1
|
Anwar M, Malhotra P, Kochhar R, Bhatia A, Mahmood A, Singh R, Mahmood S. TCF 4 tumor suppressor: a molecular target in the prognosis of sporadic colorectal cancer in humans. Cell Mol Biol Lett 2020; 25:24. [PMID: 32265994 PMCID: PMC7110825 DOI: 10.1186/s11658-020-00217-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background A huge array of function is played by the Wnt/β-catenin signaling pathway in development by balancing gene expression through the modulation of cell-specific DNA binding downstream effectors such as T-cell factor/lymphoid enhancer factor (TCF/LEF). The β-catenin/TCF-4 complex is a central regulatory switch for differentiation and proliferation of intestinal cells (both normal and malignant). Thus, in the present study we evaluated each of 60 cases of sporadic adenocarcinoma, alongside adjoining and normal mucosa specimens of colorectum in humans, for mutation and expression analysis of the gene coding for TCF-4 protein. Methods DNA sequencing following PCR amplification and SSCP analysis (single strand conformation polymorphism) was employed to detect TCF-4 gene mutations in the case of exon 1. Quantitative real-time (qRT) PCR, immunohistochemistry (IHC), confocal microscopy and western blot analysis were used to detect TCF-4 gene/protein expression. Results Sequencing analysis confirmed 5/60 patients with a point mutation in exon 1 of the TCF-4 gene in tumor samples. mRNA expression using qRT-PCR showed approximately 83% decreased TCF-4 mRNA expression in tumor tissue and adjoining mucosa compared to normal mucosa. Similarly, a significant decrease in protein expression using IHC showed decreased TCF-4 protein expression in tumor tissue and adjoining mucosa compared to normal mucosa, which also corresponds to some important clinicopathological factors, including disease metastasis and tumor grade. Mutational alterations and downregulation of TCF-4 mRNA and hence decreased expression of TCF-4 protein in tumors suggest its involvement in the pathogenesis of CRC. Conclusions A remarkable decrease in TCF-4 mRNA and protein expression was detected in tumorous and adjoining tissues compared to normal mucosa. Hence the alterations in genomic architecture along with downregulation of TCF-4 mRNA and decreased expression of TCF-4 protein in tumors, which is in accordance with clinical features, suggest its involvement in the pathogenesis of CRC. Thus, deregulation and collaboration of TCF-4 with CRC could be a concrete and distinctive feature in the prognosis of the disease at an early stage of development.
Collapse
Affiliation(s)
- Mumtaz Anwar
- 1Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012 India.,2Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India.,3Department of Pharmacology, University of Illinois at Chicago, Chicago, 60612 USA
| | - Pooja Malhotra
- 2Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India.,4Department of Medicine, University of Illinois at Chicago, Chicago, 60612 USA
| | - Rakesh Kochhar
- 2Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Alka Bhatia
- 1Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012 India
| | - Akhtar Mahmood
- 5Department of Biochemistry, Panjab University, Chandigarh, 160014 India
| | - Rajinder Singh
- 6Department of Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Safrun Mahmood
- 1Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012 India
| |
Collapse
|
2
|
