1
|
Pellerito C, Emanuele S, Giuliano M, Fiore T. Organotin(IV) complexes with epigenetic modulator ligands: New promising candidates in cancer therapy. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Giuliano M, Pellerito C, Celesia A, Fiore T, Emanuele S. Tributyltin(IV) Butyrate: A Novel Epigenetic Modifier with ER Stress- and Apoptosis-Inducing Properties in Colon Cancer Cells. Molecules 2021; 26:5010. [PMID: 34443600 PMCID: PMC8412103 DOI: 10.3390/molecules26165010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Organotin(IV) compounds are a class of non-platinum metallo-conjugates exhibiting antitumor activity. The effects of different organotin types has been related to several mechanisms, including their ability to modify acetylation protein status and to promote apoptosis. Here, we focus on triorganotin(IV) complexes of butyric acid, a well-known HDAC inhibitor with antitumor properties. The conjugated compounds were synthesized and characterised by FTIR spectroscopy, multi-nuclear (1H, 13C and 119Sn) NMR, and mass spectrometry (ESI-MS). In the triorganotin(IV) complexes, an anionic monodentate butyrate ligand was observed, which coordinated the tin atom on a tetra-coordinated, monomeric environment similar to ester. FTIR and NMR findings confirm this structure both in solid state and solution. The antitumor efficacy of the triorganotin(IV) butyrates was tested in colon cancer cells and, among them, tributyltin(IV) butyrate (BT2) was selected as the most efficacious. BT2 induced G2/M cell cycle arrest, ER stress, and apoptotic cell death. These effects were obtained using low concentrations of BT2 up to 1 μM, whereas butyric acid alone was completely inefficacious, and the parent compound TBT was poorly effective at the same treatment conditions. To assess whether butyrate in the coordinated form maintains its epigenetic effects, histone acetylation was evaluated and a dramatic decrease in acetyl-H3 and -H4 histones was found. In contrast, butyrate alone stimulated histone acetylation at a higher concentration (5 mM). BT2 was also capable of preventing histone acetylation induced by SAHA, another potent HDAC inhibitor, thus suggesting that it may activate HDACs. These results support a potential use of BT2, a novel epigenetic modulator, in colon cancer treatment.
Collapse
Affiliation(s)
- Michela Giuliano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Plesso di Biochimica, Via del Vespro 129, 90127 Palermo, Italy
| | - Claudia Pellerito
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy;
- CIRCMSB−Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Via Celso Ulpiani, 27, 70125 Bari, Italy
| | - Adriana Celesia
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (BIND), Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (S.E.)
| | - Tiziana Fiore
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy;
- CIRCMSB−Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Via Celso Ulpiani, 27, 70125 Bari, Italy
| | - Sonia Emanuele
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (BIND), Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (S.E.)
| |
Collapse
|
3
|
Evans CA, Rosser R, Waby JS, Noirel J, Lai D, Wright PC, Williams EA, Riley SA, Bury JP, Corfe BM. Reduced keratin expression in colorectal neoplasia and associated fields is reversible by diet and resection. BMJ Open Gastroenterol 2015; 2:e000022. [PMID: 26462274 PMCID: PMC4599164 DOI: 10.1136/bmjgast-2014-000022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Patients with adenomatous colonic polyps are at increased risk of developing further polyps suggesting field-wide alterations in cancer predisposition. The current study aimed to identify molecular alterations in the normal mucosa in the proximity of adenomatous polyps and to assess the modulating effect of butyrate, a chemopreventive compound produced by fermentation of dietary residues. METHODS A cross-sectional study was undertaken in patients with adenomatous polyps: biopsy samples were taken from the adenoma, and from macroscopically normal mucosa on the contralateral wall to the adenoma and from the mid-sigmoid colon. In normal subjects biopsies were taken from the mid-sigmoid colon. Biopsies were frozen for proteomic analysis or formalin-fixed for immunohistochemistry. Proteomic analysis was undertaken using iTRAQ workflows followed by bioinformatics analyses. A second dietary fibre intervention study arm used the same endpoints and sampling strategy at the beginning and end of a high-fibre intervention. RESULTS Key findings were that keratins 8, 18 and 19 were reduced in expression level with progressive proximity to the lesion. Lesional tissue exhibited multiple K8 immunoreactive bands and overall reduced levels of keratin. Biopsies from normal subjects with low faecal butyrate also showed depressed keratin expression. Resection of the lesion and elevation of dietary fibre intake both appeared to restore keratin expression level. CONCLUSION Changes in keratin expression associate with progression towards neoplasia, but remain modifiable risk factors. Dietary strategies may improve secondary chemoprevention. TRIAL REGISTRATION NUMBER ISRCTN90852168.
