometrium (n = 4), providing 888 differentially expressed proteins with 246 of these previously documented elsewhere as expressed in EC and 372 proteins not previously demonstrated to be expressed in EC but associated with other types of cancer. Additionally, 33 proteins not recorded previously in PubMed as being expressed in any forms of cancer were also identified, with only 26 of these proteins having a publication associated with their expression patterns or putative functions. The putative functions of the 26 proteins (GRN, APP, HEXA, CST3, CAD, QARS, SIAE, WARS, MYH8, CLTB, GOLIM4, SCARB2, BOD1L1, C14orf142, C9orf142, CCDC13, CNPY4, FAM169A, HN1L, PIGT, PLCL1, PMFBP1, SARS2, SCPEP1, SLC25A24 and ZC3H4) in other tissues point towards and provide a basis for further investigation of these previously unrecognised novel EC proteins. The developmental biology, disease, extracellular matrix, homeostatic, immune, metabolic (both RNA and protein), programmed cell death, signal transduction, molecular transport, transcriptional networks and as yet uncharacterised pathways indicate that these proteins are potentially involved in endometrial carcinogenesis and thus may be important in EC diagnosis, prognostication and treatment and thus are worthy of further investigation.
Collapse
Affiliation(s)
- Anthony H. Taylor
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Justin C. Konje
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- Weill Cornell Medicine-Qatar, Al Rayyan, Doha P.O. Box 24144, Qatar
| | - Thangesweran Ayakannu
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Obstetrics & Gynaecology, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
- Sunway Medical Centre, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
9
|
XU L, YANG G, SONG B, CHEN D, YUNUS A, CHEN J, YANG X, TIAN Z. Ribosomal protein L8 regulates the expression and splicing pattern of genes associated with cancer-related pathways. Turk J Biol 2023; 47:313-324. [PMID: 38155938 PMCID: PMC10752374 DOI: 10.55730/1300-0152.2666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/31/2023] [Accepted: 07/25/2023] [Indexed: 12/30/2023] Open
Abstract
Background/aim Ribosomal proteins have been shown to perform unique extraribosomal functions in cell apoptosis and other biological processes. Ribosomal protein L8 (RPL8) not only has important nonribosomal regulatory functions but also participates in the oncogenesis and development of tumors. However, the specific biological functions and pathways involved in this process are still unknown. Materials and methods RPL8 was overexpressed (RPL8-OE) in HeLa cells. MTT assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Transcriptome sequencing was performed to analyze the differentially expressed genes (DEGs) and regulated alternative splicing events (RASEs) by RPL8-OE, both of which were validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay. Results RPL8-OE inhibited cell proliferation and promoted cell apoptosis. RPL8 regulated the differential expression of many oncogenic genes and the occurrence of RASEs. Many DEGs and RASE genes (RASGs) were enriched in tumorigenesis and tumor progression-related pathways, including angiogenesis, inflammation, and regulation of cell proliferation. RPL8 could regulate the RASGs enriched in the negative regulation of apoptosis, consistent with its proapoptosis function. Furthermore, RPL8 may influence cancer-related DEGs by modulating the alternative splicing of transcription factors. Conclusion RPL8 might affect the phenotypes of cancer cells by altering the transcriptome profiles, including gene expression and splicing, which provides novel insights into the biological functions of RPL8 in tumor development.
Collapse
Affiliation(s)
- Leilei XU
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| | - Gui YANG
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| | - Bin SONG
- ABLife BioBigData Institute, Wuhan, Hubei,
P.R. China
| | - Dong CHEN
- ABLife BioBigData Institute, Wuhan, Hubei,
P.R. China
| | - Akbar YUNUS
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| | - Jiangtao CHEN
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| | - Xiaogang YANG
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| | - Zheng TIAN
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| |
Collapse
|
10
|
Bailly C, Vergoten G. Interaction of Camptothecin Anticancer Drugs with Ribosomal Proteins L15 and L11: A Molecular Docking Study. Molecules 2023; 28:molecules28041828. [PMID: 36838813 PMCID: PMC9967338 DOI: 10.3390/molecules28041828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The antitumor drug topotecan (TPT) is a potent inhibitor of topoisomerase I, triggering DNA breaks lethal for proliferating cancer cells. The mechanism is common to camptothecins SN38 (the active metabolite of irinotecan) and belotecan (BLT). Recently, TPT was shown to bind the ribosomal protein L15, inducing an antitumor immune activation independent of topoisomerase I. We have modeled the interaction of four camptothecins with RPL15 derived from the 80S human ribosome. Two potential drug-binding sites were identified at Ile135 and Phe129. SN38 can form robust RPL15 complexes at both sites, whereas BLT essentially gave stable complexes with site Ile135. The empirical energy of interaction (ΔE) for SN38 binding to RPL15 is similar to that determined for TPT binding to the topoisomerase I-DNA complex. Molecular models with the ribosomal protein L11 sensitive to topoisomerase inhibitors show that SN38 can form a robust complex at a single site (Cys25), much more stable than those with TPT and BLT. The main camptothecin structural elements implicated in the ribosomal protein interaction are the lactone moiety, the aromatic system and the 10-hydroxyl group. The study provides guidance to the design of modulators of ribosomal proteins L11 and L15, both considered anticancer targets.
Collapse
Affiliation(s)
- Christian Bailly
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
- OncoWitan, Consulting Scientific Office, Wasquehal, F-59290 Lille, France
- Correspondence:
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|
11
|
Okpara MO, Hermann C, van der Watt PJ, Garnett S, Blackburn JM, Leaner VD. A mass spectrometry-based approach for the identification of Kpnβ1 binding partners in cancer cells. Sci Rep 2022; 12:20171. [PMID: 36418423 PMCID: PMC9684564 DOI: 10.1038/s41598-022-24194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Karyopherin beta 1 (Kpnβ1) is the principal nuclear importer of cargo proteins and plays a role in many cellular processes. Its expression is upregulated in cancer and essential for cancer cell viability, thus the identification of its binding partners might help in the discovery of anti-cancer therapeutic targets and cancer biomarkers. Herein, we applied immunoprecipitation coupled to mass spectrometry (IP-MS) to identify Kpnβ1 binding partners in normal and cancer cells. IP-MS identified 100 potential Kpnβ1 binding partners in non-cancer hTERT-RPE1, 179 in HeLa cervical cancer, 147 in WHCO5 oesophageal cancer and 176 in KYSE30 oesophageal cancer cells, including expected and novel interaction partners. 38 binding proteins were identified in all cell lines, with the majority involved in RNA metabolism. 18 binding proteins were unique to the cancer cells, with many involved in protein translation. Western blot analysis validated the interaction of known and novel binding partners with Kpnβ1 and revealed enriched interactions between Kpnβ1 and select proteins in cancer cells, including proteins involved in cancer development, such as Kpnα2, Ran, CRM1, CCAR1 and FUBP1. Together, this study shows that Kpnβ1 interacts with numerous proteins, and its enhanced interaction with certain proteins in cancer cells likely contributes to the cancer state.