Zhu L, Chen W, Li G, Chen H, Liao W, Zhang L, Xiao X. Upregulated RACK1 attenuates gastric cancer cell growth and epithelial-mesenchymal transition via suppressing Wnt/β-catenin signaling. Onco Targets Ther 2019; 12:4795-4805. [PMID: 31417279 PMCID: PMC6592218 DOI: 10.2147/ott.s205869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: As there have been few studies on the effects of the receptor for activated C kinase 1 (RACK1) on gastric cancer (GC), we aimed to explore such effects and the mechanism that may be involved. Patients and methods: Normal gastric epithelial cells and six GC cell lines were used to detect the mRNA expression of RACK1. Overexpressing RACK1 was transfected in HGC27 and MGC803 cells. The effects of overexpressing RACK1 on cell viability, migration, and invasion were determined by cell counting kit-8, wound scratch, and Transwell assay, respectively. The expressions of epithelial–mesenchymal transition (EMT) and Wnt/β-catenin signaling related genes were detected using quantitative real-time PCR or Western blot. Wnt pathway agonist LiCl was added into RACK1 overexpressing GC cells, and then cell viability, migration, and invasion were also detected. Results: RACK1 was downregulated in GC cell lines. Under the circumstance that overexpressing RACK1 was successfully transfected in the two lowest RACK1-expressing GC cells, significant inhibition of cell viability, migration, and invasion, promotion to the mRNA and protein expression of E-cadherin, as well as a decrease in the N-cadherin and Snail expressions could be observed. Overexpressing RACK1 also enhanced the protein level of phosphorylation-β-catenin/β-catenin and attenuated c-Jun protein expression. Additionally, LiCl could partially reverse the inhibitory effects of cell viability, migration and invasion by overexpressing RACK. Conclusion: We found RACK1 possibly inhibited epithelial–mesenchymal transition of GC cells through limitation of the Wnt/β-catenin pathway, thereby suppressing cell migration and invasion; RACK1 could also suppress cell growth.
Collapse
Affiliation(s)
- Lihui Zhu
- Department of Gastroenterology, The Second Hospital Affiliated to the University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Wen Chen
- Department of Gastroenterology, The Second Hospital Affiliated to the University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Guoqing Li
- Department of Gastroenterology, The Second Hospital Affiliated to the University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Honghui Chen
- Department of Gastroenterology, The Second Hospital Affiliated to the University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Wenqiu Liao
- Department of Gastroenterology, The Second Hospital Affiliated to the University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Li Zhang
- Department of Gastroenterology, The Second Hospital Affiliated to the University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Xiaoli Xiao
- Department of Gastroenterology, The Second Hospital Affiliated to the University of South China, Hengyang, Hunan Province, People's Republic of China
| |
Collapse
|
3
|
Wan Z, Chai R, Yuan H, Chen B, Dong Q, Zheng B, Mou X, Pan W, Tu Y, Yang Q, Tu S, Hu X. MEIS2 promotes cell migration and invasion in colorectal cancer. Oncol Rep 2019; 42:213-223. [PMID: 31115559 PMCID: PMC6549210 DOI: 10.3892/or.2019.7161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of malignancy worldwide. Distant metastasis is a key cause of CRC-associated mortality. MEIS2 has been identified to be dysregulated in several types of human cancer. However, the mechanisms underlying the regulatory role of MEIS2 in CRC metastasis remain largely unknown. For the first time, the present study demonstrated that MEIS2 serves a role as a promoter of metastasis in CRC. In vivo and in vitro experiments revealed that knockdown of MEIS2 significantly suppressed CRC migration, invasion and the epithelial-mesenchymal transition. Furthermore, microarray and bioinformatics analyses were performed to investigate the underlying mechanisms of MEIS2 in the regulation of CRC metastasis. Additionally, it was identified that a high expression of MEIS2 was significantly associated with a shorter overall survival time for patients with CRC. The present study demonstrated that MEIS2 may serve as a novel biomarker for CRC.