Collapse
Affiliation(s)
- Caroline A Evans
- Department of Chemical and Biological Engineering , ChELSI Institute, University of Sheffield , Sheffield , UK
| | - Ria Rosser
- Molecular Gastroenterology Research Group, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK
| | - Jennifer S Waby
- Molecular Gastroenterology Research Group, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Department of Biological Sciences , The University of Hull , Hull , UK
| | - Josselin Noirel
- Department of Chemical and Biological Engineering , ChELSI Institute, University of Sheffield , Sheffield , UK ; Conservatoire National des Arts et Mmétiers , Paris , France
| | - Daphne Lai
- Molecular Gastroenterology Research Group, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Department of Geography , University of Sheffield , Sheffield , UK
| | - Phillip C Wright
- Department of Chemical and Biological Engineering , ChELSI Institute, University of Sheffield , Sheffield , UK
| | - Elizabeth A Williams
- Human Nutrition Unit, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK
| | - Stuart A Riley
- Department of Gastroenterology , Northern General Hospital , Sheffield , UK
| | - Jonathan P Bury
- Department of Pathology , Royal Hallamshire Hospital , Sheffield , UK
| | - Bernard M Corfe
- Molecular Gastroenterology Research Group, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Insigneo Institute for in Silico Medicine, The University of Sheffield , Sheffield , UK
| |
Collapse
|
4
|
Fang JY, Zheng S, Jiang B, Lai MD, Fang DC, Han Y, Sheng QJ, Li JN, Chen YX, Gao QY. Consensus on the Prevention, Screening, Early Diagnosis and Treatment of Colorectal Tumors in China: Chinese Society of Gastroenterology, October 14-15, 2011, Shanghai, China. Gastrointest Tumors 2014; 1:53-75. [PMID: 26672726 DOI: 10.1159/000362585] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is steadily increasing in China. Colorectal adenoma (CRA) is the most important precancerous disease of CRC. Screening for colorectal tumors can aid early diagnosis. Advances in endoscopic mucosal resection and endoscopic submucosal dissection can aid the early treatment of colorectal tumors. Furthermore, because of high risk of recurrence after removal of adenomas under endoscopy, factors contributing to recurrence, the follow-up mode and the interval established, and the feasibility of application and the time of various chemical preventions should be concerned. However, a relevant consensus on the screening, early diagnosis and treatment, and prevention of colorectal tumors in China is lacking. SUMMARY The consensus recommendations include epidemiology, pathology, screening, early diagnosis, endoscopic treatment, monitoring and follow-up, and chemoprevention of colorectal tumors in China. KEY MESSAGE This is the first consensus on the prevention, screening, early diagnosis and treatment of CRA and CRC in China based on evidence in the literature and on local data. PRACTICAL IMPLICATIONS Through reviewing the literature, regional data and passing the consensus by an anonymous vote, gastroenterology experts from all over China launch the consensus recommendations in Shanghai. The incidence and mortality of CRC in China has increased, and the incidence or detection rate of CRA has increased rapidly. Screening for colorectal tumors should be performed at age 50-74 years. Preliminary screening should be undertaken to find persons at high risk, followed by colonoscopy. A screening cycle of 3 years is recommended for persistent interventions. Opportunistic screening is a mode suitable for the current healthcare system and national situation. Colonoscopy combined with pathological examination is the standard method for the diagnosis of colorectal tumors. CRA removal under endoscopy can prevent CRC to some extent, but CRA has an obvious recurrence trend. The follow-up interval after the removal or surgery of colorectal tumors should be different with lesions. Primary prevention of CRA includes improved diet with more fiber, supplements containing calcium and vitamin D, supplements containing folic acid for those with low hemoglobin levels, and cessation of tobacco smoking. Non-steroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors have been recognized to prevent recurrence after adenoma removal.
