1
|
Duan J, Jiang R, Shen H, Xu X, Sun D. Analysis of nitrogen metabolism-related gene expression in hepatocellular carcinoma to establish relevant indicators for prediction of prognosis and guidance of immunotherapy. Comput Methods Biomech Biomed Engin 2024:1-17. [PMID: 39673385 DOI: 10.1080/10255842.2024.2438922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND The prognosis of cancers is strongly connected with nitrogen metabolism (NM), which plays a critical role in the microenvironment and growth of tumors. It is unsubstantiated, however, how important NM-related genes are for the prognosis of hepatocellular carcinoma (HCC). METHODS Using publicly available data, we examined potential mechanisms of NM-related genes in HCC, created a predictive model, and assessed immune infiltration and medication sensitivity. RESULTS A prognostic model, which included 12 NM genes (COLQ, GNE, ISCU, MSRA, SARS2, SPHK1, CBS, GOT2, CHST1, EXTL2, GCLM, YARS1), was constructed based on regression analysis. The robustness of the model was validated using multiple methods. The high-risk (HR) and low-risk (LR) groups had varying degrees of immune infiltration, according to an immunology-related study. Of these, B cells and Type_II_IFN_Response were greatly infiltrated in the LR group, whereas aCDs, Macrophages, and Treg were heavily infiltrated in the HR group (p < 0.05). Because of higher immunophenoscore, the low-risk group could benefit from immunotherapy more. Drug sensitivity predictions indicated that people with high CBS expression and low GOT2 and ISCU expression may benefit more from treatment with SCH-772984, Pimasertib, Cobimetinib (isomer1), TAK-733, LY-3214996, ARRY-162, Cladribine, Fludarabine, and Hydroxyurea. CONCLUSION This work created a 12-gene signature based on NM, preliminary investigated immune infiltration in two risk categories, and discovered some possible anti-tumor medications. To sum up, our study findings offer fresh perspectives on the roles played by NM-associated genes in HCC development, prognosis, immunological response, and medication screening.
Collapse
Affiliation(s)
- Jianwen Duan
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Renya Jiang
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Hongbo Shen
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Xiaofang Xu
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Da Sun
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| |
Collapse
|
2
|
Huang J, Sun M, Wang M, Yu A, Zheng H, Bu C, Zhou J, Zhang Y, Qiao Y, Hu Z. Establishment and characterization of a highly metastatic hepatocellular carcinoma cell line. Bioengineered 2024; 15:2296775. [PMID: 38184822 PMCID: PMC10773622 DOI: 10.1080/21655979.2023.2296775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
The prevalence of alcohol-related hepatocellular carcinoma (HCC) has been increasing during the last decade. Cancer research requires cell lines suitable for both in vitro and in vivo assays. However, there is a lack of cell lines with a high in vivo metastatic capacity for this HCC subtype. Herein, a new HCC cell line was established, named HCC-ZJ, using cells from a patient diagnosed with alcohol-related HCC. The karyotype of HCC-ZJ was 46, XY, del (p11.2). Whole-exome sequencing identified several genetic variations in HCC-Z that occur frequently in alcohol-associated HCC, such as mutations in TERT, CTNNB1, ARID1A, CDKN2A, SMARCA2, and HGF. Cell counting kit-8 assays, colony formation assays, and Transwell assays were performed to evaluate the proliferation, migration, and sensitivity to sorafenib and lenvatinib of HCC-Z in vitro. HCC-ZJ showed a robust proliferation rate, a weak foci-forming ability, a strong migration capacity, and a moderate invasion tendency in vitro. Finally, the tumorigenicity and metastatic capacity of HCC-Z were evaluated using a subcutaneous xenograft model, an orthotopic xenograft model, and a tail-veil injection model. HCCZJ exhibited strong tumorigenicity in the subcutaneous xenograft and orthotopic tumor models. Moreover, HCC-ZJ spontaneously formed pulmonary metastases in the orthotopic tumor model. In summary, a new HCC cell line derived from a patient with alcohol-related HCC was established, which showed a high metastatic capacity and could be applied for in vitro and in vivo experiments during pre-clinical research.Highlights• An alcohol-related HCC cell line, HCC-ZJ, was established• HCC-ZJ was applicable for in vitro functional experiment and gene editing• HCC-ZJ was applicable for in vivo tumor growth and spontaneous metastasis models.
Collapse
Affiliation(s)
- Jiacheng Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Mengqing Sun
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Menglan Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Anning Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Huilin Zheng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Chiwen Bu
- Department of General Surgery, People’s Hospital of Guanyun County, Lianyungang, China
| | - Jie Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiting Qiao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhua Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Chahla C, Kovacic H, Ferhat L, Leloup L. Pathological Impact of Redox Post-Translational Modifications. Antioxid Redox Signal 2024; 41:152-180. [PMID: 38504589 DOI: 10.1089/ars.2023.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Oxidative stress is involved in the development of several pathologies. The different reactive oxygen species (ROS) produced during oxidative stress are at the origin of redox post-translational modifications (PTMs) on proteins and impact nucleic acids and lipids. This review provides an overview of recent data on cysteine and methionine oxidation and protein carbonylation following oxidative stress in a pathological context. Oxidation, like nitration, is a selective process and not all proteins are impacted. It depends on multiple factors, including amino acid environment, accessibility, and physical and chemical properties, as well as protein structures. Thiols can undergo reversible oxidations and others that are irreversible. On the contrary, carbonylation represents irreversible PTM. To date, hundreds of proteins were shown to be modified by ROS and reactive nitrogen species (RNS). We reviewed recent advances in the impact of redox-induced PTMs on protein functions and activity, as well as its involvement in disease development or treatment. These data show a complex situation of the involvement of redox PTM on the function of targeted proteins. Many proteins can have their activity decreased by the oxidation of cysteine thiols or methionine S-methyl thioethers, while for other proteins, this oxidation will be activating. This complexity of redox PTM regulation suggests that a global antioxidant therapeutic approach, as often proposed, is unlikely to be effective. However, the specificity of the effect obtained by targeting a cysteine or methionine residue to be able to inactivate or activate a particular protein represents a major interest if it is possible to consider this targeting from a therapeutic point of view with our current pharmacological tools. Antioxid. Redox Signal. 41, 152-180.
Collapse
Affiliation(s)
- Charbel Chahla
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Hervé Kovacic
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Lotfi Ferhat
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Ludovic Leloup
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
4
|
Diaz JEL, Barcessat V, Bahamon C, Hecht C, Das TK, Cagan RL. Functional exploration of copy number alterations in a Drosophila model of triple-negative breast cancer. Dis Model Mech 2024; 17:dmm050191. [PMID: 38721669 PMCID: PMC11247506 DOI: 10.1242/dmm.050191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/30/2024] [Indexed: 07/04/2024] Open
Abstract
Accounting for 10-20% of breast cancer cases, triple-negative breast cancer (TNBC) is associated with a disproportionate number of breast cancer deaths. One challenge in studying TNBC is its genomic profile: with the exception of TP53 loss, most breast cancer tumors are characterized by a high number of copy number alterations (CNAs), making modeling the disease in whole animals challenging. We computationally analyzed 186 CNA regions previously identified in breast cancer tumors to rank genes within each region by likelihood of acting as a tumor driver. We then used a Drosophila p53-Myc TNBC model to identify 48 genes as functional drivers. To demonstrate the utility of this functional database, we established six 3-hit models; altering candidate genes led to increased aspects of transformation as well as resistance to the chemotherapeutic drug fluorouracil. Our work provides a functional database of CNA-associated TNBC drivers, and a template for an integrated computational/whole-animal approach to identify functional drivers of transformation and drug resistance within CNAs in other tumor types.