Collapse
Affiliation(s)
- Ziang Wan
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Rui Chai
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Hang Yuan
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Bingchen Chen
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Quanjin Dong
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Boan Zheng
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wensheng Pan
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yifeng Tu
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Qing Yang
- Department of Academy of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shiliang Tu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xinye Hu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
4
|
Thakur S, Dhiman M, Mantha AK. APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Mol Cell Biochem 2018; 441:201-216. [PMID: 28887667 DOI: 10.1007/s11010-017-3186-7/figures/9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/01/2017] [Indexed: 05/25/2023]
Abstract
Monocrotophos (MCP) and chlorpyrifos (CP) are widely used organophosphate pesticides (OPPs), speculated to be linked with human pathologies including cancer. Owing to the fact that lung cells are most vulnerable to the environmental toxins, the development and progression of lung cancer can be caused by the exposure of OPPs. The present study investigates the oxidative DNA damage response evoked by MCP and CP in human non-small cell lung carcinoma A549 cells. A549 cells were exposed to MCP and CP; cytotoxicity and reactive oxygen species (ROS) generation were measured to select the non-toxic dose. In order to establish whether MCP and CP can initiate the DNA repair and cell survival signalling pathways in A549 cells, qRT-PCR and Western blotting techniques were used to investigate the mRNA and protein expression levels of DNA base excision repair (BER)-pathway enzymes and transcription factors (TFs) involved in cell survival mechanisms. A significant increase in cell viability and ROS generation was observed when exposed to low and moderate doses of MCP and CP at different time points (24, 48 and 72 h) studied. A549 cells displayed a dose-dependent accumulation of apurinic/apyrimidinic (AP) sites after 24 h exposure to MCP advocating for the activation of AP endonuclease-mediated DNA BER-pathway. Cellular responses to MCP- and CP-induced oxidative stress resulted in an imbalance in the mRNA and protein expression of BER-pathway enzymes, viz. PARP1, OGG1, APE1, XRCC1, DNA pol β and DNA ligase III α at different time points. The treatment of OPPs resulted in the upregulation of TFs, viz. Nrf2, c-jun, phospho-c-jun and inducible nitric oxide synthase. Immunofluorescent confocal imaging of A549 cells indicated that MCP and CP induces the translocation of APE1 within the cytoplasm at an early 6 h time point, whereas it promotes nuclear localization after 24 h of treatment, which suggests that APE1 subcellular distribution is dynamically regulated in response to OPP-induced oxidative stress. Furthermore, nuclear colocalization of APE1 and the TF c-jun was observed in response to the treatment of CP and MCP for different time points in A549 cells. Therefore, in this study we demonstrate that MCP- and CP-induced oxidative stress alters APE1-dependent BER-pathway and also mediates cell survival signalling mechanisms via APE1 regulation, thereby promoting lung cancer cell survival and proliferation.
Collapse
Affiliation(s)
- Shweta Thakur
- Centre for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India
| | - Monisha Dhiman
- Centre for Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Centre for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India.
| |
Collapse
|
5
|
Wang PN, Huang J, Duan YH, Zhou JM, Huang PZ, Fan XJ, Huang Y, Wang L, Liu HL, Wang JP, Huang MJ. Downregulation of phosphorylated MKK4 is associated with a poor prognosis in colorectal cancer patients. Oncotarget 2018; 8:34352-34361. [PMID: 28423721 PMCID: PMC5470973 DOI: 10.18632/oncotarget.16128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/01/2017] [Indexed: 11/30/2022] Open
Abstract
Mitogen-activated protein kinase kinase 4 (MKK4) is a key mediator of Jun N-terminal kinase signaling and influences malignant metastasis. Here, we used immunohistochemistry to assess phosphorylated MMK4 (pMKK4) levels and examine their association with the clinicopathological features of a pilot set of patient samples consisting of normal colonic mucosa (NCM), colorectal adenoma (CA), and colorectal cancer (CRC) tissues. pMKK4 levels were also assessed in a validation set of CRC cases with accompanying follow-up data to confirm their clinicopathological and prognostic significance. pMKK4 levels, which were high in 79.17% of NCM samples, were downregulated in 33.33% of CA and 63.54% of CRC samples. pMKK4 downregulation was associated with metastasis, especially to the liver. In the validation set, pMKK4 downregulation was associated with increases in invasive depth, lymph node metastasis, distant metastasis, and TNM stage. Univariate analysis indicated that pMKK4 score, tumor differentiation, and TNM stage were correlated with disease-free survival and overall survival. Multivariate analysis indicated that decreased pMKK4 expression was an independent risk factor for disease-free survival in CRC patients. These results suggest that CRC patients with low pMKK4 immunochemistry scores should be monitored carefully for early detection of possible recurrences, especially liver metastasis.