Collapse
Affiliation(s)
- Michael O. Okpara
- grid.7836.a0000 0004 1937 1151Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa
| | - Clemens Hermann
- grid.7836.a0000 0004 1937 1151Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pauline J. van der Watt
- grid.7836.a0000 0004 1937 1151Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shaun Garnett
- grid.7836.a0000 0004 1937 1151Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan M. Blackburn
- grid.7836.a0000 0004 1937 1151Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Virna D. Leaner
- grid.7836.a0000 0004 1937 1151Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151SAMRC Gynaecology Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
13
|
Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res 2022; 82:2344-2353. [PMID: 35303060 PMCID: PMC9256764 DOI: 10.1158/0008-5472.can-21-4087] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Ribosomes are a complex ensemble of rRNA and ribosomal proteins that function as mRNA translation machines. Ribosome biogenesis is a multistep process that begins in the nucleolus and concludes in the cytoplasm. The process is tightly controlled by multiple checkpoint and surveillance pathways. Perturbations in these checkpoints and pathways can lead to hyperactivation of ribosome biogenesis. Emerging evidence suggests that cancer cells harbor a specialized class of ribosomes (onco-ribosomes) that facilitates the oncogenic translation program, modulates cellular functions, and promotes metabolic rewiring. Mutations in ribosomal proteins, rRNA processing, and ribosome assembly factors result in ribosomopathies that are associated with an increased risk of developing malignancies. Recent studies have linked mutations in ribosomal proteins and aberrant ribosomes with poor prognosis, highlighting ribosome-targeted therapy as a promising approach for treating patients with cancer. Here, we summarize various aspects of dysregulation of ribosome biogenesis and the impact of resultant onco-ribosomes on malignant tumor behavior, therapeutic resistance, and clinical outcome. Ribosome biogenesis is a promising therapeutic target, and understanding the important determinants of this process will allow for improved and perhaps selective therapeutic strategies to target ribosome biosynthesis.
Collapse
Affiliation(s)
- Amr R. Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama.,Corresponding Author: Rajeev S. Samant, The University of Alabama at Birmingham, WTI 320E, 1824 6th Avenue South, Birmingham, AL 35233. Phone: 205-975-6262; E-mail:
| |
Collapse
|
14
|
Yamada S, Kitai Y, Tadokoro T, Takahashi R, Shoji H, Maemoto T, Ishiura M, Muromoto R, Kashiwakura JI, Ishii KJ, Maenaka K, Kawai T, Matsuda T. Identification of RPL15 60S Ribosomal Protein as a Novel Topotecan Target Protein That Correlates with DAMP Secretion and Antitumor Immune Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:171-179. [PMID: 35725272 DOI: 10.4049/jimmunol.2100963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/16/2022] [Indexed: 01/02/2023]
Abstract
Damage-associated molecular patterns (DAMPs) contribute to antitumor immunity during cancer chemotherapy. We previously demonstrated that topotecan (TPT), a topoisomerase I inhibitor, induces DAMP secretion from cancer cells, which activates STING-mediated antitumor immune responses. However, how TPT induces DAMP secretion in cancer cells is yet to be elucidated. Here, we identified RPL15, a 60S ribosomal protein, as a novel TPT target and showed that TPT inhibited preribosomal subunit formation via its binding to RPL15, resulting in the induction of DAMP-mediated antitumor immune activation independent of TOP1. TPT inhibits RPL15-RPL4 interactions and decreases RPL4 stability, which is recovered by CDK12 activity. RPL15 knockdown induced DAMP secretion and increased the CTL population but decreased the regulatory T cell population in a B16-F10 murine melanoma model, which sensitized B16-F10 tumors against PD-1 blockade. Our study identified a novel TPT target protein and showed that ribosomal stress is a trigger of DAMP secretion, which contributes to antitumor immunotherapy.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan;
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Runa Takahashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Haruka Shoji
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Taiga Maemoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Marie Ishiura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Saito, Ibaraki, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-Ku, Sapporo, Japan; and
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan;
| |
Collapse
|
15
|
RPL15 promotes hepatocellular carcinoma progression via regulation of RPs-MDM2-p53 signaling pathway. Cancer Cell Int 2022; 22:150. [PMID: 35410346 PMCID: PMC9003963 DOI: 10.1186/s12935-022-02555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/18/2022] [Indexed: 01/30/2023] Open
Abstract
Backround RPL15 has been found to participate in human tumorigenesis. However, its function and regulatory mechanism in hepatocellular carcinoma (HCC) development are still unclear. Current study investigated the effects of RPL15 in HCC. Methods The expression of RPL15 in clinical tissues and cell lines of HCC was detected by RT-qPCR, Western blotting, and Immunohistochemistry (IHC). Colony formation, CCK-8, flow cytometry, Wound healing and Transwell invasion assays, were used to detect the carcinoma progression of HCC cells with RPL15 overexpression or knockdown in vitro. A xenograft model was constructed to assess the effect of RPL15 knockdown on HCC cells in vivo. The expression of CDK2 and Cyclin E1 related to cell cycles, Bax and Bcl-2 related to cell apoptosis, E-cadherin, N-cadherin and Vimentin related to epithelial–mesenchymal transition (EMT), p53 and p21 related to p53 signaling pathway, were detected by Western blotting. The connection between p53, MDM2 and RPL5/11 affected by RPL15 was analyzed using immunoprecipitation and Cycloheximide (CHX) chase assay. Results Elevated RPL15 was identified in HCC tissues, which was not only a prediction for the poor prognosis of HCC patients, but also associated with the malignant progression of HCC. RPL15 silencing arrested HCC cell cycle, suppressed HCC cell colony formation, proliferation, invasion, and migration, and induce cell apoptosis. On the contrary, RPL15 upregulation exerted opposite effects. Results also indicated that HCC cell invasion and migration were associated with EMT, and that the RPs-MDM2-p53 pathway was implicated in RPL15-mediated oncogenic transformation. In addition, RPL15 knockdown significantly suppressed HCC xenografts growth. Conclusions RPL15 played crucial roles in HCC progression and metastasis, serving as a promising candidate for targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02555-5.
Collapse
|
16
|
Jiang H, Liu X, Li Y, Zhang R, Liu H, Ma X, Wu L, Qiao Z, Li X. Identification of ribosomal protein L24 (RPL24) from the oriental river prawn, Macrobrachium nipponense, and its roles in ovarian development. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111154. [PMID: 35032656 DOI: 10.1016/j.cbpa.2022.111154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
Ribosomal proteins exhibit various extraribosomal functions in addition to their roles in protein synthesis. In this study, complementary DNA (cDNA) of ribosomal protein L24 in Macrobrachium nipponense (MnRPL24) was isolated, and its role in ovarian development was investigated using quantitative real-time PCR (qPCR), immunohistochemistry (IHC), RNA interference (RNAi) and histological observations. The complete cDNA of MnRPL24 is 564 base pairs (bps) and contains a 486 bp open reading frame (ORF) encoding 162 amino acids (aas). The highest expression level of MnRPL24 among eight tissues was found in the ovary, specifically in the stage I ovary. The MnRPL24 protein existed in the cytoplasm and nucleus of developing oocytes, and also existed in the cytoplasm of follicle cells in developing ovaries. After MnRPL24 knockdown by RNAi, the expression levels of vitellogenin (Vg), vitellogenin receptor (Vgr), cyclin-dependent kinase 2 (Cdc2) and M-phase cyclin (Cyclin B) genes and the gonadsomatic index (GSI) did not show the typical trend of gradually elevation with ovarian development and finally decrease in the later stage of ovarian cycle. Moreover, the oviposition rate (OR) was downregulated, and oocyte development was delayed after MnRPL24 knockdown. After eyestalk ablation, the MnRPL24 expression level was considerably elevated in the initial stages and decreased in the late stage of the ovarian development cycle. This investigation illustrates a possible regulatory role of MnRPL24 in the ovarian development of M. nipponense, and MnRPL24 may act as a stimulator of early ovarian development.
Collapse
Affiliation(s)
- Hongxia Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Xuewei Liu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yizheng Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Ran Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Huifen Liu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiao Ma
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Limin Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Zhigang Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
17
|
Deregulation of ribosomal proteins in human cancers. Biosci Rep 2021; 41:230380. [PMID: 34873618 PMCID: PMC8685657 DOI: 10.1042/bsr20211577] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
The ribosome, the site for protein synthesis, is composed of ribosomal RNAs (rRNAs) and ribosomal proteins (RPs). The latter have been shown to have many ribosomal and extraribosomal functions. RPs are implicated in a variety of pathological processes, especially tumorigenesis and cell transformation. In this review, we will focus on the recent advances that shed light on the effects of RPs deregulation in different types of cancer and their roles in regulating the tumor cell fate.