Collapse
Affiliation(s)
- Jennifer E L Diaz
- Department of Cell, Development, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Internal Medicine, UCLA David Geffen School of Medicine, CA 90095, USA
| | - Vanessa Barcessat
- Department of Cell, Development, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christian Bahamon
- Department of Cell, Development, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chana Hecht
- Department of Cell, Development, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tirtha K Das
- Department of Cell, Development, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ross L Cagan
- Department of Cell, Development, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- School of Cancer Sciences and Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1BD, UK
| |
Collapse
|
5
|
Veerapandian R, Ramos EI, Vijayaraghavan M, Sedano MJ, Carmona A, Chacon JA, Gadad SS, Dhandayuthapani S. Mycobacterium smegmatis secreting methionine sulfoxide reductase A (MsrA) modulates cellular processes in mouse macrophages. Biochimie 2023; 211:1-15. [PMID: 36809827 DOI: 10.1016/j.biochi.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme that reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Its pivotal role in the cellular processes has been well established by overexpressing, silencing, and knocking down MsrA or deleting the gene encoding MsrA in several species. We are specifically interested in understanding the role of secreted MsrA in bacterial pathogens. To elucidate this, we infected mouse bone marrow-derived macrophages (BMDMs) with recombinant Mycobacterium smegmatis strain (MSM), secreting a bacterial MsrA or M. smegmatis strain (MSC) carrying only the control vector. BMDMs infected with MSM induced higher levels of ROS and TNF-α than BMDMs infected with MSC. The increased ROS and TNF-α levels in MSM-infected BMDMs correlated with elevated necrotic cell death in this group. Further, RNA-seq transcriptome analysis of BMDMs infected with MSC and MSM revealed differential expression of protein and RNA coding genes, suggesting that bacterial-delivered MsrA could modulate the host cellular processes. Finally, KEGG pathway enrichment analysis identified the down-regulation of cancer-related signaling genes in MSM-infected cells, indicating that MsrA can potentially regulate the development and progression of cancer.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Enrique I Ramos
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Mahalakshmi Vijayaraghavan
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Melina J Sedano
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Areanna Carmona
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Jessica A Chacon
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA; Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA; Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, 78229, USA.
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA; Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA.
| |
Collapse
|
6
|
Li J, Ge P, He Q, Liu C, Zeng C, Tao C, Zhai Y, Wang J, Zhang Q, Wang R, Zhang Y, Zhang D, Zhao J. Association between methionine sulfoxide and risk of moyamoya disease. Front Neurosci 2023; 17:1158111. [PMID: 37123363 PMCID: PMC10130537 DOI: 10.3389/fnins.2023.1158111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Objective Methionine sulfoxide (MetO) has been identified as a risk factor for vascular diseases and was considered as an important indicator of oxidative stress. However, the effects of MetO and its association with moyamoya disease (MMD) remained unclear. Therefore, we performed this study to evaluate the association between serum MetO levels and the risk of MMD and its subtypes. Methods We eventually included consecutive 353 MMD patients and 88 healthy controls (HCs) with complete data from September 2020 to December 2021 in our analyzes. Serum levels of MetO were quantified using liquid chromatography-mass spectrometry (LC-MS) analysis. We evaluated the role of MetO in MMD using logistic regression models and confirmed by receiver-operating characteristic (ROC) curves and area under curve (AUC) values. Results We found that the levels of MetO were significantly higher in MMD and its subtypes than in HCs (p < 0.001 for all). After adjusting for traditional risk factors, serum MetO levels were significantly associated with the risk of MMD and its subtypes (p < 0.001 for all). We further divided the MetO levels into low and high groups, and the high MetO level was significantly associated with the risk of MMD and its subtypes (p < 0.05 for all). When MetO levels were assessed as quartiles, we found that the third (Q3) and fourth (Q4) MetO quartiles had a significantly increased risk of MMD compared with the lowest quartile (Q3, OR: 2.323, 95%CI: 1.088-4.959, p = 0.029; Q4, OR: 5.559, 95%CI: 2.088-14.805, p = 0.001). Conclusion In this study, we found that a high level of serum MetO was associated with an increased risk of MMD and its subtypes. Our study raised a novel perspective on the pathogenesis of MMD and suggested potential therapeutic targets.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
- *Correspondence: Dong Zhang,
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
- Jizong Zhao,
| |
Collapse
|
7
|
He D, Feng H, Sundberg B, Yang J, Powers J, Christian AH, Wilkinson JE, Monnin C, Avizonis D, Thomas CJ, Friedman RA, Kluger MD, Hollingsworth MA, Grandgenett PM, Klute KA, Toste FD, Chang CJ, Chio IIC. Methionine oxidation activates pyruvate kinase M2 to promote pancreatic cancer metastasis. Mol Cell 2022; 82:3045-3060.e11. [PMID: 35752173 PMCID: PMC9391305 DOI: 10.1016/j.molcel.2022.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/06/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.
Collapse
Affiliation(s)
- Dan He
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Huijin Feng
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Belen Sundberg
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jiaxing Yang
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Justin Powers
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alec H Christian
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Cian Monnin
- Metabolomics Innovation Resource, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Daina Avizonis
- Metabolomics Innovation Resource, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Friedman
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael D Kluger
- Division of Gastrointestinal & Endocrine Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kelsey A Klute
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
8
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Das K, Garnica O, Flores J, Dhandayuthapani S. Methionine sulfoxide reductase A (MsrA) modulates cells and protects against Mycoplasma genitalium induced cytotoxicity. Free Radic Biol Med 2020; 152:323-335. [PMID: 32222467 DOI: 10.1016/j.freeradbiomed.2020.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
Methionine sulfoxide reductase A (MsrA) is a ubiquitous antioxidant repair enzyme which specifically reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Previous studies have shown that lack of or overexpression of MsrA in cells affects the function of proteins and can lead to altered cellular processes. Interestingly, some pathogenic bacteria secrete and/or carry MsrA on their surface, suggesting some key roles for this enzyme in the modulation of host cellular processes. Therefore, we investigated how exogenously added MsrA affects the ability of the host cells in combating infection by using an in vitroMycoplasma genitalium cytotoxicity model. HeLa cells pretreated with MsrA and infected with M. genitalium showed significantly lower necrosis (cytotoxicity) than untreated cells infected with M. genitalium. Intriguingly, necrotic cell death pathway specific real time RT-PCR revealed that M. genitalium infection upregulates the expression of the TNF gene in HeLa cells and that MsrA pretreatment of the cells downregulates its expression significantly. Consistent with this, enzyme linked immunosorbent assay (ELISA) results showed that HeLa cells pretreated with MsrA secreted reduced levels of TNF-α following M. genitalium infection. Also, our study demonstrates that MsrA treatment of cells affects the phosphorylation status of transcriptional regulators such as NF-кB, JNK and p53 that regulate different cytokines. Further, fluorescent microscopy showed the cellular uptake of exogenously added MsrA fused with red fluorescent protein (MsrA-RFP). Altogether, our results suggest that secreted MsrA may help pathogens to modulate host cellular processes.
Collapse
Affiliation(s)
- Kishore Das
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Omar Garnica
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Javier Flores
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Subramanian Dhandayuthapani
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
10
|
Zhao P, Cui X, Zhao L, Liu L, Wang D. Overexpression of Growth-Arrest-Specific Transcript 5 Improved Cisplatin Sensitivity in Hepatocellular Carcinoma Through Sponging miR-222. DNA Cell Biol 2020; 39:724-732. [PMID: 32213078 DOI: 10.1089/dna.2019.5282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long noncoding RNA growth-arrest-specific transcript 5 (GAS5) has been proved to play a crucial role in cancer chemoresistance. However, the function of GAS5 and its underlying molecular mechanism in hepatocellular carcinoma (HCC) chemoresistance remain unknown. In this study, we aimed to investigate its function and underlying molecular mechanism in HCC cisplatin (CDDP) resistance. The results demonstrated that GAS5 was significantly downregulated in HCC tissues and cells, especially in CDDP-resistant HCC tissues and cells. Low GAS5 expression was tightly correlated with shorter survival in patients with HCC. Functionally, GAS5 overexpression sensitized CDDP-resistant HepG2/CDDP and Huh7/CDDP cells to CDDP. Mechanically, GAS5 improved the sensitivity of HCC cells to CDDP through sponging miR-222. Taken together, these observations suggested that overexpression of GAS5 overcame CDDP resistance of HCC cells by regulating miR-222, providing a potential therapeutic target for overcoming the chemoresistance of HCC cells.
Collapse
Affiliation(s)
- Panxiong Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xi Cui
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Liyan Zhao
- Department of Breast Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Lu Liu
- Department of Respiratory Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Dayong Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
11
|
Reiterer M, Schmidt-Kastner R, Milton SL. Methionine sulfoxide reductase (Msr) dysfunction in human brain disease. Free Radic Res 2019; 53:1144-1154. [PMID: 31775527 DOI: 10.1080/10715762.2019.1662899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extensive research has shown that oxidative stress is strongly associated with aging, senescence and several diseases, including neurodegenerative and psychiatric disorders. Oxidative stress is caused by the overproduction of reactive oxygen species (ROS) that can be counteracted by both enzymatic and nonenzymatic antioxidants. One of these antioxidant mechanisms is the widely studied methionine sulfoxide reductase system (Msr). Methionine is one of the most easily oxidized amino acids and Msr can reverse this oxidation and restore protein function, with MsrA and MsrB reducing different stereoisomers. This article focuses on experimental and genetic research performed on Msr and its link to brain diseases. Studies on several model systems as well as genome-wide association studies are compiled to highlight the role of MSRA in schizophrenia, Alzheimer's disease, and Parkinson's disease. Genetic variation of MSRA may also contribute to the risk of psychosis, personality traits, and metabolic factors.