Collapse
Affiliation(s)
- Pu-Ning Wang
- Department of Colorectal Surgery, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Huang
- Department of Colorectal Surgery, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying-Hua Duan
- Department of Traditional Chinese Medicine, The 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia-Min Zhou
- Department of Colorectal Surgery, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pin-Zhu Huang
- Department of Colorectal Surgery, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin-Juan Fan
- Department of Pathology, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Department of Pathology, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Wang
- Department of Colorectal Surgery, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huan-Liang Liu
- Gastrointestinal Diseases Research Institute of Guangdong Province, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Ping Wang
- Department of Colorectal Surgery, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei-Jin Huang
- Department of Colorectal Surgery, The 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Mol Cell Biochem 2017; 441:201-216. [PMID: 28887667 DOI: 10.1007/s11010-017-3186-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022]
Abstract
Monocrotophos (MCP) and chlorpyrifos (CP) are widely used organophosphate pesticides (OPPs), speculated to be linked with human pathologies including cancer. Owing to the fact that lung cells are most vulnerable to the environmental toxins, the development and progression of lung cancer can be caused by the exposure of OPPs. The present study investigates the oxidative DNA damage response evoked by MCP and CP in human non-small cell lung carcinoma A549 cells. A549 cells were exposed to MCP and CP; cytotoxicity and reactive oxygen species (ROS) generation were measured to select the non-toxic dose. In order to establish whether MCP and CP can initiate the DNA repair and cell survival signalling pathways in A549 cells, qRT-PCR and Western blotting techniques were used to investigate the mRNA and protein expression levels of DNA base excision repair (BER)-pathway enzymes and transcription factors (TFs) involved in cell survival mechanisms. A significant increase in cell viability and ROS generation was observed when exposed to low and moderate doses of MCP and CP at different time points (24, 48 and 72 h) studied. A549 cells displayed a dose-dependent accumulation of apurinic/apyrimidinic (AP) sites after 24 h exposure to MCP advocating for the activation of AP endonuclease-mediated DNA BER-pathway. Cellular responses to MCP- and CP-induced oxidative stress resulted in an imbalance in the mRNA and protein expression of BER-pathway enzymes, viz. PARP1, OGG1, APE1, XRCC1, DNA pol β and DNA ligase III α at different time points. The treatment of OPPs resulted in the upregulation of TFs, viz. Nrf2, c-jun, phospho-c-jun and inducible nitric oxide synthase. Immunofluorescent confocal imaging of A549 cells indicated that MCP and CP induces the translocation of APE1 within the cytoplasm at an early 6 h time point, whereas it promotes nuclear localization after 24 h of treatment, which suggests that APE1 subcellular distribution is dynamically regulated in response to OPP-induced oxidative stress. Furthermore, nuclear colocalization of APE1 and the TF c-jun was observed in response to the treatment of CP and MCP for different time points in A549 cells. Therefore, in this study we demonstrate that MCP- and CP-induced oxidative stress alters APE1-dependent BER-pathway and also mediates cell survival signalling mechanisms via APE1 regulation, thereby promoting lung cancer cell survival and proliferation.
