1
|
Das AP, Chaudhary N, Tyagi S, Agarwal SM. Meta-Analysis of 49 SNPs Covering 25,446 Cases and 41,106 Controls Identifies Polymorphisms in Hormone Regulation and DNA Repair Genes Associated with Increased Endometrial Cancer Risk. Genes (Basel) 2023; 14:genes14030741. [PMID: 36981012 PMCID: PMC10048726 DOI: 10.3390/genes14030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/19/2022] [Accepted: 02/24/2023] [Indexed: 03/22/2023] Open
Abstract
Endometrial cancer (EC) is among the most common gynecological disorders globally. As single nucleotide polymorphisms (SNPs) play an important role in the causation of EC, therefore, a comprehensive meta-analysis of 49 SNPs covering 25,446 cases and 41,106 controls was performed to identify SNPs significantly associated with increased EC risk. PubMed was searched to identify case control studies and meta-analysis was performed to compute the pooled odds ratio (OR) at 95% confidence interval (CI). Cochran’s Q-test and I2 were used to study heterogeneity, based on which either a random or a fixed effect model was implemented. The meta-analysis identified 11 SNPs (from 10 genes) to be significantly associated with increased EC risk. Among these, seven SNPs were significant in at least three of the five genetic models, as well as three of the polymorphisms (rs1801320, rs11224561, and rs2279744) corresponding to RAD51, PGR, and MDM2 genes, which contained more than 1000 EC cases each and exhibited increased risk. The current meta-analysis indicates that polymorphisms associated with various hormone related genes—SULT1A1 (rs1042028), PGR (rs11224561), and CYP19A1 (rs10046 and rs4775936); DNA repair genes—ERCC2 (rs1799793), OGG1 (rs1052133), MLH1 (rs1800734), and RAD51 (rs1801320) as well as genes like MDM2 (rs2279744), CCND1 (rs9344), and SERPINE1 (rs1799889), are significantly associated with increased EC risk.
Collapse
Affiliation(s)
- Agneesh Pratim Das
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida 201301, India
| | - Nisha Chaudhary
- Multanimal Modi College, Chaudhary Charan Singh University, Modinagar 201204, India
| | - Shrishty Tyagi
- Multanimal Modi College, Chaudhary Charan Singh University, Modinagar 201204, India
| | - Subhash M. Agarwal
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida 201301, India
- Correspondence:
| |
Collapse
|
2
|
Singh AK, Talseth-Palmer B, McPhillips M, Lavik LAS, Xavier A, Drabløs F, Sjursen W. Targeted sequencing of genes associated with the mismatch repair pathway in patients with endometrial cancer. PLoS One 2020; 15:e0235613. [PMID: 32634176 PMCID: PMC7340288 DOI: 10.1371/journal.pone.0235613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/19/2020] [Indexed: 01/28/2023] Open
Abstract
Germline variants inactivating the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause Lynch syndrome that implies an increased cancer risk, where colon and endometrial cancer are the most frequent. Identification of these pathogenic variants is important to identify endometrial cancer patients with inherited increased risk of new cancers, in order to offer them lifesaving surveillance. However, several other genes are also part of the MMR pathway. It is therefore relevant to search for variants in additional genes that may be associated with cancer risk by including all known genes involved in the MMR pathway. Next-generation sequencing was used to screen 22 genes involved in the MMR pathway in constitutional DNA extracted from full blood from 199 unselected endometrial cancer patients. Bioinformatic pipelines were developed for identification and functional annotation of variants, using several different software tools and custom programs. This facilitated identification of 22 exonic, 4 UTR and 9 intronic variants that could be classified according to pathogenicity. This study has identified several germline variants in genes of the MMR pathway that potentially may be associated with an increased risk for cancer, in particular endometrial cancer, and therefore are relevant for further investigation. We have also developed bioinformatics strategies to analyse targeted sequencing data, including low quality data and genomic regions outside of the protein coding exons of the relevant genes.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| | - Bente Talseth-Palmer
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Department of Research and Development, Møre og Romsdal Hospital Trust, Molde, Norway
| | - Mary McPhillips
- NSW Health Pathology, Molecular Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | | | - Alexandre Xavier
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche Sjursen
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
A novel polymorphic repeat in the upstream regulatory region of the estrogen-induced gene EIG121 is not associated with the risk of developing breast or endometrial cancer. BMC Res Notes 2016; 9:287. [PMID: 27230222 PMCID: PMC4882813 DOI: 10.1186/s13104-016-2086-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The estrogen-induced gene 121 (EIG121) has been associated with breast and endometrial cancers, but its mechanism of action remains unknown. In a genome-wide search for tandem repeats, we found that EIG121 contains a short tandem repeat (STR) in its upstream regulatory region which has the potential to alter gene expression. The presence of this STR has not previously been analysed in relation to breast or endometrial cancer risk. RESULTS In this study, the lengths of this STR were determined by PCR, fragment analysis and sequencing using DNA from 223 breast cancer patients, 204 endometrial cancer patients and 220 healthy controls to determine if they were associated with the risk of developing breast or endometrial cancer. We found this repeat to be highly variable with the number of copies of the AG motif ranging from 27 to 72 and having a bimodal distribution. No statistically significant association was identified between the length of this STR and the risk of developing breast or endometrial cancer or age at diagnosis. CONCLUSIONS The STR in the upstream regulatory region of EIG121 is highly polymorphic, but is not associated with the risk of developing breast or endometrial cancer in the cohorts analysed here. While this polymorphic STR in the regulatory region of EIG121 appears to have no impact on the risk of developing breast or endometrial cancer, its association with disease recurrence or overall survival remains to be determined.