Collapse
|
18
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
19
|
Sun Z, Qiu Z, Wang Z, Chi H, Shan P. Silencing Ribosomal Protein L22 Promotes Proliferation and Migration, and Inhibits Apoptosis of Gastric Cancer Cells by Regulating the Murine Double Minute 2-Protein 53 (MDM2-p53) Signaling Pathway. Med Sci Monit 2021; 27:e928375. [PMID: 34050122 PMCID: PMC8168286 DOI: 10.12659/msm.928375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The aim of this study was to investigate the effect of ribosomal protein L22 (RPL22) on gastric cancer (GC) cell proliferation, migration, and apoptosis, and its correlation with the murine double minute 2-protein 53 (MDM2-p53) signaling pathway. Material/Methods The RPL22 expression in GC tissues and cells was detected by quantitative reverse transcription-polymerase chain reaction and western blotting. RPL22 was overexpressed in the MKN-45 cells by the transfection of a vector, pcDNA3.1 (pcDNA)-RPL22, whereas it was silenced in the MGC-803 cells by the transfection of short interfering (si) RNA (si-RPL22). Flow cytometric analysis, cell viability assays, wound healing assays, and transwell assays were utilized to explore the influences of RPL22 on the apoptosis, proliferation, migration, and invasion. Nutlin-3 (an MDM2-p53 inhibitor) was used to inhibit MDM2-p53 signaling. Results The RPL22 expression was downregulated in GC tissues and cells. It was significantly lower in the advanced GC tissues than in the early GC tissues, and was significantly lower in the lymphatic metastatic tissues than in the non-lymphatic metastatic tissues. The transfection of si-RPL22 accelerated the ability of GC cells to proliferate and metastasize, whereas apoptosis was dampened. The transfection of pcDNA-RPL22 exerted the opposite effect on the GC cells; MDM2 expression was upregulated in RPL22-silenced GC cells, while the expression of p53 was downregulated. In vitro, treatment with nutlin-3 reversed the promoting effects of si-RPL22 on GC progression. Conclusions In vitro, the silencing of RPL22 aggravates GC by regulating the MDM2-p53 signaling pathway.
Collapse
Affiliation(s)
- Zhenqing Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Zhigang Qiu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Zhengkun Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Honghui Chi
- Department of Cardiovascular Surgery II, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Peipei Shan
- Institute for Translational Medicine, College of Medicine of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
20
|
Nait Slimane S, Marcel V, Fenouil T, Catez F, Saurin JC, Bouvet P, Diaz JJ, Mertani HC. Ribosome Biogenesis Alterations in Colorectal Cancer. Cells 2020; 9:E2361. [PMID: 33120992 PMCID: PMC7693311 DOI: 10.3390/cells9112361] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
Many studies have focused on understanding the regulation and functions of aberrant protein synthesis in colorectal cancer (CRC), leaving the ribosome, its main effector, relatively underappreciated in CRC. The production of functional ribosomes is initiated in the nucleolus, requires coordinated ribosomal RNA (rRNA) processing and ribosomal protein (RP) assembly, and is frequently hyperactivated to support the needs in protein synthesis essential to withstand unremitting cancer cell growth. This elevated ribosome production in cancer cells includes a strong alteration of ribosome biogenesis homeostasis that represents one of the hallmarks of cancer cells. None of the ribosome production steps escape this cancer-specific dysregulation. This review summarizes the early and late steps of ribosome biogenesis dysregulations described in CRC cell lines, intestinal organoids, CRC stem cells and mouse models, and their possible clinical implications. We highlight how this cancer-related ribosome biogenesis, both at quantitative and qualitative levels, can lead to the synthesis of ribosomes favoring the translation of mRNAs encoding hyperproliferative and survival factors. We also discuss whether cancer-related ribosome biogenesis is a mere consequence of cancer progression or is a causal factor in CRC, and how altered ribosome biogenesis pathways can represent effective targets to kill CRC cells. The association between exacerbated CRC cell growth and alteration of specific steps of ribosome biogenesis is highlighted as a key driver of tumorigenesis, providing promising perspectives for the implementation of predictive biomarkers and the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Sophie Nait Slimane
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Virginie Marcel
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Tanguy Fenouil
- Institute of Pathology EST, Hospices Civils de Lyon, Site-Est Groupement Hospitalier- Est, 69677 Bron, France;
| | - Frédéric Catez
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Christophe Saurin
- Gastroenterology and Genetic Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69008 Lyon, France;
| | - Philippe Bouvet
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Jacques Diaz
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Hichem C. Mertani
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| |
Collapse
|
21
|
Zhao DD, Zhao X, Li WT. Identification of differentially expressed metastatic genes and their signatures to predict the overall survival of uveal melanoma patients by bioinformatics analysis. Int J Ophthalmol 2020; 13:1046-1053. [PMID: 32685390 DOI: 10.18240/ijo.2020.07.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
AIM To identify metastatic genes and miRNAs and to investigate the metastatic mechanism of uveal melanoma (UVM). METHODS GSE27831, GSE39717, and GSE73652 gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database, and the limma R package was used to identify differentially expressed genes (DEGs). Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the DAVID online tool. A comprehensive list of interacting DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape software. The Cytoscape MCODE plug-in was used to identify clustered sub-networks and modules of hub genes from the protein-protein interaction network. GEPIA online software was used for survival analysis of UVM patients (n=80) from the The Cancer Genome Atlas (TCGA) cohort. OncomiR online software was used to find that the miRNAs were associated with UVM prognosis from the TCGA cohort. TargetScan Human 7.2 software was then used to identify the miRNAs targeting the genes. RESULTS There were 1600 up-regulated genes and 1399 down-regulated genes. The up-regulated genes were mainly involved in protein translation in the cytosol, whereas the down-regulated genes were correlated with extracellular matrix organization and cell adhesion in the extracellular space. Among the 2999 DEGs, five genes, Znf391, Mrps11, Htra3, Sulf2, and Smarcd3 were potential predictors of UVM prognosis. Otherwise, three miRNAs, hsa-miR-509-3-5p, hsa-miR-513a-5p, and hsa-miR-1269a were associated with UVM prognosis. CONCLUSION After analyzing the metastasis-related enriched terms and signaling pathways, the up-regulated DEGs are mainly involved in protein synthesis and cell proliferation by ribosome and mitogen-activated protein kinase (MAPK) pathways. However, the down-regulated DEGs are mainly involved in processes that reduced cell-cell adhesion and promoted cell migration in the extracellular matrix through PI3K-Akt signaling pathway, focal adhesion, and extracellular matrix-receptor interactions. Bioinformatics and interaction analysis may provide new insights on the events leading up to the development and progression of UVM.
Collapse
Affiliation(s)
- Dan-Dan Zhao
- Shanxi Eye Hospital, Taiyuan 030001, Shanxi Province, China
| | - Xin Zhao
- Datong Second People's Hospital, Datong 037006, Shanxi Province, China
| | - Wen-Tao Li
- Taiyuan University of Science and Technology, Taiyuan 030051, Shanxi Province, China
| |
Collapse
|
22
|
Shirakawa Y, Hide T, Yamaoka M, Ito Y, Ito N, Ohta K, Shinojima N, Mukasa A, Saito H, Jono H. Ribosomal protein S6 promotes stem-like characters in glioma cells. Cancer Sci 2020; 111:2041-2051. [PMID: 32246865 PMCID: PMC7293102 DOI: 10.1111/cas.14399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM), a lethal brain tumor developing in the white matter of the adult brain, contains a small population of GBM stem cells (GSCs), which potentially cause chemotherapeutic resistance and tumor recurrence. However, the mechanisms underlying the pathogenesis and maintenance of GSCs remain largely unknown. A recent study reported that incorporation of ribosomes and ribosomal proteins into somatic cells promoted lineage trans-differentiation toward multipotency. This study aimed to investigate the mechanism underlying stemness acquisition in GBM cells by focusing on 40S ribosomal protein S6 (RPS6). RPS6 was significantly upregulated in high-grade glioma and localized at perivascular, perinecrotic, and border niches in GBM tissues. siRNA-mediated RPS6 knock-down significantly suppressed the characteristics of GSCs, including their tumorsphere potential and GSC marker expression; STAT3 was downregulated in GBM cells. RPS6 overexpression enhanced the tumorsphere potential of GSCs and these effects were attenuated by STAT3 inhibitor (AG490). Moreover, RPS6 expression was significantly correlated with SOX2 expression in different glioma grades. Immunohistochemistry data herein indicated that RPS6 was predominant in GSC niches, concurrent with the data from IVY GAP databases. Furthermore, RPS6 and other ribosomal proteins were upregulated in GSC-predominant areas in this database. The present results indicate that, in GSC niches, ribosomal proteins play crucial roles in the development and maintenance of GSCs and are clinically associated with chemoradioresistance and GBM recurrence.