Collapse
|
7
|
Charron CS, Dawson HD, Albaugh GP, Solverson PM, Vinyard BT, Solano-Aguilar GI, Molokin A, Novotny JA. A Single Meal Containing Raw, Crushed Garlic Influences Expression of Immunity- and Cancer-Related Genes in Whole Blood of Humans. J Nutr 2015; 145:2448-55. [PMID: 26423732 PMCID: PMC4620724 DOI: 10.3945/jn.115.215392] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/20/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Preclinical and epidemiologic studies suggest that garlic intake is inversely associated with the progression of cancer and cardiovascular disease. OBJECTIVE We designed a study to probe the mechanisms of garlic action in humans. METHODS We conducted a randomized crossover feeding trial in which 17 volunteers consumed a garlic-containing meal (100 g white bread, 15 g butter, and 5 g raw, crushed garlic) or a garlic-free control meal (100 g white bread and 15 g butter) after 10 d of consuming a controlled, garlic-free diet. Blood was collected before and 3 h after test meal consumption for gene expression analysis in whole blood. Illumina BeadArray was used to screen for genes of interest, followed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on selected genes. To augment human study findings, Mono Mac 6 cells were treated with a purified garlic extract (0.5 μL/mL), and mRNA was measured by qRT-PCR at 0, 3, 6, and 24 h. RESULTS The following 7 genes were found to be upregulated by garlic intake: aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT), hypoxia-inducible factor 1α (HIF1A), proto-oncogene c-Jun (JUN), nuclear factor of activated T cells (NFAT) activating protein with immunoreceptor tyrosine-based activation motif 1 (NFAM1), oncostatin M (OSM), and V-rel avian reticuloendotheliosis viral oncogene homolog (REL). Fold-increases in mRNA transcripts ranged from 1.6 (HIF1A) to 3.0 (NFAM1) (P < 0.05). The mRNA levels of 5 of the 7 genes that were upregulated in the human trial were also upregulated in cell culture at 3 and 6 h: AHR, HIF1A, JUN, OSM, and REL. Fold-increases in mRNA transcripts in cell culture ranged from 1.7 (HIF1A) to 12.1 (JUN) (P < 0.01). OSM protein was measured by ELISA and was significantly higher than the control at 3, 6, and 24 h (24 h: 19.5 ± 1.4 and 74.8 ± 1.4 pg/mL for control and garlic, respectively). OSM is a pleiotropic cytokine that inhibits several tumor cell lines in culture. CONCLUSION These data indicate that the bioactivity of garlic is multifaceted and includes activation of genes related to immunity, apoptosis, and xenobiotic metabolism in humans and Mono Mac 6 cells. This trial is registered at clinicaltrials.gov as NCT01293591.
Collapse
Affiliation(s)
| | | | | | | | - Bryan T Vinyard
- Biometrical Consulting Services, USDA, Agricultural Research Service, Beltsville, MD
| | | | | | | |
Collapse
|
8
|
Anwar M, Kochhar R, Singh R, Bhatia A, Vaiphei K, Mahmood A, Mahmood S. Frequent activation of the β-catenin gene in sporadic colorectal carcinomas: A mutational & expression analysis. Mol Carcinog 2015; 55:1627-1638. [PMID: 26373808 DOI: 10.1002/mc.22414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/02/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
β-catenin (CTNNB1), an oncogene/onco-protein and an adhesion molecule is a key effector in colorectal cancer (CRC). Its activation, and subsequent up-regulation of Wnt-signaling, is an important event in the development of certain human cancers including CRC. Mutations in the β-catenin gene in the region of serine-threonine glycogen kinase (GSK)-3β phosphorylation target sites have been identified in colorectal cancer in humans. In the current study, we investigated 60 sporadic colorectal adenocarcinomas along with adjoining and normal mucosa cases in humans for β-catenin mutations. Thirteen of sixty colorectal tumors from humans had point mutations with a frequency of 21.66% at codons 24, 26, 27, 32, 34, 35, 41, 42,43, 46, 49, 54, 55, or 67 sites which are mutated in colorectal cancer and some of these sites in other cancers. Thus, there appears to be a key involvement of β-catenin activation in human colorectal carcinogenesis. mRNA expression analysis using q-Real Time PCR showed 21.5-fold up-regulation of β-catenin mRNA in tumor tissue compared to normal and adjoining mucosa. Protein expression analysis using immunohistochemistry, confocal microscopy, and Western blot confirmed aberrant accumulation of β-catenin protein along the nucleus and cytoplasm following mutation. The observed mutations and up-regulation of mRNA in tumors, and the increased expression of β-catenin protein in CRC suggest that these alterations are early and prognostic events in sporadic colorectal carcinogenesis in humans. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mumtaz Anwar