Collapse
Affiliation(s)
- Melissa Reiterer
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Sarah L Milton
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
12
|
Zhao D, Li Y, Yu M. LncRNA GAS5 facilitates nasopharyngeal carcinoma progression through epigenetically silencing PTEN via EZH2. RSC Adv 2019; 9:31691-31698. [PMID: 35527982 PMCID: PMC9072714 DOI: 10.1039/c9ra05405g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence demonstrated that long non-coding RNA growth-arrest-specific transcript 5 (GAS5) serves as a critical regulator in cancer development and progression. However, its function and mechanism in nasopharyngeal carcinoma (NPC) is still not well elucidated. In this study, we investigate the functional role as well as the molecular mechanism of GAS5 in NPC progression. Our results indicated that GAS5 expression was elevated in NPC tissues and cells. High GAS5 expression was correlated with poor prognosis of NPC patients. GAS5 knockdown suppressed proliferation, migration and invasion, and induced apoptosis in NPC cells. Moreover, GAS5 could epigenetically suppress PTEN expression via recruiting enhancer of zeste homolog 2 (EZH2). PTEN knockdown could reverse the inhibitory effect of GAS5 inhibition on NPC progression. Furthermore, GAS5 knockdown suppressed the tumor growth in vivo. In summary, knockdown of GAS5 repressed proliferation, migration and invasion, and promoted apoptosis in NPC through epigenetically silencing PTEN via recruiting EZH2.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University No. 195 Tongbai Road Zhengzhou 450000 China +86-0371-67690915
| | - Yujie Li
- Department of Otorhinolaryngology Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University No. 195 Tongbai Road Zhengzhou 450000 China +86-0371-67690915
| | - Min Yu
- Department of Otorhinolaryngology Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University No. 195 Tongbai Road Zhengzhou 450000 China +86-0371-67690915
| |
Collapse
|
13
|
Ye Y, Yang S, Han Y, Sun J, Xv L, Wu L, Ming L. HOXD-AS1 confers cisplatin resistance in gastric cancer through epigenetically silencing PDCD4 via recruiting EZH2. Open Biol 2019; 9:190068. [PMID: 31551012 PMCID: PMC6769292 DOI: 10.1098/rsob.190068] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that dysregulation of long non-coding RNAs (lncRNAs) is implicated in chemoresistance in cancers. However, the function and molecular mechanisms of lncRNAs in gastric cancer chemoresistance are still not well understood. In this study, we aimed to investigate the functional role and the underlying molecular mechanisms of lncRNA HOXD cluster antisense RNA 1 (HOXD-AS1) in cisplatin (DDP) resistance in gastric cancer. Our results revealed that HOXD-AS1 was upregulated in DDP-resistant gastric cancer tissues and cells. Patients with gastric cancer with high HOXD-AS1 expression levels had a poor prognosis. Knockdown of HOXD-AS1 facilitated the sensitivity of DDP-resistant gastric cancer cells to DDP. Additionally, HOXD-AS1 epigenetically silenced PDCD4 through binding to the histone methyltransferase enhancer of zeste homologue 2 (EZH2) on the promoter of PDCD4, thus increasing H3K27me3. More importantly, PDCD4 silencing counteracted HOXD-AS1 knockdown-mediated enhancement of DDP sensitivity in DDP-resistant gastric cancer cells. In summary, HOXD-AS1 led to DDP resistance in gastric cancer by epigenetically suppressing PDCD4 expression, providing a novel therapeutic strategy for patients with gastric cancer with chemoresistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
14
|
Li H, Ma X, Yang D, Suo Z, Dai R, Liu C. PCAT-1 contributes to cisplatin resistance in gastric cancer through epigenetically silencing PTEN via recruiting EZH2. J Cell Biochem 2019; 121:1353-1361. [PMID: 31478258 DOI: 10.1002/jcb.29370] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023]
Abstract
The aim of this study was to investigate the functional role and the underlying molecular mechanism of long noncoding RNA (lncRNA) prostate cancer-associated transcript 1 (PCAT-1) in cisplatin resistance of gastric cancer (GC). Our results indicated that PCAT-1 was overexpressed in CDDP-resistant GC tumor tissues and cell lines. High expression of PCAT-1 was closely correlated with short overall survival in patients with GC. Downregulation of PCAT-1 resensitized CDDP-resistant GC cells to cisplatin. In addition, PCAT-1 epigenetically silenced PTEN through binding to the histone methyltransferase enhancer of zeste homolog 2 (EZH2), thus increasing H3K27me3. More importantly, PTEN silencing counteracted PCAT-1 knockdown-mediated enhancement in cisplatin sensitivity of CDDP-resistant GC cells. In summary, PCAT-1 led to cisplatin resistance in GC cells through epigenetically suppressing PTEN expression, providing a novel therapeutic strategy for GC patients with chemoresistance.
Collapse
Affiliation(s)
- Hui Li
- Department of Digestion, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xuhui Ma
- Department of Digestion, Huaihe Hospital of Henan University, Kaifeng, China
| | - Desheng Yang
- Department of Digestion, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhimin Suo
- Department of Digestion, Huaihe Hospital of Henan University, Kaifeng, China
| | - Rujiang Dai
- Department of Digestion, Huaihe Hospital of Henan University, Kaifeng, China
| | - Chunhong Liu
- Department of Digestion, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
15
|
Guo Y, Yue P, Wang Y, Chen G, Li Y. PCAT-1 contributes to cisplatin resistance in gastric cancer through miR-128/ZEB1 axis. Biomed Pharmacother 2019; 118:109255. [PMID: 31352238 DOI: 10.1016/j.biopha.2019.109255] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests that dysregulation of long non-coding RNAs (lncRNAs) is implicated with chemoresistance in cancers. However, their function and molecular mechanisms in gastric cancer (GC) chemoresistance remain not well elucidated. In this study, we aimed to investigate the functional role and the underlying molecular mechanism of lncRNA prostate cancer-associated transcript 1 (PCAT-1) in cisplatin (DDP) resistance of GC. Our results revealed that PCAT-1 was up-regulated in DDP-resistant GC tissues and cells. GC patients with high PCAT-1 expression levels had a poor prognosis. Knockdown of PCAT-1 facilitated the sensitivity of DDP-resistant GC cells to DDP. Additionally, PCAT-1 functioned as a sponge of miR-128 in GC cells. Moreover, inhibition of miR-128 reversed the inductive effect of PCAT-1 knockdown on DDP sensitivity of GC cells. In addition, ZEB1 was identified as a target of miR-128, and overexpression of ZEB1 could block the inductive effect of PCAT-1 knockdown on DDP sensitivity of GC cells. Besides, PCAT-1 knockdown enhanced DDP sensitivity in tumors in vivo. In summary, PCAT-1 confers DDP resistance in GC cells through miR-128/ZEB1 axis, providing a promising therapeutic strategy for GC.
Collapse
Affiliation(s)
- Yinmou Guo
- Department of Oncology, Shangqiu first People's Hospital, Shangqiu, 476100, China.
| | - Peiru Yue
- Department of Oncology, Shangqiu first People's Hospital, Shangqiu, 476100, China
| | - Yumei Wang
- Department of Oncology, Shangqiu first People's Hospital, Shangqiu, 476100, China
| | - Gongbin Chen
- Department of Oncology, Shangqiu first People's Hospital, Shangqiu, 476100, China
| | - Yang Li
- Department of Oncology, Shangqiu first People's Hospital, Shangqiu, 476100, China
| |
Collapse
|
16
|
Feng L, Liu T, Yang Y, Xiao W, Shi J, Mei X, Tian S, Liu X, Huang H, Bai Y. Metformin promotes proliferation and suppresses apoptosis in Ox-LDL stimulated macrophages by regulating the miR-34a/Bcl2 axis. RSC Adv 2019; 9:14670-14676. [PMID: 35516319 PMCID: PMC9064147 DOI: 10.1039/c9ra00705a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/22/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Metformin, an antidiabetic drug, has been reported to be involved in atherosclerosis (AS). In this study, the effects of metformin on oxidized low-density lipoprotein (Ox-LDL)-induced macrophage apoptosis were investigated, and the mechanisms involved in this process were examined. Methods: qRT-qPCR analysis was performed to detect the expression of miR-34a in macrophage cells. Cell proliferation was determined by MTT assays and colony formation assays. Cell apoptosis was assessed by the detection of apoptotic rate and caspase 3 activity. Western blot analysis was performed to evaluate the expression of Bcl2 protein. Results: Metformin treatment promoted proliferation and suppressed apoptosis in macrophages following the treatment of oxidized low-density lipoprotein (Ox-LDL). Metformin could inhibit miR-34a in macrophages. miR-34a overexpression could reverse the effect of metformin on proliferation and apoptosis in Ox-LDL-treated macrophages. Moreover, metformin could increase the expression of the miR-34a target gene Bcl2. Furthermore, metformin treatment exerted the pro-proliferation and anti-apoptosis effect through regulating Bcl2 expression in Ox-LDL-stimulated macrophages. Conclusion: Metformin facilitated proliferation and inhibited apoptosis of macrophages treated with Ox-LDL through the miR-34a/Bcl2 axis, indicating the potential value of metformin in AS therapy.