Collapse
Affiliation(s)
- Yuki Shirakawa
- Department of Clinical Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Takuichiro Hide
- Department of NeurosurgeryKitasato University School of MedicineSagamiharaJapan
| | - Michiko Yamaoka
- Department of Clinical Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Yuki Ito
- Department of Clinical Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Naofumi Ito
- Department of Developmental NeurobiologyGraduate School of Life SciencesKumamoto UniversityKumamotoJapan
| | - Kunimasa Ohta
- Department of Developmental NeurobiologyGraduate School of Life SciencesKumamoto UniversityKumamotoJapan
| | - Naoki Shinojima
- Department of NeurosurgeryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Akitake Mukasa
- Department of NeurosurgeryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
- Department of PharmacyKumamoto University HospitalKumamoto CityJapan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
- Department of PharmacyKumamoto University HospitalKumamoto CityJapan
| |
Collapse
|
23
|
Wei B, Wang R, Wang L, Du C. Prognostic factor identification by analysis of the gene expression and DNA methylation data in glioma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:3909-3924. [PMID: 32987560 DOI: 10.3934/mbe.2020217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Objective: This study was aimed to identify prognostic factors in glioma by analysis of the gene expression and DNA methylation data. Methods: The RNAseq and DNA methylation data associated with glioma were downloaded from GEO and TCGA databases to analyze the differentially expressed genes (DEGs) and methylated genes between tumor and normal tissues. Function and pathway analyses, co-expression network and survival analysis were performed based on these DEGs. The intersection genes of DEGs and differentially methylated genes were obtained followed by function analysis. Results: Total 2190 DEGs were identified between tumor and normal tissues, which were significantly enriched in neuron differentiation associated functions, as well as ribosome pathway. There were 6186 methylation sites (2834 up-regulated and 3352 down-regulated) with significant differences in tumor vs. normal. In the constructed co-expression network, DPP6, MAPK10 and RPL3 were hub genes. Survival analysis of 20 DEGs obtained 18 prognostic genes, among which 9 were differentially methylated, such as LHFPL tetraspan subfamily member 3 (LHFPL3), cadherin 20 (CDH20), complexin 2 (CPLX2), and tenascin R (TNR). The intersection of DEGs and differentially methylated genes (632 genes) were significantly enriched in functions of neuron differentiation. Conclusion: DPP6, MAPK10 and RPL3 may play important roles in tumorigenesis of glioma. Additionally, methylation of LHFPL3, CDH20, CPLX2, and TNR may serve as prognostic factors of glioma.
Collapse
Affiliation(s)
- Bo Wei
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun 130033, China
| | - Rui Wang
- Departments of Radiology, The Third Hospital of Jilin University, Changchun 130033, China
| | - Le Wang
- Departments of Ophthalmology, The Third Hospital of Jilin University, Changchun 130033, China
| | - Chao Du
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
24
|
Ma Y, Xue H, Wang W, Yuan Y, Liang F. The miR-567/RPL15/TGF-β/Smad axis inhibits the stem-like properties and chemo-resistance of gastric cancer cells. Transl Cancer Res 2020; 9:3539-3549. [PMID: 35117718 PMCID: PMC8797273 DOI: 10.21037/tcr.2020.04.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/26/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gastric cancer (GC) is the second most significant contributor to cancer-related mortality in China. GC treatment is often hindered by metastasis and chemoresistance, which leads to poor prognosis. This study set out to investigate the role of miR-567 on the stem-like properties and chemo-resistance of GC cells, as well as its potential molecular mechanism. METHODS The expression of miR-567 in GES-1, AGS, SCG-7901, MGC-803, SUN-16, and MKN1 cell lines was detected by Real-time PCR. AGS cells were transfected with NC or miR-567 mimics and RPL15 3'UTR (wt) or RPL15 3'UTR (mut) using Lipofectamine 2000. CCK-8, 5-ethynyl-2'-deoxyuridine (EdU) assay were detected the effect of miR-567/RPL15/TGF-β/Smad on gastric cancer cell viability and proliferation, respectively. Western blot were used to analyze the effects of miR-567/RPL15/TGF-β/Smad on protein levels of SOX2, NANOG, ALDH1A1, TGF-β1, TGFβ-R1, SMAD1, P-SMAD1, SMAD2 and P-SMAD2. RESULTS The results showed that the expression of miR-567 was down-regulated in GC cell lines. TargetScan and luciferase report assay indicated that RPL15 was the target of miR-567. Functional analysis discovered that the overexpression of miR-567 inhibited the microsphere formation of AGS stem cells, while PRL15 overexpression promoted the formation of microspheres in AGS cells. Through Western blot analysis, miR-567 overexpression was further revealed to inhibit the expression of stem-like marker proteins (SOX2, NANOG, and ALDH1A1). Furthermore, PRL15 overexpression was found to significantly promote the growth of AGS/DDP cells, while miR-567 overexpression reversed the effect of PRL15 on cisplatin-resistant cell growth. The relationship between miR-567 and the TGF-β1/TGFβ-R1/Smad2/Smad3 pathway was also shown. The addition of TGF-β/Smad pathway inhibitor LY 3200882 significantly inhibited the expression of PRL-15, TGF-β1, TGF-R1, p-Smad1, and p-sSmad2, while reversing the effect of miR-567 inhibitor on stem-like properties and chemical resistance. CONCLUSIONS Finally, this study elucidated the effect of miR-567 on the stem-like properties and chemical resistance of GC cells via the RPL15 /TGF-beta/Smad axis.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Thoracic Surgery, Xianyang First People's Hospital, Xianyang 712000, China
| | - Hua Xue
- Department of Thoracic Surgery, Xianyang First People's Hospital, Xianyang 712000, China
| | - Weifeng Wang
- Department of Thoracic Surgery, Xianyang First People's Hospital, Xianyang 712000, China
| | - Yaying Yuan
- Department of Thoracic Surgery, Xianyang First People's Hospital, Xianyang 712000, China
| | - Fang Liang
- Department of Thoracic Surgery, Xianyang First People's Hospital, Xianyang 712000, China
| |
Collapse
|
25
|
Ebright RY, Lee S, Wittner BS, Niederhoffer KL, Nicholson BT, Bardia A, Truesdell S, Wiley DF, Wesley B, Li S, Mai A, Aceto N, Vincent-Jordan N, Szabolcs A, Chirn B, Kreuzer J, Comaills V, Kalinich M, Haas W, Ting DT, Toner M, Vasudevan S, Haber DA, Maheswaran S, Micalizzi DS. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 2020; 367:1468-1473. [PMID: 32029688 DOI: 10.1126/science.aay0939] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/01/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are shed into the bloodstream from primary tumors, but only a small subset of these cells generates metastases. We conducted an in vivo genome-wide CRISPR activation screen in CTCs from breast cancer patients to identify genes that promote distant metastasis in mice. Genes coding for ribosomal proteins and regulators of translation were enriched in this screen. Overexpression of RPL15, which encodes a component of the large ribosomal subunit, increased metastatic growth in multiple organs and selectively enhanced translation of other ribosomal proteins and cell cycle regulators. RNA sequencing of freshly isolated CTCs from breast cancer patients revealed a subset with strong ribosome and protein synthesis signatures; these CTCs expressed proliferation and epithelial markers and correlated with poor clinical outcome. Therapies targeting this aggressive subset of CTCs may merit exploration as potential suppressors of metastatic progression.