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.,Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh Kochhar
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rajinder Singh
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Kim Vaiphei
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Akhtar Mahmood
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Safrun Mahmood
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
9
|
Tejada-Romero B, Carter JM, Mihaylova Y, Neumann B, Aboobaker AA. JNK signalling is necessary for a Wnt- and stem cell-dependent regeneration programme. Development 2015; 142:2413-24. [PMID: 26062938 DOI: 10.1242/dev.115139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 06/03/2015] [Indexed: 12/23/2022]
Abstract
Regeneration involves the integration of new and old tissues in the context of an adult life history. It is clear that the core conserved signalling pathways that orchestrate development also play central roles in regeneration, and further study of conserved signalling pathways is required. Here we have studied the role of the conserved JNK signalling cascade during planarian regeneration. Abrogation of JNK signalling by RNAi or pharmacological inhibition blocks posterior regeneration and animals fail to express posterior markers. While the early injury-induced expression of polarity markers is unaffected, the later stem cell-dependent phase of posterior Wnt expression is not established. This defect can be rescued by overactivation of the Hh or Wnt signalling pathway to promote posterior Wnt activity. Together, our data suggest that JNK signalling is required to establish stem cell-dependent Wnt expression after posterior injury. Given that Jun is known to be required in vertebrates for the expression of Wnt and Wnt target genes, we propose that this interaction may be conserved and is an instructive part of planarian posterior regeneration.
Collapse
Affiliation(s)
- Belen Tejada-Romero
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - Jean-Michel Carter
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - Yuliana Mihaylova
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - Bjoern Neumann
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
10
|
Shiozaki A, Kosuga T, Ichikawa D, Komatsu S, Fujiwara H, Okamoto K, Iitaka D, Nakashima S, Shimizu H, Ishimoto T, Kitagawa M, Nakou Y, Kishimoto M, Liu M, Otsuji E. XB130 as an independent prognostic factor in human esophageal squamous cell carcinoma. Ann Surg Oncol 2012; 20:3140-50. [PMID: 22805860 DOI: 10.1245/s10434-012-2474-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adaptor proteins, with multimodular structures, can participate in the regulation of various cellular functions. A novel adaptor protein XB130 has been implicated as a substrate and regulator of tyrosine kinase-mediated signaling and in controlling cell proliferation and apoptosis in thyroid and lung cancer cells. However, its expression and role in gastrointestinal cancer have not been investigated. We sought to determine the role of XB130 in cell cycle progression of esophageal squamous cell carcinoma (ESCC) cells and to examine its expression and effects on the prognosis of patients with ESCC. METHODS Expression of XB130 in human ESCC cell lines was analyzed by Western blot testing and immunofluorescent staining. Knockdown experiments with XB130 small interfering RNA (siRNA) were conducted, and the effect on cell cycle progression was analyzed. Immunohistochemistry of XB130 for 52 primary tumor samples obtained from patients with ESCC undergoing esophagectomy was performed. RESULTS XB130 was highly expressed in TE2, TE5, and TE9 cells. In these cells, knockdown of XB130 with siRNA inhibited G1-S phase progression and increased the expression of p21, the cyclin-dependent kinase inhibitor. Immunohistochemistry showed that 71.2% of the patients expressed XB130 in the nuclei and/or cytoplasm of the ESCC cells. Further, nuclear expression of XB130 was an independent prognostic factor of postoperative survival. CONCLUSIONS These observations suggest that the expression of XB130 in ESCC cells may affect cell cycle progression and impact prognosis of patients with ESCC. A deeper understanding of XB130 as a mediator and/or biomarker in ESCC is needed.