Collapse
Affiliation(s)
- Liuliu Feng
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Tianhua Liu
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Yuya Yang
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Wenying Xiao
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Jun Shi
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Xiang Mei
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Songmei Tian
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Xinbing Liu
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Hongman Huang
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Yanyan Bai
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| |
Collapse
|
17
|
Yi D, Xu L, Wang R, Lu X, Sang J. miR-381 overcomes cisplatin resistance in breast cancer by targeting MDR1. Cell Biol Int 2019; 43:12-21. [PMID: 30444043 DOI: 10.1002/cbin.11071] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/11/2018] [Indexed: 11/08/2022]
Abstract
Increasing evidence suggests the involvement of microRNA-381 (miR-381) in chemoresistance of cancer treatment. However, its function and molecular mechanisms in breast cancer chemoresistance are still not well elucidated. In the present study, we aimed to investigate the functional role of miR-381 in cisplatin (DDP) resistance of breast cancer and discover the underlying molecular mechanism. The expression levels of miR-381 and MDR1 were detected by quantitative real-time PCR (qRT-PCR) and Western blot analysis in breast cancer tissues and cell lines. The DDP sensitivity and cell apoptosis of breast cancer cells were determined by MTT assay and flow cytometric analysis, respectively. The relationship between miR-381 and MDR1 was explored by target prediction and luciferase reporter analysis. miR-381 was decreased in DDP-resistant breast cancer tissues and cell lines. Low miR-381 expression was correlated with poor prognosis of breast cancer patients. miR-381 overexpression improved DDP sensitivity of MCF-7/DDP and MDA-MB-231/DDP cells. Conversely, miR-381 inhibition lowered the response of MCF-7 and MDA-MB-231 to DPP. Moreover, miR-381 could directly suppress multidrug resistance 1 (MDR1) expression. MDR1 knockdown could overcome DDP resistance in MCF-7/DDP and MDA-MB-231/DDP cells, while MDR1 overexpression led to DDP resistance in MCF-7 and MDA-MB-231 cells. Notably, MDR1 overexpression counteracted the inductive effect of miR-381 mimics on DDP sensitivity of MCF-7/DDP and MDA-MB-231/DDP cells. On the contrary, miR-381 inhibition-mediated DDP resistance in MCF-7 and MDA-MB-231 cells was reversed by MDR1 knockdown. In summary, miR-381 could overcome DDP resistance of breast cancer by directly targeting MDR1, providing a novel therapeutic target for breast cancer chemoresistance.
Collapse
Affiliation(s)
- Dandan Yi
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, 210008, China
| | - Lei Xu
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, 210008, China
| | - Ru Wang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, 210008, China
| | - Xingyi Lu
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, 210008, China
| | - Jianfeng Sang
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, 210008, China
| |
Collapse
|
18
|
Gao R, Fang C, Xu J, Tan H, Li P, Ma L. LncRNA CACS15 contributes to oxaliplatin resistance in colorectal cancer by positively regulating ABCC1 through sponging miR-145. Arch Biochem Biophys 2019; 663:183-191. [PMID: 30639170 DOI: 10.1016/j.abb.2019.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that long non-coding RNAs (lncRNAs) are implicated with chemoresistance of cancers. However, their functional role and molecular mechanisms in colorectal cancer (CRC) chemoresistance are still largely unclear. In this work, we aimed to investigate the functional role of lncRNA cancer susceptibility candidate 15 (CASC15) in oxaliplatin (OXA) resistance of CRC and reveal the underlying molecular mechanism. Our results discovered that CASC15 was up-regulated in OXA-resistant CRC tissues and cells. Patients with high CASC15 expression level had a poor prognosis. CASC15 knockdown re-sensitized HT29/OXA and HCT116/OXA cells to OXA. Moreover, CASC15 could act as a competing endogenous RNA (ceRNA) to de-repress ABCC1 expression through sponging miR-145. miR-145 overexpression or ABCC1 knockdown could mimic the functional role of down-regulated CACS15 in OXA resistance, which was counteracted by CASC15 overexpression. Furthermore, CASC15 knockdown facilitated OXA sensitivity of OXA-resistant CRC cells in vivo. In summary, CASC15 silencing overcame OXA resistance of CRC by regulating miR-145/ABCC1 axis, providing a potential therapeutic target for CRC chemoresistance.
Collapse
Affiliation(s)
- Rongrong Gao
- Tongji University School of Medicine, Shanghai, 200092, China
| | - Chun Fang
- Department of Interventional Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jichong Xu
- Department of Interventional Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Huaqiao Tan
- Department of Interventional Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Peng Li
- Tongji University School of Medicine, Shanghai, 200092, China
| | - Lin Ma
- Department of Interventional Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
19
|
Xu C, Guo Y, Liu H, Chen G, Yan Y, Liu T. TUG1 confers cisplatin resistance in esophageal squamous cell carcinoma by epigenetically suppressing PDCD4 expression via EZH2. Cell Biosci 2018; 8:61. [PMID: 30519392 PMCID: PMC6263046 DOI: 10.1186/s13578-018-0260-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Increasing evidence has suggested the involvement of long non-coding RNA taurine upregulated gene 1 (TUG1) in chemoresistance of cancer treatment. However, its function and molecular mechanisms in esophageal squamous cell carcinoma (ESCC) chemoresistance are still not well elucidated. In the present study, we investigate the functional role of TUG1 in cisplatin (DDP) resistance of ESCC and discover the underlying molecular mechanism. RESULTS Our study revealed that TUG1 was up-regulated in DDP-resistant ESCC tissues and cells. High TUG1 expression was correlated with poor prognosis of ESCC patients. TUG1 knockdown improved the sensitivity of ECA109/DDP and EC9706/DDP cells to DDP. Moreover, TUG1 could epigenetically suppress PDCD4 expression via recruiting enhancer of zeste homolog 2. PDCD4 overexpression could mimic the functional role of down-regulated TUG1 in DDP resistance. PDCD4 knockdown counteracted the inductive effect of TUG1 inhibition on DDP sensitivity of ECA109/DDP and EC9706/DDP cells. Furthermore, TUG1 knockdown facilitated DDP sensitivity of DDP-resistant ESCC cells in vivo. CONCLUSION TUG1 knockdown overcame DDP resistance of ESCC by epigenetically silencing PDCD4, providing a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Caihui Xu
- Department of Oncology, Shangqiu First People’s Hospital, No. 292 Kaixuan South Road, Shangqiu, 476100 China
| | - Yinmou Guo
- Department of Oncology, Shangqiu First People’s Hospital, No. 292 Kaixuan South Road, Shangqiu, 476100 China
| | - Haiyan Liu
- Department of Oncology, Shangqiu First People’s Hospital, No. 292 Kaixuan South Road, Shangqiu, 476100 China
| | - Gongbin Chen
- Department of Oncology, Shangqiu First People’s Hospital, No. 292 Kaixuan South Road, Shangqiu, 476100 China
| | - Yanju Yan
- Department of Oncology, Shangqiu First People’s Hospital, No. 292 Kaixuan South Road, Shangqiu, 476100 China
| | - Teng Liu
- Department of Oncology, Xinxiang Medical College, No. 601 Jinsui Avenue, Hongqi District, Xinxiang, 453003 China
| |
Collapse
|
20
|
Genetic regulation of longevity and age-associated diseases through the methionine sulfoxide reductase system. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1756-1762. [PMID: 30481589 DOI: 10.1016/j.bbadis.2018.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/25/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
Methionine sulfoxide reductase enzymes are a protective system against biological oxidative stress in aerobic organisms. Modifications to this antioxidant system have been shown to impact the lifespan of several model system organisms. In humans, methionine oxidation of critical proteins and deficiencies in the methionine sulfoxide reductase system have been linked to age-related diseases, including cancer and neurodegenerative disease. Substrates for methionine sulfoxide reductases have been reviewed multiple times, and are still an active area of discovery. In contrast, less is known about the genetic regulation of methionine sulfoxide reductases. In this review, we discuss studies on the genetic regulation of the methionine sulfoxide reductase system with relevance to longevity and age-related diseases. A better understanding of genetic regulation for methionine sulfoxide reductases may lead to new therapeutic approaches for age-related diseases in the future.
