1
|
Stathaki M, Stamatiou ME, Magioris G, Simantiris S, Syrigos N, Dourakis S, Koutsilieris M, Armakolas A. The role of kisspeptin system in cancer biology. Crit Rev Oncol Hematol 2019; 142:130-140. [PMID: 31401420 DOI: 10.1016/j.critrevonc.2019.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/01/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023] Open
Abstract
Kisspeptins are a family of neuropeptides that are known to be critical in puberty initiation and ovulation. Apart from that kisspeptin derived peptides (KPs) are also known for their antimetastatic activities in several malignancies. Herein we report recent evidence of the role of kisspeptins in cancer biology and we examine the prospective of targeting the kisspeptin pathways leading to a better prognosis in patients with malignant diseases.
Collapse
Affiliation(s)
- Martha Stathaki
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Maria Evanthia Stamatiou
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - George Magioris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Spyridon Simantiris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Nikolaos Syrigos
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Spyridon Dourakis
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens School of Medicine Hippokration General Hospital Athens Greece, Greece
| | - Michael Koutsilieris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece.
| |
Collapse
|
2
|
Siena ÁDD, Plaça JR, Araújo LF, de Barros II, Peronni K, Molfetta G, de Biagi CAO, Espreafico EM, Sousa JF, Silva WA. Whole transcriptome analysis reveals correlation of long noncoding RNA ZEB1-AS1 with invasive profile in melanoma. Sci Rep 2019; 9:11350. [PMID: 31383874 PMCID: PMC6683136 DOI: 10.1038/s41598-019-47363-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer, and little is known about the impact of deregulated expression of long noncoding RNAs (lncRNAs) in the progression of this cancer. In this study, we explored RNA-Seq data to search for lncRNAs associated with melanoma progression. We found distinct lncRNA gene expression patterns across melanocytes, primary and metastatic melanoma cells. Also, we observed upregulation of the lncRNA ZEB1-AS1 (ZEB1 antisense RNA 1) in melanoma cell lines. Data analysis from The Cancer Genome Atlas (TCGA) confirmed higher ZEB1-AS1 expression in metastatic melanoma and its association with hotspot mutations in BRAF (B-Raf proto-oncogene, serine/threonine kinase) gene and RAS family genes. In addition, a positive correlation between ZEB1-AS1 and ZEB1 (zinc finger E-box binding homeobox 1) gene expression was verified in primary and metastatic melanomas. Using gene expression signatures indicative of invasive or proliferative phenotypes, we found an association between ZEB1-AS1 upregulation and a transcriptional profile for invasiveness. Enrichment analysis of correlated genes demonstrated cancer genes and pathways associated with ZEB1-AS1. We suggest that the lncRNA ZEB1-AS1 could function by activating ZEB1 gene expression, thereby influencing invasiveness and phenotype switching in melanoma, an epithelial-to-mesenchymal transition (EMT)-like process, which the ZEB1 gene has an essential role.
Collapse
Affiliation(s)
- Ádamo Davi Diógenes Siena
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Jéssica Rodrigues Plaça
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil
| | - Luiza Ferreira Araújo
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil
| | - Isabela Ichihara de Barros
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Kamila Peronni
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Greice Molfetta
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Medical Genomics, HCFMRP/USP, Ribeirão Preto, Brazil
| | - Carlos Alberto Oliveira de Biagi
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Enilza Maria Espreafico
- Department of Cellular and Molecular Biology at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Josane Freitas Sousa
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil.,Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Wilson Araújo Silva
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil. .,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil. .,Center for Medical Genomics, HCFMRP/USP, Ribeirão Preto, Brazil.