Collapse
Affiliation(s)
- Richard Y Ebright
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sooncheol Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kira L Niederhoffer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Benjamin T Nicholson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Truesdell
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Devon F Wiley
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Benjamin Wesley
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Selena Li
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andy Mai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicola Aceto
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicole Vincent-Jordan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Annamaria Szabolcs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Brian Chirn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Valentine Comaills
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mark Kalinich
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. .,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Douglas S Micalizzi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
26
|
Landscape of transcriptome variations uncovering known and novel driver events in colorectal carcinoma. Sci Rep 2020; 10:432. [PMID: 31949199 PMCID: PMC6965099 DOI: 10.1038/s41598-019-57311-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
We focused on an integrated view of genomic changes in Colorectal cancer (CRC) and distant normal colon tissue (NTC) to test the effectiveness of expression profiling on identification of molecular targets. We performed transcriptome on 16 primary coupled CRC and NTC tissues. We identified pathways and networks related to pathophysiology of CRC and selected potential therapeutic targets. CRC cells have multiple ways to reprogram its transcriptome: a functional enrichment analysis in 285 genes, 25% mutated, showed that they control the major cellular processes known to promote tumorigenesis. Among the genes showing alternative splicing, cell cycle related genes were upregulated (CCND1, CDC25B, MCM2, MCM3), while genes involved in fatty acid metabolism (ACAAA2, ACADS, ACAT1, ACOX, CPT1A, HMGCS2) were downregulated. Overall 148 genes showed differential splicing identifying 17 new isoforms. Most of them are involved in the pathogenesis of CRC, although the functions of these variants remain unknown. We identified 2 in-frame fusion events, KRT19-KRT18 and EEF1A1-HSP90AB1, encoding for chemical proteins in two CRC patients. We draw a functional interactome map involving integrated multiple genomic features in CRC. Finally, we underline that two functional cell programs are prevalently deregulated and absolutely crucial to determinate and sustain CRC phenotype.
Collapse
|
27
|
Napoli M, Flores ER. The p53 family reaches the final frontier: the variegated regulation of the dark matter of the genome by the p53 family in cancer. RNA Biol 2020; 17:1636-1647. [PMID: 31910062 PMCID: PMC7567494 DOI: 10.1080/15476286.2019.1710054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tumour suppressor p53 and its paralogues, p63 and p73, are essential to maintain cellular homoeostasis and the integrity of the cell's genetic material, thus meriting the title of 'guardians of the genome'. The p53 family members are transcription factors and fulfill their activities by controlling the expression of protein-coding and non-coding genes. Here, we review how the latter group transcended from the 'dark matter' of the transcriptome, providing unexpected and intriguing anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL, USA
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL, USA
| |
Collapse
|
28
|
Li XY, Liu LL, Zhang M, Zhang LF, Wang XY, Wang M, Zhang KY, Liu YC, Wang CM, Xue FQ, Fei CZ. Proteomic analysis of the second-generation merozoites of Eimeria tenella under nitromezuril and ethanamizuril stress. Parasit Vectors 2019; 12:592. [PMID: 31852494 PMCID: PMC6921512 DOI: 10.1186/s13071-019-3841-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background Eimeria tenella is a highly pathogenic coccidian that causes avian coccidiosis. Both nitromezuril (NZL) and ethanamizuril (EZL) are novel triazine compounds with high anticoccidial activity, but the mechanisms of their action are still unclear. This study explored the response of E. tenella to NZL and EZL by the study of changes in protein composition of the second-generation merozoites. Methods Label-free quantification (LFQ) proteomics of the second-generation merozoites of E. tenella following NZL and EZL treatment were studied by LC-MS/MS to explore the mechanisms of action. The identified proteins were annotated and analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and protein-protein interaction (PPI) networks analysis. Results A total of 1430 proteins were identified by LC-MS/MS, of which 375 were considered as differential proteins in response to drug treatment (DPs). There were 26 only found in the NZL treatment group (N-group), 63 exclusive to the EZL treatment group (E-group), and 80 proteins were present in both drug groups. In addition, among the DPs, the abundant proteins with significantly altered expression in response to drug treatment (SDPs) were found compared with the C-group, of which 49 were upregulated and 51 were downregulated in the N-group, and 66 upregulated and 79 downregulated in the E-group. Many upregulated proteins after drug treatment were involved in transcription and protein metabolism, and surface antigen proteins (SAGs) were among the largest proportion of the downregulated SDPs. Results showed the top two enriched GO terms and the top one enriched pathway treated with EZL and NZL were related, which indicated that these two compounds had similar modes of action. Conclusions LFQ proteomic analysis is a feasible method for screening drug-related proteins. Drug treatment affected transcription and protein metabolism, and SAGs were also affected significantly. This study provided new insights into the effects of triazine anticoccidials against E. tenella.![]()
Collapse
Affiliation(s)
- Xue-Yan Li
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Li-Li Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Min Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Li-Fang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Xiao-Yang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ke-Yu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ying-Chun Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Chun-Mei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Fei-Qun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| | - Chen-Zhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
29
|
Zhang W, Feng G, Wang L, Teng F, Wang L, Li W, Zhang Y, Zhou Q. MeCP2 deficiency promotes cell reprogramming by stimulating IGF1/AKT/mTOR signaling and activating ribosomal protein-mediated cell cycle gene translation. J Mol Cell Biol 2019; 10:515-526. [PMID: 29562294 DOI: 10.1093/jmcb/mjy018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/18/2018] [Indexed: 12/24/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) offers a great opportunity in research and regenerative medicine. The current poor efficiency and incomplete mechanistic understanding of the reprogramming process hamper the clinical application of iPSCs. MeCP2 connects histone modification and DNA methylation, which are key changes of somatic cell reprogramming. However, the role of MeCP2 in cell reprogramming has not been examined. In this study, we found that MeCP2 deficiency enhanced reprogramming efficiency and stimulated cell proliferation through regulating cell cycle protein expression in the early stage of reprogramming. MeCP2 deficiency enhanced the expression of ribosomal protein genes, thereby enhancing reprogramming efficiency through promoting the translation of cell cycle genes. In the end, MeCP2 deficiency stimulated IGF1/AKT/mTOR signaling and activated ribosomal protein gene expression. Taken together, our data indicate that MeCP2 deficiency promoted cell reprogramming through stimulating IGF1/AKT/mTOR signaling and activating ribosomal protein-mediated cell cycle gene translation in the early stage of reprogramming.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Libin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Wang CH, Wang LK, Wu CC, Chen ML, Lee MC, Lin YY, Tsai FM. The Ribosomal Protein RPLP0 Mediates PLAAT4-induced Cell Cycle Arrest and Cell Apoptosis. Cell Biochem Biophys 2019; 77:253-260. [DOI: 10.1007/s12013-019-00876-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
|
31
|
Dong Z, Jiang H, Liang S, Wang Y, Jiang W, Zhu C. Ribosomal Protein L15 is involved in Colon Carcinogenesis. Int J Med Sci 2019; 16:1132-1141. [PMID: 31523176 PMCID: PMC6743284 DOI: 10.7150/ijms.34386] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Ribosomal biogenesis is responsible for protein synthesis in all eukaryotic cells. Perturbation of ribosomal biogenesis processes can cause dysfunctions of protein synthesis and varieties of human diseases. In this study, we examine the role of RPL15, a large ribosomal subunit protein, in human colon carcinogenesis. Our results reveal that RPL15 is remarkably upregulated in human primary colon cancer tissues and cultured cell lines when compared with paired non-cancerous tissues and non-transformed epithelium cells. Elevated expression of RPL15 in colon cancer tissues is closely correlated with clinicopathological characteristics in patients. We determine the effects of RPL15 on nucleolar maintenance, ribosomal biogenesis and cell proliferation in human cells. We show that RPL15 is required for maintenance of nucleolar structure and formation of pre-60S subunits in the nucleoli. Depletion of RPL15 causes ribosomal stress, resulting in a G1-G1/S cell cycle arrest in non-transformed human epithelium cells, but apoptosis in colon cancer cells. Together, these results indicate that RPL15 is involved in human colon carcinogenesis and might be a potential clinical biomarker and/or target for colon cancer therapy.