Collapse
|
21
|
Wang C, Li X, Zhang J, Ge Z, Chen H, Hu J. EZH2 contributes to 5-FU resistance in gastric cancer by epigenetically suppressing FBXO32 expression. Onco Targets Ther 2018; 11:7853-7864. [PMID: 30464532 PMCID: PMC6225849 DOI: 10.2147/ott.s180131] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Increasing evidence suggests the involvement of enhancer of zeste homologue 2 (EZH2) in chemoresistance of cancer treatment. Nevertheless, its function and molecular mechanisms in gastric cancer (GC) chemoresistance are still not well elucidated. Materials and methods In the present study, we investigated the functional role of EZH2 in 5-fluorouracil (5-FU) resistance of GC cells and discovered the underlying molecular mechanism. Results Results revealed that EZH2 was upregulated in 5-FU-resistant GC tissues and cell lines. High ZEH2 expression was correlated with poor prognosis of GC patients. EZH2 knockdown enhanced 5-FU sensitivity of AGS/5-FU and SGC-7901/5-FU cells. Moreover, EZH2 could epigenetically suppress FBXO32 expression. FBXO32 overexpression could mimic the functional role of downregulated EZH2 in 5-FU resistance. FBXO32 knockdown counteracted the inductive effect of EZH2 inhibition on 5-FU sensitivity of AGS/5-FU and SGC-7901/5-FU cells. Furthermore, EZH2 knockdown facilitated 5-FU sensitivity of 5-FU-resistant GC cells in vivo. Conclusion In summary, EZH2 depletion overcame 5-FU resistance in GC by epigenetically silencing FBXO32, providing a novel therapeutic target for GC chemoresistance.
Collapse
Affiliation(s)
- Chenyu Wang
- Department of Anorectal, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China,
| | - Xingwang Li
- Department of Anorectal, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China,
| | - Junjie Zhang
- Department of Anorectal, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China,
| | - Zheng Ge
- Department of Anorectal, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China,
| | - Hejin Chen
- Department of Anorectal, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China,
| | - Junhong Hu
- Department of Anorectal, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China,
| |
Collapse
|
22
|
The Functions of the Mammalian Methionine Sulfoxide Reductase System and Related Diseases. Antioxidants (Basel) 2018; 7:antiox7090122. [PMID: 30231496 PMCID: PMC6162418 DOI: 10.3390/antiox7090122] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/15/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023] Open
Abstract
This review article describes and discusses the current knowledge on the general role of the methionine sulfoxide reductase (MSR) system and the particular role of MSR type A (MSRA) in mammals. A powerful tool to investigate the contribution of MSRA to molecular processes within a mammalian system/organism is the MSRA knockout. The deficiency of MSRA in this mouse model provides hints and evidence for this enzyme function in health and disease. Accordingly, the potential involvement of MSRA in the processes leading to neurodegenerative diseases, neurological disorders, cystic fibrosis, cancer, and hearing loss will be deliberated and evaluated.
Collapse
|
23
|
Bracalente C, Ibañez IL, Berenstein A, Notcovich C, Cerda MB, Klamt F, Chernomoretz A, Durán H. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated. Oncotarget 2018; 7:41154-41171. [PMID: 27206673 PMCID: PMC5173049 DOI: 10.18632/oncotarget.9273] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/02/2016] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity. These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas.
Collapse
Affiliation(s)
- Candelaria Bracalente
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ariel Berenstein
- Fundación Instituto Leloir and Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - María B Cerda
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Ariel Chernomoretz
- Fundación Instituto Leloir and Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
24
|
Methionine in Proteins: It's Not Just for Protein Initiation Anymore. Neurochem Res 2018; 44:247-257. [PMID: 29327308 DOI: 10.1007/s11064-017-2460-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 12/21/2022]
Abstract
Methionine in proteins is often thought to be a generic hydrophobic residue, functionally replaceable with another hydrophobic residue such as valine or leucine. This is not the case, and the reason is that methionine contains sulfur that confers special properties on methionine. The sulfur can be oxidized, converting methionine to methionine sulfoxide, and ubiquitous methionine sulfoxide reductases can reduce the sulfoxide back to methionine. This redox cycle enables methionine residues to provide a catalytically efficient antioxidant defense by reacting with oxidizing species. The cycle also constitutes a reversible post-translational covalent modification analogous to phosphorylation. As with phosphorylation, enzymatically-mediated oxidation and reduction of specific methionine residues functions as a regulatory process in the cell. Methionine residues also form bonds with aromatic residues that contribute significantly to protein stability. Given these important functions, alteration of the methionine-methionine sulfoxide balance in proteins has been correlated with disease processes, including cardiovascular and neurodegenerative diseases. Methionine isn't just for protein initiation.
Collapse
|
25
|
OncoScape: Exploring the cancer aberration landscape by genomic data fusion. Sci Rep 2016; 6:28103. [PMID: 27321817 PMCID: PMC4913322 DOI: 10.1038/srep28103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/25/2016] [Indexed: 01/22/2023] Open
Abstract
Although large-scale efforts for molecular profiling of cancer samples provide multiple data types for many samples, most approaches for finding candidate cancer genes rely on somatic mutations and DNA copy number only. We present a new method, OncoScape, which exploits five complementary data types across 11 cancer types to identify new candidate cancer genes. We find many rarely mutated genes that are strongly affected by other aberrations. We retrieve the majority of known cancer genes but also new candidates such as STK31 and MSRA with very high confidence. Several genes show a dual oncogene- and tumor suppressor-like behavior depending on the tumor type. Most notably, the well-known tumor suppressor RB1 shows strong oncogene-like signal in colon cancer. We applied OncoScape to cell lines representing ten cancer types, providing the most comprehensive comparison of aberrations in cell lines and tumor samples to date. This revealed that glioblastoma, breast and colon cancer show strong similarity between cell lines and tumors, while head and neck squamous cell carcinoma and bladder cancer, exhibit very little similarity between cell lines and tumors. To facilitate exploration of the cancer aberration landscape, we created a web portal enabling interactive analysis of OncoScape results (http://ccb.nki.nl/software/oncoscape).
Collapse
|
26
|
Souza T, Jennen D, van Delft J, van Herwijnen M, Kyrtoupolos S, Kleinjans J. New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol 2016; 90:1449-58. [PMID: 26238291 PMCID: PMC4873527 DOI: 10.1007/s00204-015-1572-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/20/2015] [Indexed: 12/23/2022]
Abstract
Benzo(a)pyrene (BaP) is a ubiquitous carcinogen resulting from incomplete combustion of organic compounds and also present at high levels in cigarette smoke. A wide range of biological effects has been attributed to BaP and its genotoxic metabolite BPDE, but the contribution to BaP toxicity of intermediary metabolites generated along the detoxification path remains unknown. Here, we report for the first time how 3-OH-BaP, 9,10-diol and BPDE, three major BaP metabolites, temporally relate to BaP-induced transcriptomic alterations in HepG2 cells. Since BaP is also known to induce AhR activation, we additionally evaluated TCDD to source the expression of non-genotoxic AhR-mediated patterns. 9,10-Diol was shown to activate several transcription factor networks related to BaP metabolism (AhR), oxidative stress (Nrf2) and cell proliferation (HIF-1α, AP-1) in particular at early time points, while BPDE influenced expression of genes involved in cell energetics, DNA repair and apoptotic pathways. Also, in order to grasp the role of BaP and its metabolites in chemical hepatocarcinogenesis, we compared expression patterns from BaP(-metabolites) and TCDD to a signature set of approximately nine thousand gene expressions derived from hepatocellular carcinoma (HCC) patients. While transcriptome modulation by TCDD appeared not significantly related to HCC, BaP and BPDE were shown to deregulate metastatic markers via non-genotoxic and genotoxic mechanisms and activate inflammatory pathways (NF-κβ signaling, cytokine-cytokine receptor interaction). BaP also showed strong repression of genes involved in cholesterol and fatty acid biosynthesis. Altogether, this study provides new insights into BaP-induced toxicity and sheds new light onto its mechanism of action as a hepatocarcinogen.