| |
Collapse
|
3
|
Araujo LF, Siena ADD, Plaça JR, Brotto DB, Barros II, Muys BR, Biagi CAO, Peronni KC, Sousa JF, Molfetta GA, West LC, West AP, Leopoldino AM, Espreafico EM, Silva WA. Mitochondrial transcription factor A (TFAM) shapes metabolic and invasion gene signatures in melanoma. Sci Rep 2018; 8:14190. [PMID: 30242167 PMCID: PMC6155108 DOI: 10.1038/s41598-018-31170-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/27/2018] [Indexed: 12/27/2022] Open
Abstract
Mitochondria are central key players in cell metabolism, and mitochondrial DNA (mtDNA) instability has been linked to metabolic changes that contribute to tumorigenesis and to increased expression of pro-tumorigenic genes. Here, we use melanoma cell lines and metastatic melanoma tumors to evaluate the effect of mtDNA alterations and the expression of the mtDNA packaging factor, TFAM, on energetic metabolism and pro-tumorigenic nuclear gene expression changes. We report a positive correlation between mtDNA copy number, glucose consumption, and ATP production in melanoma cell lines. Gene expression analysis reveals a down-regulation of glycolytic enzymes in cell lines and an up-regulation of amino acid metabolism enzymes in melanoma tumors, suggesting that TFAM may shift melanoma fuel utilization from glycolysis towards amino acid metabolism, especially glutamine. Indeed, proliferation assays reveal that TFAM-down melanoma cell lines display a growth arrest in glutamine-free media, emphasizing that these cells rely more on glutamine metabolism than glycolysis. Finally, our data indicate that TFAM correlates to VEGF expression and may contribute to tumorigenesis by triggering a more invasive gene expression signature. Our findings contribute to the understanding of how TFAM affects melanoma cell metabolism, and they provide new insight into the mechanisms by which TFAM and mtDNA copy number influence melanoma tumorigenesis.
Collapse
Affiliation(s)
- L F Araujo
- Department of Genetics-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirão Preto, Brazil
- Medical Genomics Laboratory, CIPE, AC Camargo Cancer Center, São Paulo, Brazil
| | - A D D Siena
- Department of Genetics-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirão Preto, Brazil
| | - J R Plaça
- National institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirão Preto, Brazil
| | - D B Brotto
- Department of Genetics-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirão Preto, Brazil
| | - I I Barros
- Department of Genetics-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirão Preto, Brazil
| | - B R Muys
- Department of Genetics-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirão Preto, Brazil
| | - C A O Biagi
- Department of Genetics-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirão Preto, Brazil
| | - K C Peronni
- National institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirão Preto, Brazil
| | - J F Sousa
- Department of Genetics-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirão Preto, Brazil
| | - G A Molfetta
- Department of Genetics-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirão Preto, Brazil
| | - L C West
- Microbial Pathogenesis & Immunology, Health Science Center, Texas A&M University, College Station, USA
| | - A P West
- Microbial Pathogenesis & Immunology, Health Science Center, Texas A&M University, College Station, USA
| | - A M Leopoldino
- Department of Clinical Analysis-Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - E M Espreafico
- Department of Cellular and Molecular Biology-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - W A Silva
- Department of Genetics-Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
- National institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirão Preto, Brazil.
- Center for Integrative System Biology-CISBi-NAP/USP, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
4
|
Lee N, Barthel SR, Schatton T. Melanoma stem cells and metastasis: mimicking hematopoietic cell trafficking? J Transl Med 2014; 94:13-30. [PMID: 24126889 PMCID: PMC3941309 DOI: 10.1038/labinvest.2013.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. In addition, MMICs are enriched among circulating tumor cells in the peripheral blood of cancer patients, suggesting that MMICs may be a critical factor in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced disease.
Collapse
Affiliation(s)
- Nayoung Lee
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven R. Barthel
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Schatton
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Transplantation Research Center, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA,To whom correspondence should be addressed: Tobias Schatton, Pharm.D., Ph.D., Department of Dermatology, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115, USA;
| |
Collapse
|
5
|
Steder M, Alla V, Meier C, Spitschak A, Pahnke J, Fürst K, Kowtharapu BS, Engelmann D, Petigk J, Egberts F, Schäd-Trcka SG, Gross G, Nettelbeck DM, Niemetz A, Pützer BM. DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling. Cancer Cell 2013; 24:512-27. [PMID: 24135282 DOI: 10.1016/j.ccr.2013.08.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/14/2013] [Accepted: 08/24/2013] [Indexed: 12/29/2022]
Abstract
Dissemination of cancer cells from primary tumors is the key event in metastasis, but specific determinants are widely unknown. Here, we show that DNp73, an inhibitor of the p53 tumor suppressor family, drives migration and invasion of nonmetastatic melanoma cells. Knockdown of endogenous DNp73 reduces this behavior in highly metastatic cell lines. Tumor xenografts expressing DNp73 show a higher ability to invade and metastasize, while growth remains unaffected. DNp73 facilitates an EMT-like phenotype with loss of E-cadherin and Slug upregulation. We provide mechanistic insight toward regulation of LIMA1/EPLIN by p73/DNp73 and demonstrate a direct link between the DNp73-EPLIN axis and IGF1R-AKT/STAT3 activation. These findings establish initiation of the invasion-metastasis cascade via EPLIN-dependent IGF1R regulation as major activity of DNp73.