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kress E, Skah S, Sirakov M, Nadjar J, Gadot N, Scoazec JY, Samarut J, Plateroti M. Cooperation between the thyroid hormone receptor TRalpha1 and the WNT pathway in the induction of intestinal tumorigenesis. Gastroenterology 2010; 138:1863-74. [PMID: 20114049 DOI: 10.1053/j.gastro.2010.01.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/30/2009] [Accepted: 01/21/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Colorectal tumorigenesis is a multistep process involving the alteration of oncogenes and tumor suppressor genes, leading to the deregulation of molecular pathways that govern intestinal homeostasis. We have previously shown that the thyroid hormone receptor alpha1 (TRalpha1) controls intestinal development and homeostasis through the WNT pathway. More precisely, TRalpha1 directly enhances the transcription of several components of this pathway, allowing increased expression of beta-catenin/Tcf4 target genes and stimulation of cell proliferation. Because the WNT pathway is a major player in controlling intestinal homeostasis, we addressed whether the TRalpha1 receptor has tumor-inducing potential. METHODS We generated mice overexpressing TRalpha1 specifically in the intestinal epithelium in a wild-type (vil-TRalpha1) or a WNT-activated (vil-TRalpha1/Apc(+/1638N)) genetic background. RESULTS The intestine of vil-TRalpha1 mice presents aberrant intestinal mucosal architecture and increased cell proliferation and develops adenoma at a low rate. However, TRalpha1 overexpression is unable to induce cancer development. On the contrary, we observed accelerated tumorigenesis in vil-TRalpha1/Apc(+/1638N) mice compared with the Apc(+/1638N) mutants. CONCLUSION Our results suggest that this phenotype is due to cooperation between the activated TRalpha1 and WNT pathways. This is the first report describing the tumor-inducing function of TRalpha1 in the intestine.
Collapse
Affiliation(s)
- Elsa Kress
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Goto M, Mitra RS, Liu M, Lee J, Henson BS, Carey T, Bradford C, Prince M, Wang CY, Fearon ER, D'Silva NJ. Rap1 stabilizes beta-catenin and enhances beta-catenin-dependent transcription and invasion in squamous cell carcinoma of the head and neck. Clin Cancer Res 2009; 16:65-76. [PMID: 20028760 DOI: 10.1158/1078-0432.ccr-09-1122] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE In head and neck squamous cell carcinoma (HNSCC) cells, Rap1 shuttles between the nucleus and cytoplasm. Prior findings suggested that Rap1 may modulate the beta-catenin-independent Wnt pathway in some settings, but the role of Rap1 in beta-catenin-dependent Wnt signaling remains undefined. EXPERIMENTAL DESIGN AND RESULTS We observed that beta-catenin bound to active Rap1 in vitro and Rap1 activated beta-catenin/T-cell factor (TCF)-dependent transcription. Immunofluorescence studies showed that ectopic expression of Rap1 increased nuclear translocation of beta-catenin. Overexpression of active Rap1 facilitated an increase in beta-catenin-mediated transcription that was abrogated by dominant-negative TCF4. Conversely, small interfering RNA-mediated inhibition of endogenous Rap1 expression inhibited beta-catenin/TCF-mediated transcription as well as invasion of HNSCC. Furthermore, inhibition of Rap1 expression downregulated the expression of matrix metalloproteinase 7, a transcriptional target of beta-catenin/TCF. In HNSCC cells stably transfected with beta-catenin or treated with lithium chloride or Wnt3A to stabilize endogenous beta-catenin, inhibition of Rap1 expression led to decreases in the free pool of beta-catenin. Immunohistochemical studies of tissue from HNSCC patients revealed that increased