Collapse
Affiliation(s)
- Terezinha Souza
- Department of Toxicogenomics, Maastricht University, 6229 ER, Maastricht, The Netherlands.
- Department of Toxicogenomics, Maastricht University, Universiteitsingel 50, 6200 MD, Maastricht, The Netherlands.
| | - Danyel Jennen
- Department of Toxicogenomics, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Joost van Delft
- Department of Toxicogenomics, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Marcel van Herwijnen
- Department of Toxicogenomics, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Soterios Kyrtoupolos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
27
|
Klutho PJ, Pennington SM, Scott JA, Wilson KM, Gu SX, Doddapattar P, Xie L, Venema AN, Zhu LJ, Chauhan AK, Lentz SR, Grumbach IM. Deletion of Methionine Sulfoxide Reductase A Does Not Affect Atherothrombosis but Promotes Neointimal Hyperplasia and Extracellular Signal-Regulated Kinase 1/2 Signaling. Arterioscler Thromb Vasc Biol 2015; 35:2594-604. [PMID: 26449752 DOI: 10.1161/atvbaha.115.305857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/28/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Emerging evidence suggests that methionine oxidation can directly affect protein function and may be linked to cardiovascular disease. The objective of this study was to define the role of the methionine sulfoxide reductase A (MsrA) in models of vascular disease and identify its signaling pathways. APPROACH AND RESULTS MsrA was readily identified in all layers of the vascular wall in human and murine arteries. Deletion of the MsrA gene did not affect atherosclerotic lesion area in apolipoprotein E-deficient mice and had no significant effect on susceptibility to experimental thrombosis after photochemical injury. In contrast, the neointimal area after vascular injury caused by complete ligation of the common carotid artery was significantly greater in MsrA-deficient than in control mice. In aortic vascular smooth muscle cells lacking MsrA, cell proliferation was significantly increased because of accelerated G1/S transition. In parallel, cyclin D1 protein and cdk4/cyclin D1 complex formation and activity were increased in MsrA-deficient vascular smooth muscle cell, leading to enhanced retinoblastoma protein phosphorylation and transcription of E2F. Finally, MsrA-deficient vascular smooth muscle cell exhibited greater activation of extracellular signal-regulated kinase 1/2 that was caused by increased activity of the Ras/Raf/mitogen-activated protein kinase signaling pathway. CONCLUSIONS Our findings implicate MsrA as a negative regulator of vascular smooth muscle cell proliferation and neointimal hyperplasia after vascular injury through control of the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 signaling pathway.
Collapse
Affiliation(s)
- Paula J Klutho
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Steven M Pennington
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Jason A Scott
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Katina M Wilson
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Sean X Gu
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Prakash Doddapattar
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Litao Xie
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Ashlee N Venema
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Linda J Zhu
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Anil K Chauhan
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Steven R Lentz
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Isabella M Grumbach
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa.
| |
Collapse
|
28
|
Barber JCK, Rosenfeld JA, Graham JM, Kramer N, Lachlan KL, Bateman MS, Collinson MN, Stadheim BF, Turner CLS, Gauthier JN, Reimschisel TE, Qureshi AM, Dabir TA, Humphreys MW, Marble M, Huang T, Beal SJ, Massiah J, Taylor EJ, Wynn SL. Inside the 8p23.1 duplication syndrome; eight microduplications of likely or uncertain clinical significance. Am J Med Genet A 2015; 167A:2052-64. [PMID: 26097203 DOI: 10.1002/ajmg.a.37120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 04/03/2015] [Indexed: 12/28/2022]
Abstract
The 8p23.1 duplication syndrome (8p23.1 DS) is a recurrent genomic condition with an estimated prevalence of 1 in 58,000. The core 3.68 Mb duplication contains 32 genes of which five are currently candidates for the phenotypic features. Here we describe four patients and five families with eight microduplications of 8p23.1 ranging from 187 to 1082 kb in size and one atypical duplication of 4 Mb. These indicate that a minimal region of overlap (MRO) in medial 8p23.1 can give rise to features of 8p23.1 DS including developmental delay, dysmorphism, macrocephaly and otitis media, but not congenital heart disease (CHD). This MRO spans 776 kb (chr8:10,167,881-10,943,836 hg19) and contains SOX7 and seven of the other 32 core 8p23.1 DS genes. In centromeric 8p23.1, microduplications including GATA4 can give rise to non-syndromic CHD but the clinical significance of two smaller centromeric microduplications without GATA4 was uncertain due to severe neurological profiles not usually found in 8p23.1 DS. The clinical significance of three further 8p23.1 microduplications was uncertain due to additional genetic factors without which the probands might not have come to medical attention. Variable expressivity was indicated by the almost entirely unaffected parents in all five families and the mildly affected sibling in one. Intronic interruptions of six genes by microduplication breakpoint intervals had no apparent additional clinical consequences. Our results suggest that 8p23.1 DS is an oligogenetic condition largely caused by the duplication and interactions of the SOX7 and GATA4 transcription factors.
Collapse
Affiliation(s)
- John C K Barber
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Jill A Rosenfeld
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, Washington
| | - John M Graham
- Medical Genetics Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Nancy Kramer
- Medical Genetics Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Katherine L Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Mark S Bateman
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Morag N Collinson
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | | | - Claire L S Turner
- Department of Clinical Genetics, Royal Devon and Exeter Hospital (Heavitree), Exeter, UK
| | - Jacqueline N Gauthier
- Division of Developmental Medicine and the Centre for Child Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tyler E Reimschisel
- Division of Developmental Medicine and the Centre for Child Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Athar M Qureshi
- Center for Pediatric and Congenital Heart Disease, The Cleveland Clinic, Cleveland, Ohio
| | - Tabib A Dabir
- Medical Genetics Department, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, Northern Ireland
| | - Mervyn W Humphreys
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, Northern Ireland
| | - Michael Marble
- Children's Hospital of New Orleans, New Orleans, Louisiana
| | - Taosheng Huang
- School of Medicine, University of California, Irvine, California
| | - Sarah J Beal
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Joanne Massiah
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Emma-Jane Taylor
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | | |
Collapse
|
29
|
Kang J. Genomic alterations on 8p21-p23 are the most frequent genetic events in stage I squamous cell carcinoma of the lung. Exp Ther Med 2014; 9:345-350. [PMID: 25574196 PMCID: PMC4280924 DOI: 10.3892/etm.2014.2123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/31/2014] [Indexed: 01/13/2023] Open
Abstract
Genetic alterations in the early stages of cancer have a close correlation with tumor initiation and potentially activate downstream pathways implicated in tumor progression; however, the method of initiation in sporadic neoplasias is largely unknown. In this study, whole-genome microarray-comparative genomic hybridization was performed to identify the early genetic alterations that define the prognosis of patients with stage I squamous cell carcinoma (SCC) of the lung. The most striking finding was the high frequency of copy number losses and hemizygous deletions on chromosome 8p, which occurred in 94.7% (18/19) and 63.2% (12/19) of the cases, respectively, with a delineated minimal common region of 8p21.1-p23.3. More specifically, three loci of homozygous deletions at 8p23.1 were noted in 21.1% (4/19) of the cases. This region contains the following possible target genes, which have previously not been implicated to play a pathogenic role in stage I SCCs: MSRA, MFHAS1, CLDN23, DEFB106A, DEFB105A, LOC441316, FAM90A7P and LOC441318. These findings indicate that genetic alterations on chromosome 8p may be the first step in the initiation of genomic instability in early SCCs, and the newly identified genes in the 8p23.1 chromosomal region might be of interest for the study of the pathophysiology of stage I SCC, as potential targets for therapeutic measures.