Collapse
Affiliation(s)
- Marc Steder
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Myosin-Va contributes to manifestation of malignant-related properties in melanoma cells. J Invest Dermatol 2013; 133:2809-2812. [PMID: 23652798 PMCID: PMC3806899 DOI: 10.1038/jid.2013.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Lussier YA, Khodarev NN, Regan K, Corbin K, Li H, Ganai S, Khan SA, Gnerlich J, Darga TE, Fan H, Karpenko O, Paty PB, Posner MC, Chmura SJ, Hellman S, Ferguson MK, Weichselbaum RR. Oligo- and polymetastatic progression in lung metastasis(es) patients is associated with specific microRNAs. PLoS One 2012; 7:e50141. [PMID: 23251360 PMCID: PMC3518475 DOI: 10.1371/journal.pone.0050141] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/17/2012] [Indexed: 01/06/2023] Open
Abstract
RATIONALE Strategies to stage and treat cancer rely on a presumption of either localized or widespread metastatic disease. An intermediate state of metastasis termed oligometastasis(es) characterized by limited progression has been proposed. Oligometastases are amenable to treatment by surgical resection or radiotherapy. METHODS We analyzed microRNA expression patterns from lung metastasis samples of patients with ≤ 5 initial metastases resected with curative intent. RESULTS Patients were stratified into subgroups based on their rate of metastatic progression. We prioritized microRNAs between patients with the highest and lowest rates of recurrence. We designated these as high rate of progression (HRP) and low rate of progression (LRP); the latter group included patients with no recurrences. The prioritized microRNAs distinguished HRP from LRP and were associated with rate of metastatic progression and survival in an independent validation dataset. CONCLUSION Oligo- and poly- metastasis are distinct entities at the clinical and molecular level.
Collapse
Affiliation(s)
- Yves A. Lussier
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
- Center for Biomedical Informatics, Dept. of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Interventional Health Informatics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Cancer Center, University of Illinois, Chicago, Illinois, United States of America
- * E-mail: (YAL); (RRW)
| | - Nikolai N. Khodarev
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, United States of America
- Dept. of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Kelly Regan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Kimberly Corbin
- Dept. of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Haiquan Li
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sabha Ganai
- Department of Surgery, The University of Chicago, Chicago, Illinois, United States of America
| | - Sajid A. Khan
- Department of Surgery, The University of Chicago, Chicago, Illinois, United States of America
| | - Jennifer Gnerlich
- Department of Surgery, The University of Chicago, Chicago, Illinois, United States of America
| | - Thomas E. Darga
- Department of Surgery, The University of Chicago, Chicago, Illinois, United States of America
| | - Hanli Fan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Oleksiy Karpenko
- Center for Interventional Health Informatics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Philip B. Paty
- Dept. of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Mitchell C. Posner
- Department of Surgery, The University of Chicago, Chicago, Illinois, United States of America
| | - Steven J. Chmura
- Dept. of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Samuel Hellman
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, United States of America
- Dept. of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Mark K. Ferguson
- Department of Surgery, The University of Chicago, Chicago, Illinois, United States of America
| | - Ralph R. Weichselbaum
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, United States of America
- Dept. of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (YAL); (RRW)
| |
Collapse
|
8
|
Profiling of ABC transporters ABCB5, ABCF2 and nestin-positive stem cells in nevi, in situ and invasive melanoma. Mod Pathol 2012; 25:1169-75. [PMID: 22555176 DOI: 10.1038/modpathol.2012.71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Distinct ABCB5 forms and ABCF2, members of the ATP-binding cassette (ABC) superfamily of transporters, are normally expressed in various tissues and cells, and enhanced expression of both has been demonstrated in select cancers. In melanoma cell lines, gene expression profiling of ABC transporters has revealed enhanced expression of melanocyte-specific ABCB5 and ABCF2 proteins. Given this, our primary aim was to ascertain immunohistochemical expression of the ABC transporters ABCB5 and ABCF2 and, the stem cell marker, nestin in a spectrum of benign and malignant nevomelanocytic proliferations, including nevi (n=30), in situ (n=31) and invasive (n=24) primary cutaneous melanomas to assess their role in the stepwise development of malignancy. In addition, their expression was compared with established melanoma prognosticators to ascertain their utility as independent prognosticators. A semiquantitative scoring system was utilized by deriving a cumulative score (based on percentage positivity cells and intensity of expression) and statistical analyses was carried out using analysis of variance with linear contrasts. Mean cumulative score in nevi, in situ and invasive melanoma were as follows: 3.8, 4.4 and 5.3 for ABCB5, respectively (P<0.005 for all), and 4.6, 4.6 and 5.3 for nestin, respectively (P=not significant for all). No appreciable expression of ABCF2 was noted in any of the groups. While ulcerated lesions of melanoma demonstrated lower levels of expression of ABCB5 and nestin than non-ulcerated lesions, and nestin expression was lower in lesions with mitoses >1, after controlling for the presence of ulceration and mitotic activity, the expression of both proteins did not significantly correlate with known melanoma prognosticators. The gradual increase in the expression of ABCB5 from benign nevus to in situ to invasive melanoma suggests that it plays a role in melanomagenesis. On the basis of our findings, a prospective study with follow-up data is required to ascertain the utility of ABCB5 as a therapeutic target.
Collapse
|
9
|
Abstract
CONTEXT Melanoma growing as a tumorigenic nodule is one of the most virulent neoplasms to which the flesh is heir. At a considerably small tumor size, it incurs significant risk for widespread metastatic dissemination. There are no effective means of surgical intervention, chemical therapy, or immunologic therapy for advanced and metastatic melanoma. OBJECTIVE To review the literature and highlight recent cardinal advances in the understanding of melanoma vertical growth, with specific emphasis on how its recognition and characterization may be applied to diagnostic practice and development of novel investigative approaches. DATA SOURCES Literature review, archival material, personal experience, and research collaborators. CONCLUSIONS The study of tumorigenic melanoma, both in primary lesions and in metastases, is the key to the eventual eradication of this highly virulent neoplasm that may disseminate widely when only occupying the volume of a grain of rice. Morphology often provides the first insight into structure and function. A growing database using meticulous and inclusive criteria to define tumor stem cells in the context of clinically relevant models now indicates that the key to melanoma heterogeneity may reside in a small subpopulation with the ability to self-renew and form tumors despite most cells present being significantly less virulent. Hopefully, from these insights into melanoma tumor progression from radial growth phase to heterogeneous and tumorigenic vertical growth phase will come additional answers to how smart therapies may be developed that specifically target those vertical growth phase cells that most pertain to patient survival.
Collapse
Affiliation(s)
- Alvaro C Laga
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
10
|
Frank NY, Schatton T, Kim S, Zhan Q, Wilson BJ, Ma J, Saab KR, Osherov V, Widlund HR, Gasser M, Waaga-Gasser AM, Kupper TS, Murphy GF, Frank MH. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res 2011; 71:1474-85. [PMID: 21212411 DOI: 10.1158/0008-5472.can-10-1660] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Melanoma growth is driven by malignant melanoma-initiating cells (MMIC) identified by expression of the ATP-binding cassette (ABC) member ABCB5. ABCB5(+) melanoma subpopulations have been shown to overexpress the vasculogenic differentiation markers CD144 (VE-cadherin) and TIE1 and are associated with CD31(-) vasculogenic mimicry (VM), an established biomarker associated with increased patient mortality. Here we identify a critical role for VEGFR-1 signaling in ABCB5(+) MMIC-dependent VM and tumor growth. Global gene expression analyses, validated by mRNA and protein determinations, revealed preferential expression of VEGFR-1 on ABCB5(+) tumor cells purified from clinical melanomas and established melanoma lines. In vitro, VEGF induced the expression of CD144 in ABCB5(+) subpopulations that constitutively expressed VEGFR-1 but not in ABCB5(-) bulk populations that were predominantly VEGFR-1(-). In vivo, melanoma-specific shRNA-mediated knockdown of VEGFR-1 blocked the development of ABCB5(+) VM morphology and inhibited ABCB5(+) VM-associated production of the secreted melanoma mitogen laminin. Moreover, melanoma-specific VEGFR-1 knockdown markedly inhibited tumor growth (by > 90%). Our results show that VEGFR-1 function in MMIC regulates VM and associated laminin production and show that this function represents one mechanism through which MMICs promote tumor growth.
