1
|
Lynch MM, Al-Marayaty R, Obeidin F, Alexiev BA, Chen EY, Viveiros P, Schroeder BA, Hudkins K, Fan TM, Redman MW, Baker KK, Jour G, Cranmer LD, Pollack SM. B7-H3 is widely expressed in soft tissue sarcomas. BMC Cancer 2024; 24:1336. [PMID: 39478506 PMCID: PMC11523878 DOI: 10.1186/s12885-024-13061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE Targeted therapy development in soft tissue sarcoma (STS) has been burdened by the heterogeneity of this group of rare tumors. B7 homolog 3 protein (B7-H3) is a molecule in the same family as programmed death-ligand 1 (PD-L1). It has limited expression in noncancerous tissues and is overexpressed in many cancers, making it an attractive target for cancer therapy, and clinical trials targeting B7-H3 are actively underway. While available data demonstrate high expression levels of B7-H3 in individual sarcoma subtypes, its expression patterns across STS subtypes are not well described. The purpose of this study was to characterize the expression patterns of B7-H3 in STS. PATIENTS AND METHODS This retrospective analysis evaluated STS tumor specimens from patients with a variety of different subtypes. Specimens were evaluated by immunohistochemistry (IHC) for expression and staining pattern of B7-H3 both in tumors and in associated vasculature. RESULTS Specimens from 153 sarcoma patients included 15 different STS subtypes. B7-H3 was broadly expressed in 97% of samples (95% CI 0.93-0.99) and 69.2% demonstrated high levels of B7-H3 expression (95% CI 0.61-0.76). No significant association between B7-H3 positivity or expression level and prior treatment(s), tumor size, tumor grade, or patient age. B7-H3 positivity in vessels was found in 94.7% (145/153) of samples. In tumors that had been previously assessed for PD-L1 and PD-1, there was no correlation between B7-H3 positivity or expression and the positivity or expression level of PD-L1 or PD-1. CONCLUSION These data show high levels of B7-H3 positivity across soft tissue sarcoma subtypes, suggesting its feasibility as a therapeutic target for future sarcoma treatments. Future clinical trials are needed to evaluate whether targeting B7-H3 can provide clinical benefit to help patients with sarcoma.
Collapse
Affiliation(s)
- Meghan M Lynch
- Department of Internal Medicine, Northwestern University, Chicago, IL, USA
| | - Rusul Al-Marayaty
- Department of Medicine, Division of Oncology, Northwestern University, 303 E. Superior St. #3-115, Chicago, IL, 60611, USA
| | - Farres Obeidin
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | | | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Pedro Viveiros
- Department of Medicine, Division of Oncology, Northwestern University, 303 E. Superior St. #3-115, Chicago, IL, 60611, USA
| | | | - Kelly Hudkins
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Mary W Redman
- Department of Clinical Biostatistics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kelsey K Baker
- Department of Clinical Biostatistics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - George Jour
- Department of Pathology, New York University, New York, NY, USA
| | - Lee D Cranmer
- Division of Medical Oncology, University of Washington and Clinical Research Division of the Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Seth M Pollack
- Department of Medicine, Division of Oncology, Northwestern University, 303 E. Superior St. #3-115, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Perovic D, Dusanovic Pjevic M, Perovic V, Grk M, Rasic M, Milickovic M, Mijovic T, Rasic P. B7 homolog 3 in pancreatic cancer. World J Gastroenterol 2024; 30:3654-3667. [PMID: 39193002 PMCID: PMC11346158 DOI: 10.3748/wjg.v30.i31.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
Despite advances in cancer treatment, pancreatic cancer (PC) remains a disease with high mortality rates and poor survival outcomes. The B7 homolog 3 (B7-H3) checkpoint molecule is overexpressed among many malignant tumors, including PC, with low or absent expression in healthy tissues. By modulating various immunological and nonimmunological molecular mechanisms, B7-H3 may influence the progression of PC. However, the impact of B7-H3 on the survival of patients with PC remains a subject of debate. Still, most available scientific data recognize this molecule as a suppressive factor to antitumor immunity in PC. Furthermore, it has been demonstrated that B7-H3 stimulates the migration, invasion, and metastasis of PC cells, and enhances resistance to chemotherapy. In preclinical models of PC, B7-H3-targeting monoclonal antibodies have exerted profound antitumor effects by increasing natural killer cell-mediated antibody-dependent cellular cytotoxicity and delivering radioisotopes and cytotoxic drugs to the tumor site. Finally, PC treatment with B7-H3-targeting antibody-drug conjugates and chimeric antigen receptor T cells is being tested in clinical studies. This review provides a comprehensive analysis of all PC-related studies in the context of B7-H3 and points to deficiencies in the current data that should be overcome by future research.