Collapse
Affiliation(s)
- Jiun Kang
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan 330-718, Republic of Korea
| |
Collapse
|
30
|
Mochin MT, Underwood KF, Cooper B, McLenithan JC, Pierce AD, Nalvarte C, Arbiser J, Karlsson AI, Moise AR, Moskovitz J, Passaniti A. Hyperglycemia and redox status regulate RUNX2 DNA-binding and an angiogenic phenotype in endothelial cells. Microvasc Res 2014; 97:55-64. [PMID: 25283348 DOI: 10.1016/j.mvr.2014.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 01/23/2023]
Abstract
Angiogenesis is regulated by hyperglycemic conditions, which can induce cellular stress responses, reactive oxygen species (ROS), and anti-oxidant defenses that modulate intracellular signaling to prevent oxidative damage. The RUNX2 DNA-binding transcription factor is activated by a glucose-mediated intracellular pathway, plays an important role in endothelial cell (EC) function and angiogenesis, and is a target of oxidative stress. RUNX2 DNA-binding and EC differentiation in response to glucose were conserved in ECs from different tissues and inhibited by hyperglycemia, which stimulated ROS production through the aldose reductase glucose-utilization pathway. Furthermore, the redox status of cysteine and methionine residues regulated RUNX2 DNA-binding and reversal of oxidative inhibition was consistent with an endogenous Methionine sulfoxide reductase-A (MsrA) activity. Low molecular weight MsrA substrates and sulfoxide scavengers were potent inhibitors of RUNX2 DNA binding in the absence of oxidative stress, but acted as antioxidants to increase DNA binding in the presence of oxidants. MsrA was associated with RUNX2:DNA complexes, as measured by a sensitive, quantitative DNA-binding ELISA. The related RUNX2 protein family member, RUNX1, which contains an identical DNA-binding domain, was a catalytic substrate of recombinant MsrA. These findings define novel redox pathways involving aldose reductase and MsrA that regulate RUNX2 transcription factor activity and biological function in ECs. Targeting of these pathways could result in more effective strategies to alleviate the vascular dysfunction associated with diabetes or cancer.
Collapse
Affiliation(s)
- Maria T Mochin
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene & Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Karen F Underwood
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene & Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brandon Cooper
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene & Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - John C McLenithan
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene & Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adam D Pierce
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene & Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Cesar Nalvarte
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene & Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jack Arbiser
- Department of Dermatology, Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Atlanta, GA, USA
| | - Anna I Karlsson
- Department of Dermatology, Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Atlanta, GA, USA
| | - Alexander R Moise
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, USA
| | - Jackob Moskovitz
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, USA
| | - Antonino Passaniti
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene & Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Veteran's Health Administration Research & Development Service, Baltimore, MD, USA.
| |
Collapse
|
31
|
Drazic A, Winter J. The physiological role of reversible methionine oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1367-82. [PMID: 24418392 DOI: 10.1016/j.bbapap.2014.01.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 01/04/2023]
Abstract
Sulfur-containing amino acids such as cysteine and methionine are particularly vulnerable to oxidation. Oxidation of cysteine and methionine in their free amino acid form renders them unavailable for metabolic processes while their oxidation in the protein-bound state is a common post-translational modification in all organisms and usually alters the function of the protein. In the majority of cases, oxidation causes inactivation of proteins. Yet, an increasing number of examples have been described where reversible cysteine oxidation is part of a sophisticated mechanism to control protein function based on the redox state of the protein. While for methionine the dogma is still that its oxidation inhibits protein function, reversible methionine oxidation is now being recognized as a powerful means of triggering protein activity. This mode of regulation involves oxidation of methionine to methionine sulfoxide leading to activated protein function, and inactivation is accomplished by reduction of methionine sulfoxide back to methionine catalyzed by methionine sulfoxide reductases. Given the similarity to thiol-based redox-regulation of protein function, methionine oxidation is now established as a novel mode of redox-regulation of protein function. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Adrian Drazic
- Center for Integrated Protein Science Munich (CiPS(M)) at the Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Jeannette Winter
- Center for Integrated Protein Science Munich (CiPS(M)) at the Department Chemie, Technische Universität München, 85747 Garching, Germany.
| |
Collapse
|
32
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
33
|
Zimonjic DB, Popescu NC. Role of DLC1 tumor suppressor gene and MYC oncogene in pathogenesis of human hepatocellular carcinoma: potential prospects for combined targeted therapeutics (review). Int J Oncol 2012; 41:393-406. [PMID: 22580498 PMCID: PMC3583004 DOI: 10.3892/ijo.2012.1474] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/17/2012] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death, and its incidence is increasing worldwide in an alarming manner. The development of curative therapy for advanced and metastatic HCC is a high clinical priority. The HCC genome is complex and heterogeneous; therefore, the identification of recurrent genomic and related gene alterations is critical for developing clinical applications for diagnosis, prognosis and targeted therapy of the disease. This article focuses on recent research progress and our contribution in identifying and deciphering the role of defined genetic alterations in the pathogenesis of HCC. A significant number of genes that promote or suppress HCC cell growth have been identified at the sites of genomic reorganization. Notwithstanding the accumulation of multiple genetic alterations, highly recurrent changes on a single chromosome can alter the expression of oncogenes and tumor suppressor genes (TSGs) whose deregulation may be sufficient to drive the progression of normal hepatocytes to malignancy. A distinct and highly recurrent pattern of genomic imbalances in HCC includes the loss of DNA copy number (associated with loss of heterozygosity) of TSG-containing chromosome 8p and gain of DNA copy number or regional amplification of protooncogenes on chromosome 8q. Even though 8p is relatively small, it carries an unusually large number of TSGs, while, on the other side, several oncogenes are dispersed along 8q. Compelling evidence demonstrates that DLC1, a potent TSG on 8p, and MYC oncogene on 8q play a critical role in the pathogenesis of human HCC. Direct evidence for their role in the genesis of HCC has been obtained in a mosaic mouse model. Knockdown of DLC1 helps MYC in the induction of hepatoblast transformation in vitro, and in the development of HCC in vivo. Therapeutic interventions, which would simultaneously target signaling pathways governing both DLC1 and MYC functions in hepatocarcinogenesis, could result in progress in the treatment of liver cancer.
Collapse
Affiliation(s)
- Drazen B Zimonjic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
34
|
Kawai K, Li YS, Song MF, Ootsuyama Y, Kakehashi A, Wanibuchi H, Ootsuyama A, Norimura T, Kasai H. Methionine Sulfoxide Stimulates Hepatocarcinogenesis in Non-alcoholic Steatohepatitis (NASH) Mouse: Possible Role of Free Radical-mediated DNA Methylation. Genes Environ 2012. [DOI: 10.3123/jemsge.34.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
35
|
Lei KF, Liu BY, Zhang XQ, Jin XL, Guo Y, Ye M, Zhu ZG. Development of a survival prediction model for gastric cancer using serine proteases and their inhibitors. Exp Ther Med 2011; 3:109-116. [PMID: 22969854 DOI: 10.3892/etm.2011.353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022] Open
Abstract
Proteolytic enzymes play a key role in the metastatic stage of gastric cancer (GC). In this study, we aimed to identify the serine proteases (SPs) and their inhibitors (serpins) as related to GC. The gene expression profiles of 40 cases of GC were initially detected by cDNA microarray. The results of the differentially expressed SPs and their inhibitor genes from the microarrays were confirmed by real-time PCR. The status of the immunohistochemical staining of the confirmed genes in patients with complete data was used to develop a survival prediction model. Finally, the prediction model was tested in different groups of GC patients. As a result, seven genes, SERPINB5, KLK10, KLK11, HPN, SPINK1, SERPINA5 and PRSS8, were considered as GC progression-related genes. A survival prediction model including the immunohistochemical scores of three genes and the tumor node metastasis (TNM) score was developed: Survival time (months) = 88.8607 + 2.6395 SERPINB5 - 12.0772 KLK10 + 13.7562 KLK11 - 7.0318 TNM. In conclusion, SERPINB5, KLK10, KLK11, HPN, SPINK1, SERPINA5 and PRSS8 were GC progression-related SPs or serpin genes. The model consisting of the expression profiles of three genes extracted from the microarray study accompanied by the TNM score accurately predicts surgery-related survival of GC patients.
Collapse
Affiliation(s)
- Ke-Feng Lei
- Department of Surgery, Shanghai Institute of Digestive Surgery
| | | | | | | | | | | | | |
Collapse
|
36
|
Erickson JR, He BJ, Grumbach IM, Anderson ME. CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 2011; 91:889-915. [PMID: 21742790 DOI: 10.1152/physrev.00018.2010] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure, and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca(2+)/CaM). Under conditions of sustained exposure to elevated Ca(2+)/CaM, CaMKII transitions into a Ca(2+)/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine-287 in the CaMKII regulatory domain "traps" CaMKII into an open configuration even after Ca(2+)/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca(2+)/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease.