Collapse
Affiliation(s)
- Natasha Y Frank
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Valledor L, Jorrín JV, Rodríguez JL, Lenz C, Meijón M, Rodríguez R, Cañal MJ. Combined proteomic and transcriptomic analysis identifies differentially expressed pathways associated to Pinus radiata needle maturation. J Proteome Res 2010; 9:3954-79. [PMID: 20509709 DOI: 10.1021/pr1001669] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Needle differentiation is a very complex process that leads to the formation of a mature photosynthetic organ from pluripotent needle primordia. The proteome and transcriptome of immature and fully developed needles of Pinus radiata D. Don were compared to described changes in mRNA and protein species that characterize the needle maturation developmental process. A total of 856 protein spots were analyzed, defining a total of 280 spots as differential between developmental stages, from which 127 were confidently identified. A suppressive subtractive library (2048 clones, 274 non redundant contigs) was built, and 176 genes showed to be differentially expressed. The Joint data analysis of proteomic and transcriptomic results provided a broad overview of differentially expressed pathways associated with needle maturation and stress-related pathways. Proteins and genes related to energy metabolism pathways, photosynthesis, and oxidative phosphorylation were overexpressed in mature needles. Amino acid metabolism, transcription, and translation pathways were overexpressed in immature needles. Interestingly, stress related proteins were characteristic of immature tissues, a fact that may be linked to defense mechanisms and the higher growth rate and morphogenetic competence exhibited by these needles. Thus, this work provides an overview of the molecular changes affecting proteomes and transcriptomes during P. radiata needle maturation, having an integrative vision of the functioning and physiology of this process.
Collapse
Affiliation(s)
- Luis Valledor
- EPIPHYSAGE Research Group, Area de Fisiología Vegetal, Departamento B.O.S., Instituto Universitario de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | | | | | |
Collapse
|
12
|
Sousa JF, Torrieri R, Silva RR, Pereira CG, Valente V, Torrieri E, Peronni KC, Martins W, Muto N, Francisco G, Brohem CA, Carlotti CG, Maria-Engler SS, Chammas R, Espreafico EM. Novel primate-specific genes, RMEL 1, 2 and 3, with highly restricted expression in melanoma, assessed by new data mining tool. PLoS One 2010; 5:e13510. [PMID: 20975957 PMCID: PMC2958148 DOI: 10.1371/journal.pone.0013510] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 09/15/2010] [Indexed: 01/07/2023] Open
Abstract
Melanoma is a highly aggressive and therapy resistant tumor for which the identification of specific markers and therapeutic targets is highly desirable. We describe here the development and use of a bioinformatic pipeline tool, made publicly available under the name of EST2TSE, for the in silico detection of candidate genes with tissue-specific expression. Using this tool we mined the human EST (Expressed Sequence Tag) database for sequences derived exclusively from melanoma. We found 29 UniGene clusters of multiple ESTs with the potential to predict novel genes with melanoma-specific expression. Using a diverse panel of human tissues and cell lines, we validated the expression of a subset of three previously uncharacterized genes (clusters Hs.295012, Hs.518391, and Hs.559350) to be highly restricted to melanoma/melanocytes and named them RMEL1, 2 and 3, respectively. Expression analysis in nevi, primary melanomas, and metastatic melanomas revealed RMEL1 as a novel melanocytic lineage-specific gene up-regulated during melanoma development. RMEL2 expression was restricted to melanoma tissues and glioblastoma. RMEL3 showed strong up-regulation in nevi and was lost in metastatic tumors. Interestingly, we found correlations of RMEL2 and RMEL3 expression with improved patient outcome, suggesting tumor and/or metastasis suppressor functions for these genes. The three genes are composed of multiple exons and map to 2q12.2, 1q25.3, and 5q11.2, respectively. They are well conserved throughout primates, but not other genomes, and were predicted as having no coding potential, although primate-conserved and human-specific short ORFs could be found. Hairpin RNA secondary structures were also predicted. Concluding, this work offers new melanoma-specific genes for future validation as prognostic markers or as targets for the development of therapeutic strategies to treat melanoma.