Collapse
Affiliation(s)
- Dijana Perovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milica Rasic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Maja Milickovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Tanja Mijovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| | - Petar Rasic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| |
Collapse
|
3
|
Miller CD, Lozada JR, Zorko NA, Elliott A, Makovec A, Radovich M, Heath EI, Agarwal N, Mckay RR, Garje R, Bastos BR, Hoon DS, Orme JJ, Sartor O, VanderWalde A, Nabhan C, Sledge G, Shenderov E, Dehm SM, Lou E, Miller JS, Hwang JH, Antonarakis ES. Pan-Cancer Interrogation of B7-H3 (CD276) as an Actionable Therapeutic Target Across Human Malignancies. CANCER RESEARCH COMMUNICATIONS 2024; 4:1369-1379. [PMID: 38709075 PMCID: PMC11138391 DOI: 10.1158/2767-9764.crc-23-0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/10/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
B7-H3 (CD276) is a transmembrane glycoprotein of the B7 immune checkpoint superfamily that has emerged as a promising therapeutic target. To better understand the applicability of B7-H3-directed therapies, we analyzed 156,791 samples comprising 50 cancer types to interrogate the clinical, genomic, transcriptomic, and immunologic correlates of B7-H3 mRNA expression. DNA (592-gene/whole-exome) and RNA (whole-transcriptome) sequencing was performed from samples submitted to Caris Life Sciences. B7-H3 high versus low expression was based on top and bottom quartiles for each cancer type. Patients' overall survival was determined from insurance claims data. Pathway analysis was performed using gene set enrichment analyses. Immune cell fractions were inferred using quanTIseq. B7-H3 is expressed across several human malignancies including prostate, pancreatic, ovarian, and lung cancers. High B7-H3 expression is associated with differences in overall survival, possibly indicating a prognostic role of B7-H3 for some cancers. When examining molecular features across all cancer types, we did not identify recurrent associations between B7-H3 expression and genetic alterations in TP53, RB1, and KRAS. However, we find consistent enrichment of epithelial-to-mesenchymal transition, Wnt, TGFβ, and Notch signaling pathways. In addition, tumors with high B7-H3 expression are associated with greater proportions of M1 macrophages, but lower fractions of CD8+ T cells. We have begun to define the genomic, transcriptomic, clinical, and immunologic features associated with B7-H3 expression in 50 cancer types. We report novel clinical and molecular features of B7-H3-high tumors which may inform how current B7-H3 therapeutics should be deployed and prioritized. SIGNIFICANCE B7-H3-targeting therapeutics have shown promising results in initial clinical trials. In this pan-cancer analysis of B7-H3 mRNA expression, we found that B7-H3 exhibits robust expression in many common cancer types. These results may inform further development of B7-H3-targeting therapeutics and may guide clinical decisions for patients with limited treatment options.
Collapse
Affiliation(s)
- Carly D. Miller
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - John R. Lozada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nicholas A. Zorko
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Allison Makovec
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | | | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Rana R. Mckay
- University of California San Diego, La Jolla, California
| | - Rohan Garje
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Bruno R. Bastos
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Dave S.B. Hoon
- Saint John's Cancer Institute PHS, Santa Monica, California
| | - Jacob J. Orme
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | - Oliver Sartor
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | | | | | | | - Eugene Shenderov
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, Minnesota
| | - Emil Lou
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S. Miller
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Justin H. Hwang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
4
|
Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de Melo F. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024; 15:496-522. [PMID: 38689629 PMCID: PMC11056862 DOI: 10.5306/wjco.v15.i4.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease, defined by the presence of functional endometrial tissue outside of the uterine cavity. This disease is one of the main gynecological diseases, affecting around 10%-15% women and girls of reproductive age, being a common gynecologic disorder. Although endometriosis is a benign disease, it shares several characteristics with invasive cancer. Studies support that it has been linked with an increased chance of developing endometrial ovarian cancer, representing an earlier stage of neoplastic processes. This is particularly true for women with clear cell carcinoma, low-grade serous carcinoma and endometrioid. However, the carcinogenic pathways between both pathologies remain poorly understood. Current studies suggest a connection between endometriosis and endometriosis-associated ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflammation, and hyperestrogenism. This article aims to review current data on the molecular events linked to the development of EAOCs from endometriosis, specifically focusing on the complex relationship between the immune response to endometriosis and cancer, including the molecular mechanisms and their ramifications. Examining recent developments in immunotherapy and their potential to boost the effectiveness of future treatments.