Collapse
Affiliation(s)
- Jeffrey R Erickson
- Department of Pharmacology, University of California at Davis, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
37
|
Zhang C, Jia P, Jia Y, Li Y, Webster KA, Huang X, Achary M, Lemanski SL, Lemanski LF. Anoxia, acidosis, and intergenic interactions selectively regulate methionine sulfoxide reductase transcriptions in mouse embryonic stem cells. J Cell Biochem 2011; 112:98-106. [PMID: 20872796 DOI: 10.1002/jcb.22876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Methionine sulfoxide reductases (Msr) belong to a gene family that contains one MsrA and three MsrBs (MsrB1, MsrB2, and MsrB3). We have identified all four of the genes that are expressed in mouse embryonic stem cell cultures. The vital cellular functions of the Msr family of genes are to protect cells from oxidative damage by enzymatically reducing the oxidized sulfide groups of methionine residues in proteins from the sulfoxide form (--SO) back to sulfide thus restoring normal protein functions as well as reducing intracellular reactive oxygen species (ROS). We have performed studies on the Msr family genes to examine the regulation of gene expression. Our studies using real-time RT-PCR and Western blotting have shown that expression levels of the four Msr family genes are under differential regulation by anoxia/reoxygenation treatment, acidic culture conditions and interactions between MsrA and MsrB. Results from these in vitro experiments suggest that although these genes function as a whole in oxidative stress protection, each one of the Msr genes could be responsive to environmental stimulants differently at the tissue level.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cyr AR, Domann FE. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 2011; 15:551-89. [PMID: 20919933 PMCID: PMC3118659 DOI: 10.1089/ars.2010.3492] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic modifications represent mechanisms by which cells may effectively translate multiple signaling inputs into phenotypic outputs. Recent research is revealing that redox metabolism is an increasingly important determinant of epigenetic control that may have significant ramifications in both human health and disease. Numerous characterized epigenetic marks, including histone methylation, acetylation, and ADP-ribosylation, as well as DNA methylation, have direct linkages to central metabolism through critical redox intermediates such as NAD(+), S-adenosyl methionine, and 2-oxoglutarate. Fluctuations in these intermediates caused by both normal and pathologic stimuli may thus have direct effects on epigenetic signaling that lead to measurable changes in gene expression. In this comprehensive review, we present surveys of both metabolism-sensitive epigenetic enzymes and the metabolic processes that may play a role in their regulation. To close, we provide a series of clinically relevant illustrations of the communication between metabolism and epigenetics in the pathogenesis of cardiovascular disease, Alzheimer disease, cancer, and environmental toxicity. We anticipate that the regulatory mechanisms described herein will play an increasingly large role in our understanding of human health and disease as epigenetics research progresses.
Collapse
Affiliation(s)
- Anthony R Cyr
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242-1181, USA
| | | |
Collapse
|
39
|
Kasai H, Kawai K, Li YS. DNA Methylation at the C-5 Position of Cytosine by a Methyl Radical: A Link between Environmental Agents and Epigenetic Change. Genes Environ 2011. [DOI: 10.3123/jemsge.33.61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Li X, Chen J, Lü B, Peng S, Desper R, Lai M. -8p12-23 and +20q are predictors of subtypes and metastatic pathways in colorectal cancer: construction of tree models using comparative genomic hybridization data. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 15:37-47. [PMID: 21194300 DOI: 10.1089/omi.2010.0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A substantial body of evidence suggests the genetic heterogeneous pattern and multiple pathways in colorectal cancer initiation and progression. In this study, we construct a branching tree and multiple distance-based tree models to elucidate these genetic patterns and pathways in colorectal cancer by using a data set comprised of 244 cases of comparative genomic hybridization. We identify the six most common gains of chromosomal regions of 7p (37.0%), 7q11-32 (34.8%), 8q (48.3%), 13q (49.1%), 20p (36.1%), and 20q (50.4%), and the nine most common losses of 1p13-36 (30.9%), 4p15 (24.3%), 4q33-34 (24.3%), 8p12-23 (50.9%), 15q13-14 (23.5%), 15q24-25 (24.3%), 17p (34.8%), 18p (36.5%), and 18q (61.7%) in colorectal cancer. We classify colorectal cancer into two distinct groups: one preceding with -8p12-23, and the other with +20q. The sample-based classification tree also demonstrates that colorectal cancer can be classified into multiple subtypes marked by -8p12-23 and +20q. By comparing chromosomal abnormalities between primary and metastatic colorectal cancer, we identify five potential metastatic pathways: (-18q, -18p), (-8p12-23, -4p15, -4q33-34), (+20q, +20p), (+20q, +7p, +7q11-32), and +8q. -8p12-23 and +20q are inferred to be the two marker events of colorectal cancer metastasis. The current oncogenetic tree models may contribute to our understanding towards molecular genetics in colorectal cancer. Particularly, the metastatic pathways we describe may provide pivotal clues for metastatic candidate genes, and thus impact on the prediction and intervention of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Methionine sulfoxide reductase A down-regulation in human breast cancer cells results in a more aggressive phenotype. Proc Natl Acad Sci U S A 2010; 107:18628-33. [PMID: 20937881 DOI: 10.1073/pnas.1010171107] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the most frequent of human malignancies, and it is therefore fundamental to identify the underlying molecular mechanisms leading to cancer transformation. Among other causative agents in the development of breast cancers, an important role for reactive oxygen species (ROS) has emerged. However, most studies on the role of ROS in cancer have not reached specific conclusions, and many issues remain controversial. In the present study, we show that methionine sulfoxide reductase A (MsrA), which is known to protect proteins from oxidation and which acts as a ROS scavenger, is down-regulated in a number of breast cancers. Moreover, levels of MsrA correlate with advanced tumor grade. We therefore investigated the functional role of MsrA in breast cancer cells. Our data show that reduction of MsrA levels results in increased cell proliferation and extracellular matrix degradation, and consequently in a more aggressive cellular phenotype, both in vivo and in vitro. We also show that the underlying molecular mechanisms involve increased ROS levels, resulting in reduction of phosphatase and tensin homolog deleted on chromosome ten protein (PTEN), and activation of the phosphoinositide 3-kinase pathway. In addition, MsrA down-regulation results in up-regulation of VEGF, providing additional support for tumor growth in vivo.
Collapse
|
42
|
Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis. Anal Biochem 2010; 401:68-73. [DOI: 10.1016/j.ab.2010.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 12/31/2022]
|
43
|
Kawai K, Li YS, Song MF, Kasai H. DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorg Med Chem Lett 2010; 20:260-5. [DOI: 10.1016/j.bmcl.2009.10.124] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 10/23/2009] [Accepted: 10/27/2009] [Indexed: 11/25/2022]
|
44
|
Differential expression of the antioxidant repair enzyme methionine sulfoxide reductase (MSRA and MSRB) in human skin. Am J Dermatopathol 2009; 31:427-31. [PMID: 19542914 DOI: 10.1097/dad.0b013e3181882c21] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, the antioxidant repair enzymes methionine-S-sulfoxide reductase A (MSRA) and methionine-R-sulfoxide reductase B (MSRB) were described in human epidermal keratinocytes and melanocytes. Methionine sulfoxide reductases (MSRs) are thought to protect against reactive oxygen species-induced oxidative damage in many organs, including the most environmentally exposed organ, human skin. We sought to examine the expression and distribution of this enzyme family (MSRA, MSRB1, MSRB2, and MSRB3) within the various compartments of healthy and diseased human skin. Expression was assessed using polyclonal MSR antibodies and immunohistochemical staining of human skin biopsies from various anatomical sites. Remarkably, MSRA expression was not only found in the epidermis as previously described but also in hair follicles and eccrine glands and was most pronounced in sebaceous glands. Furthermore, MSRB2 expression was found in melanocytes while MSRB1 and MSRB3 were both expressed within vascular endothelial cells. In conclusion, MSR enzymes are differentially expressed in human skin. Thus, modulation of MSR repair antioxidants may have implications for cutaneous aging and carcinogenesis.
Collapse
|
45
|
Pei Y, Zhang T, Renault V, Zhang X. An overview of hepatocellular carcinoma study by omics-based methods. Acta Biochim Biophys Sin (Shanghai) 2009; 41:1-15. [PMID: 19129945 DOI: 10.1093/abbs/gmn001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly malignancies worldwide. Scientists have been studying the molecular mechanism of HCC for years, but the understanding of it remains incomplete and scattered across the literature at different molecular levels. Chromosomal aberrations, epigenetic abnormality and changes of gene expression have been reported in HCC. High-throughput omics technologies have been widely applied, aiming at the discovery of candidate biomarkers for cancer staging, prediction of recurrence and prognosis, and treatment selection. Large amounts of data on genetic and epigenetic abnormalities, gene expression profiles, microRNA expression profiles and proteomics have been accumulating, and bioinformatics is playing a more and more important role. In this paper, we review the current omics-based studies on HCC at the levels of genomics, transcriptomics and proteomics. Integrating observations from multiple aspects is an essential step toward the systematic understanding of the disease.
Collapse
Affiliation(s)
- Yunfei Pei
- TNLIST/Department of Automation, Bioinformatics and Bioinformatics Division, MOE Key Laboratory, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|