Collapse
Affiliation(s)
- Josane F. Sousa
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raul Torrieri
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo R. Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristiano G. Pereira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Valeria Valente
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Erico Torrieri
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kamila C. Peronni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Waleska Martins
- Clinical Staff, Molecular Biology Group, Pathology Division, AC Camargo Hospital Melanoma Group, São Paulo, São Paulo, Brazil
| | - Nair Muto
- Clinical Staff, Molecular Biology Group, Pathology Division, AC Camargo Hospital Melanoma Group, São Paulo, São Paulo, Brazil
| | - Guilherme Francisco
- Departamento de Radiologia e Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Carla Abdo Brohem
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Carlos G. Carlotti
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Silvya S. Maria-Engler
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Roger Chammas
- Departamento de Radiologia e Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Enilza M. Espreafico
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
13
|
Peyre M, Commo F, Dantas-Barbosa C, Andreiuolo F, Puget S, Lacroix L, Drusch F, Scott V, Varlet P, Mauguen A, Dessen P, Lazar V, Vassal G, Grill J. Portrait of ependymoma recurrence in children: biomarkers of tumor progression identified by dual-color microarray-based gene expression analysis. PLoS One 2010; 5:e12932. [PMID: 20885975 PMCID: PMC2945762 DOI: 10.1371/journal.pone.0012932] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 07/14/2010] [Indexed: 01/06/2023] Open
Abstract
Background Children with ependymoma may experience a relapse in up to 50% of cases depending on the extent of resection. Key biological events associated with recurrence are unknown. Methodology/Principal Findings To discover the biology behind the recurrence of ependymomas, we performed CGHarray and a dual-color gene expression microarray analysis of 17 tumors at diagnosis co-hybridized with the corresponding 27 first or subsequent relapses from the same patient. As treatment and location had only limited influence on specific gene expression changes at relapse, we established a common signature for relapse. Eighty-seven genes showed an absolute fold change ≥2 in at least 50% of relapses and were defined as the gene expression signature of ependymoma recurrence. The most frequently upregulated genes are involved in the kinetochore (ASPM, KIF11) or in neural development (CD133, Wnt and Notch pathways). Metallothionein (MT) genes were downregulated in up to 80% of the recurrences. Quantitative PCR for ASPM, KIF11 and MT3 plus immunohistochemistry for ASPM and MT3 confirmed the microarray results. Immunohistochemistry on an independent series of 24 tumor pairs at diagnosis and at relapse confirmed the decrease of MT3 expression at recurrence in 17/24 tumor pairs (p = 0.002). Conversely, ASPM expression was more frequently positive at relapse (87.5% vs 37.5%, p = 0.03). Loss or deletion of the MT genes cluster was never observed at relapse. Promoter sequencing after bisulfite treatment of DNA from primary tumors and recurrences as well as treatment of short-term ependymoma cells cultures with a demethylating agent showed that methylation was not involved in MT3 downregulation. However, in vitro treatment with a histone deacetylase inhibitor or zinc restored MT3 expression. Conclusions/Significance The most frequent molecular events associated with ependymoma recurrence were over-expression of kinetochore proteins and down-regulation of metallothioneins. Metallothionein-3 expression is epigenetically controlled and can be restored in vitro by histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Matthieu Peyre
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
| | - Frédéric Commo
- CNRS FRE 2939, Bioinformatics Group, Gustave Roussy Institute, Villejuif, France
| | - Carmela Dantas-Barbosa
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
| | - Felipe Andreiuolo
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
- Translational Research Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Stéphanie Puget
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
- Department of Neurosurgery, Necker Sick Children's Hospital, Université Paris V Descartes, Paris, France
| | - Ludovic Lacroix
- Translational Research Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Françoise Drusch
- Translational Research Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Véronique Scott
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital, Paris, France
| | - Audrey Mauguen
- Department of Biostatistics, Gustave Roussy Institute, Villejuif, France
| | - Philippe Dessen
- CNRS FRE 2939, Bioinformatics Group, Gustave Roussy Institute, Villejuif, France
| | - Vladimir Lazar
- Functional Genomics Unit, Gustave Roussy Institute, Villejuif, France
| | - Gilles Vassal
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, Villejuif, France
| | - Jacques Grill
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, Villejuif, France
- * E-mail:
| |
Collapse
|
14
|
Zhao ZH, Liu YQ, Zhang L, Li SL, Gao DL, Chen KS. Significance of RhoC mRNA expression in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:1885-1889. [DOI: 10.11569/wcjd.v18.i18.1885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of RhoC mRNA in esophageal squamous cell carcinoma (ESCC) and to explore its correlation with the development and progression of ESCC.