Collapse
|
4
|
Bolton KA, Avery-Kiejda KA, Holliday EG, Attia J, Bowden NA, Scott RJ. A polymorphic repeat in the IGF1 promoter influences the risk of endometrial cancer. Endocr Connect 2016; 5:115-22. [PMID: 27090263 PMCID: PMC5002956 DOI: 10.1530/ec-16-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/22/2023]
Abstract
Due to the lack of high-throughput genetic assays for tandem repeats, there is a paucity of knowledge about the role they may play in disease. A polymorphic CA repeat in the promoter region of the insulin-like growth factor 1 gene (IGF1 has been studied extensively over the past 10 years for association with the risk of developing breast cancer, among other cancers, with variable results. The aim of this study was to determine if this CA repeat is associated with the risk of developing breast cancer and endometrial cancer. Using a case-control design, we analysed the length of this CA repeat in a series of breast cancer and endometrial cancer cases and compared this with a control population. Our results showed an association when both alleles were considered in breast and endometrial cancers (P=0.029 and 0.011, respectively), but this did not pass our corrected threshold for significance due to multiple testing. When the allele lengths were analysed categorically against the most common allele length of 19 CA repeats, an association was observed with the risk of endometrial cancer due to a reduction in the number of long alleles (P=0.013). This was confirmed in an analysis of the long alleles separately for endometrial cancer risk (P=0.0012). Our study found no association between the length of this polymorphic CA repeat and breast cancer risk. The significant association observed between the CA repeat length and the risk of developing endometrial cancer has not been previously reported.
Collapse
Affiliation(s)
- Katherine A Bolton
- Centre for BioinformaticsBiomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia Priority Research Centre for CancerSchool of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kelly A Avery-Kiejda
- Centre for BioinformaticsBiomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia Priority Research Centre for CancerSchool of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Elizabeth G Holliday
- Centre for Clinical Epidemiology and BiostatisticsSchool of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia Clinical Research DesignIT and Statistical Support Unit, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - John Attia
- Centre for Clinical Epidemiology and BiostatisticsSchool of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia Clinical Research DesignIT and Statistical Support Unit, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Nikola A Bowden
- Centre for BioinformaticsBiomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia Priority Research Centre for CancerSchool of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Rodney J Scott
- Centre for BioinformaticsBiomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia Priority Research Centre for CancerSchool of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia Molecular MedicinePathology North, John Hunter Hospital, Newcastle, New South Wales, Australia Discipline of Medical GeneticsSchool of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, University Drive, Newcastle, New South Wales, Australia
| |
Collapse
|
5
|
No Association Between p21 Gene rs1059234 Polymorphisms and Risk of Endometrial Cancer Among Han Women in Northeast China. Cell Biochem Biophys 2014; 71:167-71. [DOI: 10.1007/s12013-014-0180-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Bonilla C, Lefèvre JH, Winney B, Johnstone E, Tonks S, Colas C, Day T, Hutnik K, Boumertit A, Midgley R, Kerr D, Parc Y, Bodmer WF. Cyclin D1 rare variants in UK multiple adenoma and early-onset colorectal cancer patients. J Hum Genet 2010; 56:58-63. [PMID: 21107342 DOI: 10.1038/jhg.2010.144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We examined the influence that rare variants and low-frequency polymorphisms in the cancer candidate gene CCND1 have on the development of multiple intestinal adenomas and the early onset of colorectal cancer. Individuals with <100 multiple polyps and patients with colorectal cancer diagnosed before 50 years of age were recruited in UK, and screened for sequence changes in the coding and regulatory regions of CCND1. A set of about 800 UK control individuals was genotyped for the variants discovered in the cases. Variants in the promoter, intron-exon boundaries and untranslated regions of the CCND1 gene had higher frequencies in cases than in controls. Five of these variants were typed in a set of French multiple adenoma and early-onset patients, who also showed higher allele frequencies than UK controls. When pooled together, variants with frequencies lower than 1% conferred an increased risk of disease that was significant in the multiple adenoma group (odds ratio (OR) 2.2; 95% confidence interval, 1.1-4.4; P = 0.03). Most variants had a putative functional effect when assessed in silico. We conclude that rare variants of CCND1 are risk factors for colorectal cancer, with considerably larger effects than common polymorphisms, and as such should be systematically evaluated in susceptibility studies.