Collapse
Affiliation(s)
- Zhixiong Dong
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hongyu Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Shuangshuang Liang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,AstraZeneca Pharmaceutical Co Ltd, Xi'an, 710100, China
| | - Yajie Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wei Jiang
- Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Changjun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
32
|
Exosomes impact survival to radiation exposure in cell line models of nervous system cancer. Oncotarget 2018; 9:36083-36101. [PMID: 30546829 PMCID: PMC6281426 DOI: 10.18632/oncotarget.26300] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/21/2018] [Indexed: 12/24/2022] Open
Abstract
Radiation is utilized in the therapy of more than 50% of cancer patients. Unfortunately, many malignancies become resistant to radiation over time. We investigated the hypothesis that one method of a cancer cell's ability to survive radiation occurs through cellular communication via exosomes. Exosomes are cell-derived vesicles containing DNA, RNA, and protein. Three properties were analyzed: 1) exosome function, 2) exosome profile and 3) exosome uptake/blockade. To analyze exosome function, we show radiation-derived exosomes increased proliferation and enabled recipient cancer cells to survive radiation in vitro. Furthermore, radiation-derived exosomes increased tumor burden and decreased survival in an in vivo model. To address the mechanism underlying the alterations by exosomes in recipient cells, we obtained a profile of radiation-derived exosomes that showed expression changes favoring a resistant/proliferative profile. Radiation-derived exosomes contain elevated oncogenic miR-889, oncogenic mRNAs, and proteins of the proteasome pathway, Notch, Jak-STAT, and cell cycle pathways. Radiation-derived exosomes contain decreased levels of tumor-suppressive miR-516, miR-365, and multiple tumor-suppressive mRNAs. Ingenuity pathway analysis revealed the most represented networks included cell cycle, growth/survival. Upregulation of DNM2 correlated with increased exosome uptake. To analyze the property of exosome blockade, heparin and simvastatin were used to inhibit uptake of exosomes in recipient cells resulting in inhibited induction of proliferation and cellular survival. Because these agents have shown some success as cancer therapies, our data suggest their mechanism of action could be limiting exosome communication between cells. The results of our study identify a novel exosome-based mechanism that may underlie a cancer cell's ability to survive radiation.
Collapse
|
33
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
34
|
Vlachos A. Acquired ribosomopathies in leukemia and solid tumors. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:716-719. [PMID: 29222326 PMCID: PMC6142526 DOI: 10.1182/asheducation-2017.1.716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A mutation in the gene encoding the small subunit-associated ribosomal protein RPS19, leading to RPS19 haploinsufficiency, is one of the ribosomal protein gene defects responsible for the rare inherited bone marrow failure syndrome Diamond Blackfan anemia (DBA). Additional inherited and acquired defects in ribosomal proteins (RPs) continue to be identified and are the basis for a new class of diseases called the ribosomopathies. Acquired RPS14 haploinsufficiency has been found to be causative of the bone marrow failure found in 5q- myelodysplastic syndromes. Both under- and overexpression of RPs have also been implicated in several malignancies. This review will describe the somatic ribosomopathies that have been found to be associated with a variety of solid tumors as well as leukemia and will review cancers in which over- or underexpression of these proteins seem to be associated with outcome.
Collapse
Affiliation(s)
- Adrianna Vlachos
- Feinstein Institute for Medical Research, Cohen Children's Medical Center, Division of Hematology/Oncology and Stem Cell Transplantation, Zucker School of Medicine, Hofstra/Northwell, Manhasset, NY
| |
Collapse
|
35
|
He J, Yang Y, Zhang J, Chen J, Wei X, He J, Luo L. Ribosome biogenesis protein Urb1 acts downstream of mTOR complex 1 to modulate digestive organ development in zebrafish. J Genet Genomics 2017; 44:567-576. [DOI: 10.1016/j.jgg.2017.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
|
36
|
Tian S, Wu J, Liu Y, Huang X, Li F, Wang Z, Sun MX. Ribosomal protein NtRPL17 interacts with kinesin-12 family protein NtKRP and functions in the regulation of embryo/seed size and radicle growth. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5553-5564. [PMID: 29045730 PMCID: PMC5853406 DOI: 10.1093/jxb/erx361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/28/2017] [Indexed: 05/12/2023]
Abstract
We previously reported that a novel motor protein belonging to the kinesin-12 family, NtKRP, displays critical roles in regulating embryo and seed size establishment. However, it remains unknown exactly how NtKRP contributes to this developmental process. Here, we report that a 60S ribosomal protein NtRPL17 directly interacts with NtKRP. The phenotypes of NtRPL17 RNAi lines show notable embryo and seed size reduction. Structural observations of the NtRPL17-silenced embryos/seeds reveal that the embryo size reduction is due to a decrease in cell number. In these embryos, cell division cycle progression is delayed at the G2/M transition. These phenotypes are similar to that in NtKRP-silenced embryos/seeds, indicating that NtKRP and NtRPL17 function as partners in the same regulatory pathway during seed development and specifically regulate cell cycle progression to control embryo/seed size. This work reveals that NtRPL17, as a widely distributed ribosomal protein, plays a critical role in seed development and provides a new clue in the regulation of seed size. Confirmation of the interaction between NtKRP and NtRPL17 and their co-function in the control of the cell cycle also suggests that the mechanism might be conserved in both plants and animals.
Collapse
Affiliation(s)
- Shujuan Tian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jingjing Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhaodan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Xie X, Guo P, Yu H, Wang Y, Chen G. Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma. Oncogene 2017; 37:277-285. [PMID: 28945227 DOI: 10.1038/onc.2017.343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Ribosomes, which are important sites for the synthesis of proteins related to expression and transmission of genetic information in humans, have a complex structure and diverse functions. They consist of a variety of ribosomal proteins (RPs), ribosomal RNAs (rRNAs) and small nucleolar RNAs. Owing to the involvement of ribosomes in many important biological processes of cells, their major components, rRNAs and RPs, have an important role in human diseases, including the initiation and evolvement of malignancies. However, the main mechanisms underlying the involvement of ribosomes in cancer remain unclear. This review describes the crucial role of ribosomes in various common malignant tumors; in particular, it examines the effects of RPs, including S6, the receptor for activated C-kinase and RPS15A, on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- X Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - P Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - H Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Y Wang
- Research Center of Evidence-Based Medicine and Clinical Epidemiology, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - G Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Complementary transcriptomic and proteomic analyses reveal regulatory mechanisms of milk protein production in dairy cows consuming different forages. Sci Rep 2017; 7:44234. [PMID: 28290485 PMCID: PMC5349593 DOI: 10.1038/srep44234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
Forage plays a critical role in the milk production of dairy cows; however, the mechanisms regulating bovine milk synthesis in dairy cows fed high forage rations with different basal forage types are not well-understood. In the study, rice straw (RS, low-quality) and alfalfa hay (AH, high-quality) diets were fed to lactating cows to explore how forage quality affected the molecular mechanisms regulating milk production using RNA-seq transcriptomic method with iTRAQ proteomic technique. A total of 554 transcripts (423 increased and 131 decreased) and 517 proteins (231 up-regulated and 286 down-regulated) were differentially expressed in the mammary glands of the two groups. The correlation analysis demonstrated seven proteins (six up-regulated and one down-regulated) had consistent mRNA expression. Functional analysis of the differentially expressed transcripts/proteins suggested that enhanced capacity for energy and fatty acid metabolism, increased protein degradation, reduced protein synthesis, decreased amino acid metabolism and depressed cell growth were related to RS consumption. The results indicated cows consuming RS diets may have had depressed milk protein synthesis because these animals had decreased capacity for protein synthesis, enhanced proteolysis, inefficient energy generation and reduced cell growth. Additional work evaluating RS- and AH-based rations may help better isolate molecular adaptations to low nutrient availability during lactation.