METHODS: Semi-quantitative RT-PCR was used to detect the relative expression levels of RhoC mRNA in 62 ESCC specimens, 31 tumor-adjacent atypical hyperplastic epithelial specimens and 62 normal esophageal epithelial specimens. The distribution of RhoC transcripts in ESCC was determined by in situ hybridization.
RESULTS: The mRNA expression of RhoC was closely correlated with tumor grade, infiltration and lymph node metastasis in ESCC (all P < 0.05). The expression intensity of RhoC mRNA in carcinoma, adjacent atypical hyperplasia epithelium and normal esophageal epithelium were 0.902 ± 0.119, 0. 731 ± 0.065 and 0.653 ± 0.069, respectively, with a significant difference among the three groups (P < 0.01). In situ hybridization analysis demonstrated that RhoC transcripts were detected in the cytoplasm of cells. The positive rates of RhoC mRNA expression in carcinoma, tumor-adjacent atypical hyperplasia epithelium and normal esophageal epithelium were 80.6% (50/62), 32.3% (10/31) and 21.0% (13/62), respectively, with a significant difference among the three groups (P < 0.01). RT-PCR results were consistent with those obtained by in situ hybridization.
CONCLUSION: The mRNA expression of RhoC in ESCC increases significantly and is closely correlated with tumor biological behavior, which suggests that RhoC overexpression is closed associated with the pathogenesis of ESCC. RhoC may be a new auxiliary parameter for early diagnosis and prognostic prediction for ESCC.
Collapse
|
15
|
Bedin V, Adam RL, de Sá BC, Landman G, Metze K. Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma. BMC Cancer 2010; 10:260. [PMID: 20525386 PMCID: PMC2902442 DOI: 10.1186/1471-2407-10-260] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/05/2010] [Indexed: 12/21/2022] Open
Abstract
Background Prognostic factors in malignant melanoma are currently based on clinical data and morphologic examination. Other prognostic features, however, which are not yet used in daily practice, might add important information and thus improve prognosis, treatment, and survival. Therefore a search for new markers is desirable. Previous studies have demonstrated that fractal characteristics of nuclear chromatin are of prognostic importance in neoplasias. We have therefore investigated whether the fractal dimension of nuclear chromatin measured in routine histological preparations of malignant melanomas could be a prognostic factor for survival. Methods We examined 71 primary superficial spreading cutaneous melanoma specimens (thickness ≥ 1 mm) from patients with a minimum follow up of 5 years. Nuclear area, form factor and fractal dimension of chromatin texture were obtained from digitalized images of hematoxylin-eosin stained tissue micro array sections. Clark's level, tumor thickness and mitotic rate were also determined. Results The median follow-up was 104 months. Tumor thickness, Clark's level, mitotic rate, nuclear area and fractal dimension were significant risk factors in univariate Cox regressions. In the multivariate Cox regression, stratified for the presence or absence of metastases at diagnosis, only the Clark level and fractal dimension of the nuclear chromatin were included as independent prognostic factors in the final regression model. Conclusion In general, a more aggressive behaviour is usually found in genetically unstable neoplasias with a higher number of genetic or epigenetic changes, which on the other hand, provoke a more complex chromatin rearrangement. The increased nuclear fractal dimension found in the more aggressive melanomas is the mathematical equivalent of a higher complexity of the chromatin architecture. So, there is strong evidence that the fractal dimension of the nuclear chromatin texture is a new and promising variable in prognostic models of malignant melanomas.