Collapse
Affiliation(s)
- Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China ; Shanghai Institute of Digestive Disease, Shanghai, China ; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China ; State Key Laboratory of Oncogene and Related Genes, Shanghai Jiaotong University, Shanghai, China
| | - Shu Zheng
- Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, China ; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Jiang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mao-De Lai
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian-Chun Fang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying Han
- Department of Gastroenterology, General Hospital of Beijing Military Area, Beijing, China
| | - Qian-Jiu Sheng
- Department of Gastroenterology, General Hospital of Beijing Military Area, Beijing, China
| | - Jing-Nan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China ; Shanghai Institute of Digestive Disease, Shanghai, China ; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China ; State Key Laboratory of Oncogene and Related Genes, Shanghai Jiaotong University, Shanghai, China
| | - Qin-Yan Gao
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China ; Shanghai Institute of Digestive Disease, Shanghai, China ; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China ; State Key Laboratory of Oncogene and Related Genes, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
5
|
Smallbone K, M Corfe B. A mathematical model of the colon crypt capturing compositional dynamic interactions between cell types. Int J Exp Pathol 2014; 95:1-7. [PMID: 24354351 PMCID: PMC3919643 DOI: 10.1111/iep.12062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 09/24/2013] [Indexed: 12/27/2022] Open
Abstract
Models of the development and early progression of colorectal cancer are based upon understanding the cycle of stem cell turnover, proliferation, differentiation and death. Existing crypt compartmental models feature a linear pathway of cell types, with little regulatory mechanism. Previous work has shown that there are perturbations in the enteroendocrine cell population of macroscopically normal crypts, a compartment not included in existing models. We show that existing models do not adequately recapitulate the dynamics of cell fate pathways in the crypt. We report the progressive development, iterative testing and fitting of a developed compartmental model with additional cell types, and which includes feedback mechanisms and cross-regulatory mechanisms between cell types. The fitting of the model to existing data sets suggests a need to invoke cross-talk between cell types as a feature of colon crypt cycle models.
Collapse
Affiliation(s)
- Kieran Smallbone
- Manchester Centre for Integrative Systems Biology, University of Manchester, Manchester, UK
| | | |
Collapse
|
6
|
Sánchez-Tena S, Vizán P, Dudeja P, Centelles J, Cascante M. Green tea phenolics inhibit butyrate-induced differentiation of colon cancer cells by interacting with monocarboxylate transporter 1. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:2264-70. [PMID: 23994611 PMCID: PMC4889458 DOI: 10.1016/j.bbadis.2013.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/24/2013] [Accepted: 08/20/2013] [Indexed: 12/16/2022]
Abstract
Diet has a significant impact on colorectal cancer and both dietary fiber and plant-derived compounds have been independently shown to be inversely related to colon cancer risk. Butyrate (NaB), one of the principal products of dietary fiber fermentation, induces differentiation of colon cancer cell lines by inhibiting histone deacetylases (HDACs). On the other hand, (-)-epicatechin (EC) and (-)-epigallocatechin gallate (EGCG), two abundant phenolic compounds of green tea, have been shown to exhibit antitumoral properties. In this study we used colon cancer cell lines to study the cellular and molecular events that take place during co-treatment with NaB, EC and EGCG. We found that (i) polyphenols EC and EGCG fail to induce differentiation of colon adenocarcinoma cell lines; (ii) polyphenols EC and EGCG reduce NaB-induced differentiation; (iii) the effect of the polyphenols is specific for NaB, since differentiation induced by other agents, such as trichostatin A (TSA), was unaltered upon EC and EGCG treatment, and (iv) is independent of the HDAC inhibitory activity of NaB. Also, (v) polyphenols partially reduce cellular NaB; and (vi) on a molecular level, reduction of cellular NaB uptake by polyphenols is achieved by impairing the capacity of NaB to relocalize its own transporter (monocarboxylate transporter 1, MCT1) in the plasma membrane. Our findings suggest that beneficial effects of NaB on colorectal cancer may be reduced by green tea phenolic supplementation. This valuable information should be of assistance in choosing a rational design for more effective diet-driven therapeutic interventions in the prevention or treatment of colorectal cancer.