beta-catenin intensity correlated with higher tumor stage. Furthermore, the prognostic effect of active Rap1 on tumor N stage was found to depend on cytosolic beta-catenin expression (P < 0.013). When beta-catenin is high, higher Rap1GTP intensity is associated with more advanced N stage. CONCLUSIONS The findings suggest that Rap1 enhances beta-catenin stability and nuclear localization. In addition to indicating that Rap1 has a significant role in regulating beta-catenin and beta-catenin-dependent progression to more advanced N-stage lesions, these data highlight Rap1 as a potential therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Mitsuo Goto
- Departments of Periodontics and Oral Medicine and Biologic and Materials Science, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Comparison of beta-catenin with TGF-beta1, HIF-1alpha and patients' disease-free survival in human colorectal cancer. Pathol Oncol Res 2009; 16:311-8. [PMID: 19898961 DOI: 10.1007/s12253-009-9217-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 10/13/2009] [Indexed: 12/27/2022]
Abstract
Beta-catenin accumulation is suppressed by TGF-beta1 (transforming growth factor beta1) in intestinal epithelium suggesting negative feedback between these two factors. Besides that, beta-catenin interacts with HIF-1alpha (hypoxia-inducible factor-1alpha) at the promoter region of HIF-1 target genes. Our study was aimed at comparison of beta-catenin with HIF-1alpha, TGF-beta1, Ki67 and survival of sporadic colorectal cancer patients. Expressions of beta-catenin, TGF-beta1, HIF-1alpha, Ki67 were evaluated in triads of specimens of each primary tumor of 72 sporadic colorectal cancers with immunohistochemistry due to limited availability of tissue material. Disease-free survival was analyzed in case of all 100 beta-catenin stained tumors, in 85 cancers stained for HIF-1 and in 72 neoplasms with TGFbeta1 staining. Beta-catenin, TGF-beta1 and HIF-1alpha accumulated in 72 colorectal cancer cells. Beta-catenin correlated both with HIF-1alpha and TGF-beta1 in all colorectal cancers (p < 0.009, r = 0.307 and p = 0.003, r = 0.342, respectively) and in subgroups of different clinico-pathological profile. Beta-catenin failed to correlate with Ki67. In case of beta-catenin, TGF-beta1 and HIF-1alpha, disease-free survival curves failed to show any statistically significant differences between groups of marker negative tumors, cancers with low expression and neoplasms with higher protein expression. Positive correlations between beta-catenin and TGF-beta1 may indicate ineffective attempts of TGF-beta1 to reduce intracellular level of beta-catenin in colorectal cancer. Associations between beta-catenin and HIF-1alpha reflect previously detected interactions between HIF-1alpha with beta-catenin and are confirmative for presence of such reactions in human colorectal cancer.
Collapse
|
14
|
Saadeddin A, Babaei-Jadidi R, Spencer-Dene B, Nateri AS. The links between transcription, beta-catenin/JNK signaling, and carcinogenesis. Mol Cancer Res 2009; 7:1189-96. [PMID: 19671687 DOI: 10.1158/1541-7786.mcr-09-0027] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interactions between transcription and signaling are fundamentally important for understanding both the structure and function of genetic pathways and their role in diseases such as cancer. The finding that beta-catenin/TCF4 and JNK/c-Jun cooperate has important implications in carcinogenesis. Previously, we found that binding of c-Jun and beta-catenin/TCF4 to the c-jun promoter is dependent upon JNK activity, thus one role for this complex is to contribute to the repression and/or activation of genes that may mediate cell maintenance, proliferation, differentiation, and death, whereas deregulation of these signals may contribute to carcinogenesis. Here we address the functional links reported between activated beta-catenin/JNK signaling pathways, their component genes, and their common targets, and discuss how alterations in the properties of these genes lead to the development of cancer.
Collapse
Affiliation(s)
- Anas Saadeddin
- Cancer Genetics Group, Division of Pre-Clinical Oncology, NottinghamDigestive Diseases Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom.
| | | | | | | |
Collapse
|