Collapse
|
39
|
Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress. Int J Mol Sci 2017; 18:ijms18010140. [PMID: 28085118 PMCID: PMC5297773 DOI: 10.3390/ijms18010140] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
The nucleolus is the site of ribosome biogenesis, a complex process that requires the coordinate activity of all three RNA polymerases and hundreds of non-ribosomal factors that participate in the maturation of ribosomal RNA (rRNA) and assembly of small and large subunits. Nevertheless, emerging studies have highlighted the fundamental role of the nucleolus in sensing a variety of cellular stress stimuli that target ribosome biogenesis. This condition is known as nucleolar stress and triggers several response pathways to maintain cell homeostasis, either p53-dependent or p53-independent. The mouse double minute (MDM2)-p53 stress signaling pathways are activated by multiple signals and are among the most important regulators of cellular homeostasis. In this review, we will focus on the role of ribosomal proteins in p53-dependent and p53-independent response to nucleolar stress considering novel identified regulators of these pathways. We describe, in particular, the role of ribosomal protein uL3 (rpL3) in p53-independent nucleolar stress signaling pathways.
Collapse
|
40
|
Russo A, Saide A, Cagliani R, Cantile M, Botti G, Russo G. rpL3 promotes the apoptosis of p53 mutated lung cancer cells by down-regulating CBS and NFκB upon 5-FU treatment. Sci Rep 2016; 6:38369. [PMID: 27924828 PMCID: PMC5141482 DOI: 10.1038/srep38369] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
5-FU is a chemotherapy drug commonly used for the treatment of human cancers; however drug resistance represents a major challenge for its clinical application. In the present study, we reporte that rpL3 induced by 5-FU treatment in Calu-6 cells represses CBS transcription and reduces CBS protein stability leading to a decrease of CBS protein levels. rpL3 also regulates negatively the activation of NFκB by preventing NFκB nuclear translocation through IκB-α up-regulation. Furthermore, we demonstrate that rpL3 significantly enhances the apoptosis of 5-FU treated Calu-6 cells promoting the overexpression of the pro-apoptotic proteins Bax and the inhibition of the anti-apoptotic protein Bcl-2. We finally demonstrate that rpL3 potentiates 5-FU efficacy inhibiting cell migration and invasion. Our results suggest that combination of rpL3 and 5-FU is a promising strategy for chemotherapy of lung cancers lacking functional p53 that are resistant to 5-FU.
Collapse
Affiliation(s)
- Annapina Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Assunta Saide
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Roberta Cagliani
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Cantile
- Department of Pathology, Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS via Mariano Semmola, Napoli 80131, Italy
| | - Gerardo Botti
- Department of Pathology, Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS via Mariano Semmola, Napoli 80131, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
41
|
Magangane P, Sookhayi R, Govender D, Naidoo R. Determining protein biomarkers for DLBCL using FFPE tissues from HIV negative and HIV positive patients. J Mol Histol 2016; 47:565-577. [PMID: 27696080 DOI: 10.1007/s10735-016-9695-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/08/2016] [Indexed: 01/27/2023]
Abstract
DLBCL is the most common lymphoma subtype occurring in older populations as well as in younger HIV infected patients. The current treatment options for DLBCL are effective for most patients yet the relapse rate is high. While many biomarkers for DLBCL exist, they are not in clinical use due to low sensitivity and specificity. In addition, these biomarkers have not been studied in the HIV context. Therefore, the identification of new biomarkers for HIV negative and HIV positive DLBCL, may lead to a better understanding of the disease pathology and better therapeutic design. Protein biomarkers for DLBCL were determined using MALDI imaging mass spectrometry (IMS) and characterised using LC-MS. The expression of one of the biomarkers, heat shock protein (Hsp) 70, was confirmed on a separate cohort of samples using immunohistochemistry. The biomarkers identified in the study consisted of four protein clusters including glycolytic enzymes, ribosomal proteins, histones and collagen. These proteins could differentiate between control and tumour tissue, and the DLBCL immunohistochemical subtypes in both cohorts. The majority (41/52) of samples in the confirmation cohort were negative for Hsp70 expression. The HIV positive DLBCL cases had a higher percentage of cases expressing Hsp70 than their HIV negative counterparts. The non-GC subtype also frequently overexpressed Hsp70, confirming MALDI IMS data. The expression of Hsp70 did not correlate with survival in both the HIV negative and HIV positive cohort. This study identified potential biomarkers for HIV negative and HIV positive DLBCL from FFPE tissue sections. These may be used as diagnostic and prognostic markers complementary to current clinical management programmes for DLBCL.
Collapse
Affiliation(s)
- Pumza Magangane
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Raveendra Sookhayi
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Richard Naidoo
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
42
|
Yan TT, Fu XL, Li J, Bian YN, Liu DJ, Hua R, Ren LL, Li CT, Sun YW, Chen HY, Fang JY, Hong J. Downregulation of RPL15 may predict poor survival and associate with tumor progression in pancreatic ductal adenocarcinoma. Oncotarget 2016; 6:37028-42. [PMID: 26498693 PMCID: PMC4741913 DOI: 10.18632/oncotarget.5939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/17/2015] [Indexed: 12/29/2022] Open
Abstract
Early diagnosis and treatment in pancreatic ductal adenocarcinoma (PDAC) is still a challenge worldwide. The poor survival of PDAC patients mainly due to early metastasis when first diagnosed and lack of prognostic biomarker. Ribosomal protein L15 (RPL15), an RNA-binding protein, is a component of ribosomal 60S subunit. It was reported that RPL15 is dysregulated in various type of cancers. However, little is known about the role of RPL15 in PDAC carcinogenesis and progression. Herein, we clarified RPL15 expression status may serve as an independent prognostic biomarker in three independent PDAC patient cohorts. We found that RPL15 was dramatically decreased in PDAC tissues and cell lines. The high expression of RPL15 was inversely correlated with TNM stage, histological differentiation, T classification and vascular invasion. Low expression of RPL15 was significantly associated with poor overall survival of PDAC patients. Furthermore, we demonstrated that the reduction of RPL15 may promote invasion ability of pancreatic cell by inducing EMT process. In conclusion, decreased RPL15 expression is associated with invasiveness of PDAC cells, and RPL15 expression status may serve as a reliable prognostic biomarker in PDAC patients.
Collapse
Affiliation(s)
- Ting-Ting Yan
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xue-Liang Fu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jiao Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ying-Nan Bian
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - D Jun Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Lin-Lin Ren
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Cheng-Tao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
He SJ, Shu LP, Zhou ZW, Yang T, Duan W, Zhang X, He ZX, Zhou SF. Inhibition of Aurora kinases induces apoptosis and autophagy via AURKB/p70S6K/RPL15 axis in human leukemia cells. Cancer Lett 2016; 382:215-230. [PMID: 27612557 DOI: 10.1016/j.canlet.2016.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 01/19/2023]
Abstract
Leukemia is a common malignancy of blood cells with poor prognosis in many patients. Aurora kinases, a family of serine/threonine kinases, play a key role in regulating cell division and mitosis and are linked to tumorigenesis, metastasis, and poor prognosis in many human cancers including leukemia and lymphoma. Danusertib (Danu) is a pan-inhibitor of Aurora kinases with few data available in leukemia therapy. This study aimed to identify new molecular targets for Aurora kinase inhibition in human leukemia cells using quantitative proteomic analysis followed by verification experiments. There were at least 2932 proteins responding to Danu treatment, including AURKB, p70S6K, and RPL15, and 603 functional proteins and 245 canonical signaling pathways were involved in regulating cell proliferation, metabolism, apoptosis, and autophagy. The proteomic data suggested that Danu-regulated RPL15 signaling might contribute to the cancer cell killing effect. Our verification experiments confirmed that Danu negatively regulated AURKB/p70S6K/RPL15 axis with the involvement of PI3K/Akt/mTOR, AMPK, and p38 MAPK signaling pathways, leading to the induction of apoptosis and autophagy in human leukemia cells. Further studies are warranted to verify the feasibility via targeting AURKB/p70S6K/RPL15 axis for leukemia therapy.