Collapse
Affiliation(s)
- S. Sánchez-Tena
- Department of Biochemistry and Molecular Biology, IBUB, Faculty of Biology, Universitat de Barcelona and Unit Associated with CSIC, 08028 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - P. Vizán
- Department of Biochemistry and Molecular Biology, IBUB, Faculty of Biology, Universitat de Barcelona and Unit Associated with CSIC, 08028 Barcelona, Spain
| | - P.K. Dudeja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - J.J. Centelles
- Department of Biochemistry and Molecular Biology, IBUB, Faculty of Biology, Universitat de Barcelona and Unit Associated with CSIC, 08028 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - M. Cascante
- Department of Biochemistry and Molecular Biology, IBUB, Faculty of Biology, Universitat de Barcelona and Unit Associated with CSIC, 08028 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
7
|
|
8
|
Boghossian S, Hawash A. Chemoprevention in colorectal cancer--where we stand and what we have learned from twenty year's experience. Surgeon 2011; 10:43-52. [PMID: 22129884 DOI: 10.1016/j.surge.2011.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Colorectal chemoprevention is a strategy aimed at preventing tumour progression before irreversible changes to the proteome are in full progress. Chemoprevention is not a new concept. In fact, medical practitioners since the early 19th century have tried various herbal and medicinal products as methods that could prevent tumours. The current understanding of tumourigenesis and cellular signalling focuses on a more targeted approach and paves the way for better understanding of colorectal chemoprevention. METHODS The online databases PubMed, Medline, Medscape Oncology and Scirrus were searched for articles of relevance. The Keyword involved the following words: "Colorectal Cancer Chemoprevention", "Colorectal Cancer", "Chemoprevention", "Adenoma-Carcinoma Sequence" and "Colorectal Polyps". The search was started from the period of June 1995 until September 2010 inclusive. RESULTS More than 50 natural and synthetic compounds have been shown to have chemotherapeutic effect but the majority of these agents are still in their early experimental stages and hence far from our subject of discussion. Our discussion will focus on large scale randomised trials on human subjects or established compounds. Within the context of chemoprevention, Non-steroidal anti-inflammatory agents have undergone extensive research and have shown promising results with large scale randomised trials. Additionally, metformin, resveratrol, Histone deacetylase inhibitors, Src kinases as well monoclonal antibodies have shown promising results as well. CONCLUSION Colorectal cancer is the fourth most common cancer in the world. In the UK alone the number of cases reported in 2008 was almost 40,000 which make it the third most common tumour nationwide. Curative intent surgery or Colectomy is the treatment of choice for most cases of bowel cancer; however, in a select subpopulation of patients who have been colonoscopically diagnosed to harbour pre-malignant lesions, have a family history of colorectal cancer, or have been genetically diagnosed and treated surgically for colorectal tumours; chemoprevention might play a crucial role in deterring further tumour progression. The very latest studies that are in publication or are just accruing results are giving us encouraging data that might suggest whether mass scale ingestion of a specific medication might deter colorectal tumour progression.
Collapse
Affiliation(s)
- Shahe Boghossian
- Birmingham Heartland Hospital, Birmingham B9 5SS, United Kingdom.
| | | |
Collapse
|
9
|
Stool-fermented Plantago ovata husk induces apoptosis in colorectal cancer cells independently of molecular phenotype. Br J Nutr 2011; 107:1591-602. [PMID: 22018732 DOI: 10.1017/s0007114511004910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several studies have suggested that the partially fermentable fibre Plantago ovata husk (PO) may have a protective effect on colorectal cancer (CRC). We studied the potentially pro-apoptotic effect of PO and the implicated mechanisms in CRC cells with different molecular phenotypes (Caco-2, HCT116, LoVo, HT-29, SW480) after PO anaerobic fermentation with colonic bacteria as it occurs in the human colon. The fermentation products of PO induced apoptosis in all primary tumour and metastatic cell lines, independent of p53, adenomatous polyposis coli, β-catenin or cyclo-oxygenase-2 status. Apoptosis was caspase-dependent and both intrinsic and extrinsic pathways were implicated. The intrinsic pathway was activated through a shift in the balance towards a pro-apoptotic environment with an up-regulation of B-cell lymphoma protein 2 homologous antagonist killer (BAK) and a down-regulation of B-cell lymphoma-extra large (Bcl-xL) seen in HCT116 and LoVo cells. This resulted in mitochondrial membrane depolarisation, increased expression of caspase activators second mitochondria-derived activator of caspases (Smac)/Diablo, death effector apoptosis-inducing factor, apoptosome member apoptotic protease activating factor 1 and down-regulation of inhibitors of apoptosis Survivin and X-linked inhibitor of apoptosis in most cells. The extrinsic pathway was activated presumably through the up-regulation of death receptor (DR5). Some important differences were seen between primary tumour and metastatic CRC cells. Thus, metastatic PO-treated LoVo cells had a remarkable up-regulation of TNF-α ligand along with death-inducing signalling complex components receptor interacting protein and TNF-α receptor 1-associated death domain protein. The extrinsic pathway modulator FCICE-inhibitory protein (FLIP), an inhibitor of both spontaneous death ligand-independent and death receptor-mediated apoptosis, was significantly down-regulated after PO treatment in all primary tumour cells, but not in metastatic LoVo. These findings suggest that PO could potentially be a useful chemotherapy adjuvant.