Collapse
Affiliation(s)
- Valcinir Bedin
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
16
|
Ma J, Frank MH. Tumor initiation in human malignant melanoma and potential cancer therapies. Anticancer Agents Med Chem 2010; 10:131-6. [PMID: 20184545 PMCID: PMC2885608 DOI: 10.2174/187152010790909254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 12/29/2010] [Indexed: 11/22/2022]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment.
Collapse
Affiliation(s)
- Jie Ma
- Transplantation Research Center, Children’s Hospital Boston and Brigham & Women’s Hospital, Harvard Medical School, Boston, MA. 02115, USA
| | - Markus H. Frank
- Transplantation Research Center, Children’s Hospital Boston and Brigham & Women’s Hospital, Harvard Medical School, Boston, MA. 02115, USA
| |
Collapse
|
17
|
Disulfiram induces copper-dependent stimulation of reactive oxygen species and activation of the extrinsic apoptotic pathway in melanoma. Melanoma Res 2010; 20:11-20. [DOI: 10.1097/cmr.0b013e328334131d] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest 2010; 120:41-50. [PMID: 20051635 DOI: 10.1172/jci41004] [Citation(s) in RCA: 495] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of tumor cells that selectively possess tumor initiation and self-renewal capacity and the ability to give rise to bulk populations of nontumorigenic cancer cell progeny through differentiation. As we discuss here, they have been prospectively identified in several human malignancies, and their relative abundance in clinical cancer specimens has been correlated with malignant disease progression in human patients. Furthermore, recent findings suggest that clinical cancer progression driven by CSCs may contribute to the failure of existing therapies to consistently eradicate malignant tumors. Therefore, CSC-directed therapeutic approaches might represent translationally relevant strategies to improve clinical cancer therapy, in particular for those malignancies that are currently refractory to conventional anticancer agents directed predominantly at tumor bulk populations.
Collapse
Affiliation(s)
- Natasha Y Frank
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
19
|
Schatton T, Schütte U, Frank NY, Zhan Q, Hoerning A, Robles SC, Zhou J, Hodi FS, Spagnoli GC, Murphy GF, Frank MH. Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res 2010; 70:697-708. [PMID: 20068175 DOI: 10.1158/0008-5472.can-09-1592] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly immunogenic cancers such as malignant melanoma are capable of inexorable tumor growth despite the presence of antitumor immunity. Thus, only a restricted minority of tumorigenic malignant cells may possess the phenotypic and functional characteristics needed to modulate tumor-directed immune activation. Here we provide evidence supporting this hypothesis. Tumorigenic ABCB5(+) malignant melanoma initiating cells (MMICs) possessed the capacity to preferentially inhibit IL-2-dependent T-cell activation and to support, in a B7.2-dependent manner, induction of CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs). Compared with melanoma bulk cell populations, ABCB5(+) MMICs displayed lower levels of MHC class I, aberrant positivity for MHC class II, and lower expression levels of the melanoma-associated antigens MART-1, ML-IAP, NY-ESO-1, and MAGE-A. Additionally, these tumorigenic ABCB5(+) subpopulations preferentially expressed the costimulatory molecules B7.2 and PD-1, both in established melanoma xenografts and in clinical tumor specimens. In immune activation assays, MMICs inhibited mitogen-dependent human peripheral blood mononuclear cell (PBMC) proliferation and IL-2 production more efficiently than ABCB5(-) melanoma cell populations. Moreover, coculture with ABCB5(+) MMICs increased the abundance of Tregs, in a B7.2 signaling-dependent manner, along with IL-10 production by mitogen-activated PBMCs. Consistent with these findings, MMICs also preferentially inhibited IL-2 production and induced IL-10 secretion by cocultured patient-derived, syngeneic PBMCs. Our findings identify novel T-cell modulatory functions of ABCB5(+) melanoma subpopulations and suggest specific roles for these MMICs in the evasion of antitumor immunity and in cancer immunotherapeutic resistance.
Collapse
Affiliation(s)
- Tobias Schatton
- Transplantation Research Center, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5(+) MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy.
Collapse
Affiliation(s)
- Tobias Schatton
- Transplantation Research Center, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|