Collapse
Affiliation(s)
- Carolina Bonilla
- Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ashton KA, Proietto A, Otton G, Symonds I, McEvoy M, Attia J, Scott RJ. Toll-like receptor (TLR) and nucleosome-binding oligomerization domain (NOD) gene polymorphisms and endometrial cancer risk. BMC Cancer 2010; 10:382. [PMID: 20646321 PMCID: PMC2918576 DOI: 10.1186/1471-2407-10-382] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 07/21/2010] [Indexed: 02/06/2023] Open
Abstract
Background Endometrial cancer is the most common gynaecological malignancy in women of developed countries. Many risk factors implicated in endometrial cancer trigger inflammatory events; therefore, alterations in immune response may predispose an individual to disease. Toll-like receptors (TLRs) and nucleosome-binding oligomerization domain (NOD) genes are integral to the recognition of pathogens and are highly polymorphic. For these reasons, the aim of the study was to assess the frequency of polymorphic variants in TLR and NOD genes in an Australian endometrial cancer population. Methods Ten polymorphisms were genotyped in 191 endometrial cancer cases and 291 controls using real-time PCR: NOD1 (rs2075822, rs2907749, rs2907748), NOD2 (rs5743260, rs2066844, rs2066845), TLR2 (rs5743708), TLR4 (rs4986790) and TLR9 (rs5743836, rs187084). Results Haplotype analysis revealed that the combination of the variant alleles of the two TLR9 polymorphisms, rs5743836 and rs187084, were protective for endometrial cancer risk: OR 0.11, 95% CI (0.03-0.44), p = 0.002. This result remained highly significant after adjustment for endometrial cancer risk factors and Bonferroni correction for multiple testing. There were no other associations observed for the other polymorphisms in TLR2, TLR4, NOD1 and NOD2. Conclusions The variant 'C' allele of rs5743836 causes greater TLR9 transcriptional activity compared to the 'T' allele, therefore, higher TLR9 activity may be related to efficient removal of microbial pathogens within the endometrium. Clearly, the association of these TLR9 polymorphisms and endometrial cancer risk must be further examined in an independent population. The results point towards the importance of examining immune response in endometrial tumourigenesis to understand new pathways that may be implicated in disease.
Collapse
Affiliation(s)
- Katie A Ashton
- Discipline of Medical Genetics, School of Biomedical Sciences, Faculty of Health, University of Newcastle, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Polymorphisms in genes of the steroid hormone biosynthesis and metabolism pathways and endometrial cancer risk. Cancer Epidemiol 2010; 34:328-37. [PMID: 20381444 DOI: 10.1016/j.canep.2010.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The incidence of endometrial cancer has recently increased substantially and studies have shown that altered levels of exogenous and endogenous hormones are associated with individual variation in endometrial cancer risk. The environmental and reproductive risk factors that influence these hormones are well known, however, genetic variants involved in hormone biosynthesis and estrogen metabolism have not been well established in endometrial cancer. METHODS To determine whether polymorphisms in genes of the steroid hormone biosynthesis and metabolism pathways are associated with endometrial cancer risk, 28 polymorphisms in 18 genes were genotyped in 191 endometrial cancer cases and 291 healthy controls. RESULTS The GSTM1 deletion and the variant (GG) genotype of the CYP1B1 rs1800440 polymorphism were associated with a decreased risk of developing endometrial cancer. Furthermore, combinations of haplotypes in CYP1A1, CYP1B1 and GSTs were associated with a decreased risk. The analysis of the repeat polymorphisms revealed that women with the long repeat allele length of the ESR1 (GT)n repeat polymorphism were at an increased risk of developing endometrial cancer. Conversely, women with two long repeat length alleles of the (CAG)n repeat polymorphism in the AR correlated with a decrease in endometrial cancer risk compared to women with one or two alleles with the short repeat length. CONCLUSIONS The findings are consistent with our hypothesis that variability in genes involved in steroidogenesis and estrogen metabolism may alter the risk of developing endometrial cancer, suggesting that they may be useful as biomarkers for genetic susceptibility to endometrial cancer.
Collapse
|
9
|
McEvoy M, Smith W, D'Este C, Duke J, Peel R, Schofield P, Scott R, Byles J, Henry D, Ewald B, Hancock S, Smith D, Attia J. Cohort profile: The Hunter Community Study. Int J Epidemiol 2010; 39:1452-63. [PMID: 20056765 DOI: 10.1093/ije/dyp343] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mark McEvoy
- Centre for Clinical Epidemiology & Biostatistics, School of Medicine & Public Health, The University of Newcastle, Newcastle, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|