Collapse
|
10
|
Rajendran P, Williams DE, Ho E, Dashwood RH. Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 2011; 46:181-99. [PMID: 21599534 DOI: 10.3109/10409238.2011.557713] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
There is growing interest in the epigenetic mechanisms that are dysregulated in cancer and other human pathologies. Under this broad umbrella, modulators of histone deacetylase (HDAC) activity have gained interest as both cancer chemopreventive and therapeutic agents. Of the first generation, FDA-approved HDAC inhibitors to have progressed to clinical trials, vorinostat represents a "direct acting" compound with structural features suitable for docking into the HDAC pocket, whereas romidepsin can be considered a prodrug that undergoes reductive metabolism to generate the active intermediate (a zinc-binding thiol). It is now evident that other agents, including those in the human diet, can be converted by metabolism to intermediates that affect HDAC activity. Examples are cited of short-chain fatty acids, seleno-α-keto acids, small molecule thiols, mercapturic acid metabolites, indoles, and polyphenols. The findings are discussed in the context of putative endogenous HDAC inhibitors generated by intermediary metabolism (e.g. pyruvate), the yin-yang of HDAC inhibition versus HDAC activation, and the screening assays that might be most appropriate for discovery of novel HDAC inhibitors in the future.
Collapse
Affiliation(s)
- Praveen Rajendran
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|
11
|
Short-chain fatty acid level and field cancerization show opposing associations with enteroendocrine cell number and neuropilin expression in patients with colorectal adenoma. Mol Cancer 2011; 10:27. [PMID: 21401950 PMCID: PMC3068125 DOI: 10.1186/1476-4598-10-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 03/14/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous reports have suggested that the VEGF receptor neuropilin-1 (NRP-1) is expressed in a singly dispersed subpopulation of cells in the normal colonic epithelium, but that expression becomes dysregulated during colorectal carcinogenesis, with higher levels in tumour suggestive of a poor prognosis. We noted that the spatial distribution and morphology if NRP-1 expressing cells resembles that of enteroendocrine cells (EEC) which are altered in response to disease state including cancer and irritable bowel syndrome (IBS). We have shown that NRP-1 is down-regulated by butyrate in colon cancer cell lines in vitro and we hypothesized that butyrate produced in the lumen would have an analogous effect on the colon mucosa in vivo. Therefore we sought to investigate whether NRP-1 is expressed in EEC and how NRP-1 and EEC respond to butyrate and other short-chain fatty acids (SCFA - principally acetate and propionate). Additionally we sought to assess whether there is a field effect around adenomas. METHODOLOGY Biopsies were collected at the mid-sigmoid, at the adenoma and at the contralateral wall (field) of 28 subjects during endoscopy. Samples were fixed for IHC and stained for either NRP-1 or for chromogranin A (CgA), a marker of EEC. Stool sampling was undertaken to assess individuals' butyrate, acetate and propionate levels. RESULT NRP-1 expression was inversely related to SCFA concentration at the colon landmark (mid-sigmoid), but expression was lower and not related to SCFA concentration at the field. Likewise CgA+ cell number was also inversely related to SCFA at the landmark, but was lower and unresponsive at the field. Crypt cellularity was unaltered by field effect. A colocalisation analysis showed only a small subset of NRP-1 localised with CgA. Adenomas showed extensive, weaker staining for NRP-1 which contrastingly correlated positively with butyrate level. Field effects cause this relationship to be lost. Adenoma tissue shows dissociation of the co-regulation of NRP-1 and EEC. CONCLUSION NRP-1 is inversely associated with levels of butyrate and other SCFA in vivo and is expressed in a subset of CgA expressing cells. EEC number is related to butyrate level in the same way.