Collapse
Affiliation(s)
- Si-Jia He
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Laboratory Animal Center, Guiyang Medical University, Guiyang 550004, China; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Li-Ping Shu
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Laboratory Animal Center, Guiyang Medical University, Guiyang 550004, China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhi-Xu He
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Laboratory Animal Center, Guiyang Medical University, Guiyang 550004, China.
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China.
| |
Collapse
|
44
|
Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:656-72. [DOI: 10.1007/s11427-016-0018-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/29/2023]
|
45
|
Goudarzi KM, Lindström MS. Role of ribosomal protein mutations in tumor development (Review). Int J Oncol 2016; 48:1313-24. [PMID: 26892688 PMCID: PMC4777597 DOI: 10.3892/ijo.2016.3387] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022] Open
Abstract
Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research.
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, CCK R8:05, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Over-expressed RPL34 promotes malignant proliferation of non-small cell lung cancer cells. Gene 2016; 576:421-8. [DOI: 10.1016/j.gene.2015.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 01/18/2023]
|
47
|
Shu LP, Zhou ZW, Zi D, He ZX, Zhou SF. A SILAC-based proteomics elicits the molecular interactome of alisertib (MLN8237) in human erythroleukemia K562 cells. Am J Transl Res 2015; 7:2442-2461. [PMID: 26807190 PMCID: PMC4697722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Alisertib (MLN8237, ALS), an Aurora kinase A (AURKA) inhibitor, exerts potent anti-tumor effects in the treatment of solid tumor and hematologic malignancies in preclinical and clinical studies. However, the fully spectrum of molecular targets of ALS and its anticancer effect in the treatment of chronic myeloid leukemia (CML) are not clear. This study aimed to examine the proteomic responses to ALS treatment and unveil the molecular interactome and possible mechanisms for its anticancer effect in K562 cells using stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data identified that ALS treatment modulated the expression of 1541 protein molecules (570 up; 971 down). The pathway analysis showed that 299 signaling pathways and 459 cellular functional proteins directly responded to ALS treatment in K562 cells. These targeted molecules and signaling pathways were mainly involved in cell growth and proliferation, cell metabolism, and cell survival and death. Subsequently, the effects of ALS on cell cycle distribution, apoptosis, and autophagy were verified. The flow cytometric analysis showed that ALS significantly induced G2/M phase arrest and the Western blotting assays showed that ALS induced apoptosis via mitochondria-dependent pathway and promoted autophagy with the involvement of PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways in K562 cells. Collectively, this study provides a clue to quantitatively evaluate the proteomic responses to ALS and assists in globally identifying the potential molecular targets and elucidating the underlying mechanisms of ALS for CML treatment, which may help develop new efficacious and safe therapies for CML treatment.
Collapse
Affiliation(s)
- Li-Ping Shu
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Dan Zi
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| |
Collapse
|
48
|
Wang YH, Zhang CL, Plath M, Fang XT, Lan XY, Zhou Y, Chen H. Global transcriptional profiling of longissimus thoracis muscle tissue in fetal and juvenile domestic goat using RNA sequencing. Anim Genet 2015; 46:655-65. [PMID: 26364974 DOI: 10.1111/age.12338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2015] [Indexed: 01/05/2023]
Abstract
Domestic goats are important meat production animals; however, data from transcriptional profiling of skeletal muscle tissue in goat have thus far been scarce. We used comparative transcriptional profiling based on RNA sequencing of longissimus thoracis muscle tissue obtained from fetal goat muscle tissue (27 512 850 clean cDNA reads) and 6-month-old goat muscle tissue (27 582 908 reads) to identify genes that are differentially expressed, novel transcript units and alternative splicing events. Gene annotation revealed that 15 960 and 14 981 genes were expressed in the fetal and juvenile libraries respectively. We detected 6432 differentially expressed genes and, when considering GO terms, found 34, 27 and 55 terms to be significantly enriched in molecular function, cellular component and biological process categories respectively. Pathway analysis revealed that larger numbers of differentially expressed genes were enriched in fetal myogenesis or cell proliferation and differentiation-related pathways (such as Wnt), genes involved in the cell cycle and the Notch signaling pathway, and most of the differentially expressed genes involved in these pathways were downregulated in the juvenile goat library. These genes may be involved in various regulation mechanisms during muscle tissue differentiation between the two development stages examined herein. The identified novel transcript units, including both non-coding and coding RNA, as well as alternative splicing events increase the level of complexity of regulation mechanisms during muscle tissue formation and differentiation. Our study provides a comparative transcriptome analysis on goat muscle tissue, which will provide a valuable genomic resource for future studies investigating the molecular basis of skeletal muscle development.
Collapse
Affiliation(s)
- Y H Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, China.,Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - C L Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - M Plath
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, China
| | - X T Fang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - X Y Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, China
| | - Y Zhou
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, China
| | - H Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|
49
|
Guo YL, Kong QS, Liu HS, Tan WB. Drug resistance effects of ribosomal protein L24 overexpression in hepatocellular carcinoma HepG2 cells. Asian Pac J Cancer Prev 2015; 15:9853-7. [PMID: 25520117 DOI: 10.7314/apjcp.2014.15.22.9853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The morbidity and mortality rate of liver cancer continues to rise in China and advanced cases respond poorly to chemotherapy. Ribosomal protein L24 has been reported to be a potential therapeutic target whose depletion or acetylation inhibits polysome assembly and cell growth of cancer. MATERIALS AND METHODS Total RNA of cultured amycin-resistant and susceptible HepG2 cells was isolated, and real time quantitative RT-PCR were used to indicate differences between amycin-resistant and susceptible strains of HepG2 cells. Viability assays were used to determine amycin resistance in RPL24 transfected and control vector and null- transfected HepG2 cell lines. RESULTS The ribosomal protein L24 transcription level was 7.7 times higher in the drug-resistant HepG2 cells as compared to susceptible cells on quantitative RT-PCR analysis. This was associated with enhanced drug resistance as determined by methyl tritiated thymidine (3H-TdR) incorporation. CONCLUSIONS The ribosomal protein L24 gene may have effects on drug resistance mechanisms in hepatocellular carcinoma HepG2 cells.
Collapse
Affiliation(s)
- Yong-Li Guo
- Oncology Department of the Jining First People's Hospital, Jining, Shandong, People's Republic of China E-mail :
| | | | | | | |
Collapse
|
50
|
de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J, LLeonart ME. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev 2015; 33:115-41. [PMID: 24375388 DOI: 10.1007/s10555-013-9460-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ribosome biogenesis is the most demanding energetic and metabolic expenditure of the cell. The nucleolus, a nuclear compartment, coordinates rRNA transcription, maturation, and assembly into ribosome subunits. The transcription process is highly coordinated with ribosome biogenesis. In this context, ribosomal proteins (RPs) play a crucial role. In the last decade, an increasing number of studies have associated RPs with extraribosomal functions related to proliferation. Importantly, the expression of RPs appears to be deregulated in several human disorders due, at least in part, to genetic mutations. Although the deregulation of RPs in human malignancies is commonly observed, a more complex mechanism is believed to be involved, favoring the tumorigenic process, its progression and metastasis. This review explores the roles of the most frequently mutated oncogenes and tumor suppressor genes in human cancer that modulate ribosome biogenesis, including their interaction with RPs. In this regard, we propose a new focus for novel therapies.
Collapse
Affiliation(s)
- A de Las Heras-Rubio
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|