Collapse
|
12
|
Migliore L, Migheli F, Spisni R, Coppedè F. Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol 2011; 2011:792362. [PMID: 21490705 PMCID: PMC3070260 DOI: 10.1155/2011/792362] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/14/2010] [Indexed: 12/17/2022] Open
Abstract
Most of the colorectal cancer (CRC) cases are sporadic, only 25% of the patients have a family history of the disease, and major genes causing syndromes predisposing to CRC only account for 5-6% of the total cases. The following subtypes can be recognized: MIN (microsatellite instability), CIN (chromosomal instability), and CIMP (CpG island methylator phenotype). CIN occurs in 80-85% of CRC. Chromosomal instability proceeds through two major mechanisms, missegregation that results in aneuploidy through the gain or loss of whole chromosomes, and unbalanced structural rearrangements that lead to the loss and/or gain of chromosomal regions. The loss of heterozygosity that occur in the first phases of the CRC cancerogenesis (in particular for the genes on 18q) as well as the alteration of methylation pattern of multiple key genes can drive the development of colorectal cancer by facilitating the acquisition of multiple tumor-associated mutations and the instability phenotype.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Human and Environmental Sciences, University of Pisa, Street S. Giuseppe 22, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|
13
|
Khan AQ, Bury JP, Brown SR, Riley SA, Corfe BM. Keratin 8 expression in colon cancer associates with low faecal butyrate levels. BMC Gastroenterol 2011; 11:2. [PMID: 21219647 PMCID: PMC3027188 DOI: 10.1186/1471-230x-11-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 01/10/2011] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Butyrate has been implicated in the mechanistic basis of the prevention of colorectal cancer by dietary fibre. Numerous in vitro studies have shown that butyrate regulates cell cycle and cell death. More recently we have shown that butyrate also regulates the integrity of the intermediate filament (IF) cytoskeleton in vitro. These and other data suggest a link between the role of diet and the implication of a central role for the keratin 8 (K8) as guardian of the colorectal epithelium. METHODS In this cross-sectional study possible links between butyrate levels, field effects and keratin expression in cancer were addressed directly by analysing how levels of expression of the IF protein K8 in tumours, in adjacent fields and at a distant landmark site may be affected by the level of butyrate in the colon microenvironment. An immunohistochemical scoring protocol for K8 was developed and applied to samples, findings were further tested by immunoblotting. RESULTS Levels of K8 in colorectal tumours are lower in subjects with higher levels of faecal butyrate. Immunoblotting supported this finding.Although there were no significant relationships with butyrate on the non-tumour tissues, there was a consistent trend in all measures of extent or intensity of staining towards a reduction in expression with elevated butyrate, consistent with the inverse association in tumours. CONCLUSIONS The data suggest that butyrate may associate with down-regulation of the expression of K8 in the cancerized colon. If further validated these findings may suggest the chemopreventive value of butyrate is limited to early stage carcinogenesis as low K8 expression is associated with a poor prognosis.
Collapse
Affiliation(s)
- Abdul Q Khan
- Department of Oncology, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2JF, UK
- Department of Gastroenterology, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK
| | - Jonathan P Bury
- Department of Oncology, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2JF, UK
| | - Steven R Brown
- Department of Gastroenterology, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK
| | - Stuart A Riley
- Department of Gastroenterology, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK
| | - Bernard M Corfe
- Department of Oncology, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2JF, UK
| |
Collapse
|
14
|
Kilner J, Corfe BM, Wilkinson SJ. Modelling the microtubule: towards a better understanding of short-chain fatty acid molecular pharmacology. MOLECULAR BIOSYSTEMS 2011; 7:975-83. [DOI: 10.1039/c0mb00281j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
The relationship between dietary micro and macronutrients intake and cell proliferation in the colon. Proc Nutr Soc 2011. [DOI: 10.1017/s002966511100098x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery. Int J Cell Biol 2010; 2010:632739. [PMID: 20976254 PMCID: PMC2952894 DOI: 10.1155/2010/632739] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/13/2010] [Indexed: 12/24/2022] Open
Abstract
Healthy lifestyles and environment produce a good state of health. A number of scientific studies support the notion that external stimuli regulate an individual's epigenomic profile. Epigenetic changes play a key role in defining gene expression patterns under both normal and pathological conditions. As a major posttranslational modification, lysine (K) acetylation has received much attention, owing largely to its significant effects on chromatin dynamics and other cellular processes across species. Lysine acetyltransferases and deacetylases, two opposing families of enzymes governing K-acetylation, have been intimately linked to cancer and other diseases. These enzymes have been pursued by vigorous efforts for therapeutic development in the past 15 years or so. Interestingly, certain dietary components have been found to modulate acetylation levels in vivo. Here we review dietary, metabolic, and environmental modulators of the K-acetylation machinery and discuss how they may be of potential value in the context of disease prevention.
Collapse
|