Collapse
Affiliation(s)
- Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
5
|
Xu YH, Lu P, Gao MC, Wang R, Li YY, Guo RQ, Zhang WS, Song JX. Nomogram based on multimodal magnetic resonance combined with B7-H3mRNA for preoperative lymph node prediction in esophagus cancer. World J Clin Oncol 2024; 15:419-433. [PMID: 38576593 PMCID: PMC10989267 DOI: 10.5306/wjco.v15.i3.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Accurate preoperative prediction of lymph node metastasis (LNM) in esophageal cancer (EC) patients is of crucial clinical significance for treatment planning and prognosis. AIM To develop a clinical radiomics nomogram that can predict the preoperative lymph node (LN) status in EC patients. METHODS A total of 32 EC patients confirmed by clinical pathology (who underwent surgical treatment) were included. Real-time fluorescent quantitative reverse transcription-polymerase chain reaction was used to detect the expression of B7-H3 mRNA in EC tissue obtained during preoperative gastroscopy, and its correlation with LNM was analyzed. Radiomics features were extracted from multi-modal magnetic resonance imaging of EC using Pyradiomics in Python. Feature extraction, data dimensionality reduction, and feature selection were performed using XGBoost model and leave-one-out cross-validation. Multivariable logistic regression analysis was used to establish the prediction model, which included radiomics features, LN status from computed tomography (CT) reports, and B7-H3 mRNA expression, represented by a radiomics nomogram. Receiver operating characteristic area under the curve (AUC) and decision curve analysis (DCA) were used to evaluate the predictive performance and clinical application value of the model. RESULTS The relative expression of B7-H3 mRNA in EC patients with LNM was higher than in those without metastasis, and the difference was statistically significant (P < 0.05). The AUC value in the receiver operating characteristic (ROC) curve was 0.718 (95%CI: 0.528-0.907), with a sensitivity of 0.733 and specificity of 0.706, indicating good diagnostic performance. The individualized clinical prediction nomogram included radiomics features, LN status from CT reports, and B7-H3 mRNA expression. The ROC curve demonstrated good diagnostic value, with an AUC value of 0.765 (95%CI: 0.598-0.931), sensitivity of 0.800, and specificity of 0.706. DCA indicated the practical value of the radiomics nomogram in clinical practice. CONCLUSION This study developed a radiomics nomogram that includes radiomics features, LN status from CT reports, and B7-H3 mRNA expression, enabling convenient preoperative individualized prediction of LNM in EC patients.
Collapse
Affiliation(s)
- Yan-Han Xu
- School of Clinical Sciences, Graduate School of Nantong University, Yancheng 226019, Jiangsu Province, China
- Department of Thoracic Surgery, Yancheng Third People's Hospital, The Affiliated Hospital 6 of Nantong University, Yancheng 224000, Jiangsu Province, China
| | - Peng Lu
- Department of Imaging, Yancheng Third People's Hospital, The Affiliated Hospital 6 of Nantong University, Yancheng 224000, Jiangsu Province, China
| | - Ming-Cheng Gao
- School of Clinical Sciences, Graduate School of Nantong University, Yancheng 226019, Jiangsu Province, China
- Department of Thoracic Surgery, Yancheng Third People's Hospital, The Affiliated Hospital 6 of Nantong University, Yancheng 224000, Jiangsu Province, China
| | - Rui Wang
- School of Clinical Sciences, Graduate School of Nantong University, Yancheng 226019, Jiangsu Province, China
- Department of Thoracic Surgery, Yancheng Third People's Hospital, The Affiliated Hospital 6 of Nantong University, Yancheng 224000, Jiangsu Province, China
| | - Yang-Yang Li
- School of Clinical Sciences, Graduate School of Nantong University, Yancheng 226019, Jiangsu Province, China
- Department of Thoracic Surgery, Yancheng Third People's Hospital, The Affiliated Hospital 6 of Nantong University, Yancheng 224000, Jiangsu Province, China
| | - Rong-Qi Guo
- School of Clinical Sciences, Graduate School of Nantong University, Yancheng 226019, Jiangsu Province, China
- Department of Thoracic Surgery, Yancheng Third People's Hospital, The Affiliated Hospital 6 of Nantong University, Yancheng 224000, Jiangsu Province, China
| | - Wei-Song Zhang
- School of Clinical Sciences, Graduate School of Nantong University, Yancheng 226019, Jiangsu Province, China
- Department of Thoracic Surgery, Yancheng Third People's Hospital, The Affiliated Hospital 6 of Nantong University, Yancheng 224000, Jiangsu Province, China
| | - Jian-Xiang Song
- Department of Thoracic Surgery, Yancheng Third People's Hospital, The Affiliated Hospital 6 of Nantong University, Yancheng 224000, Jiangsu Province, China
| |
Collapse
|
6
|
Varghese E, Samuel SM, Brockmueller A, Shakibaei M, Kubatka P, Büsselberg D. B7-H3 at the crossroads between tumor plasticity and colorectal cancer progression: a potential target for therapeutic intervention. Cancer Metastasis Rev 2024; 43:115-133. [PMID: 37768439 PMCID: PMC11016009 DOI: 10.1007/s10555-023-10137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
B7-H3 (B7 homology 3 protein) is an important transmembrane immunoregulatory protein expressed in immune cells, antigen-presenting cells, and tumor cells. Studies reveal a multifaceted role of B7-H3 in tumor progression by modulating various cancer hallmarks involving angiogenesis, immune evasion, and tumor microenvironment, and it is also a promising candidate for cancer immunotherapy. In colorectal cancer (CRC), B7-H3 has been associated with various aspects of disease progression, such as evasion of tumor immune surveillance, tumor-node metastasis, and poor prognosis. Strategies to block or interfere with B7-H3 in its immunological and non-immunological functions are under investigation. In this study, we explore the role of B7-H3 in tumor plasticity, emphasizing tumor glucose metabolism, angiogenesis, epithelial-mesenchymal transition, cancer stem cells, apoptosis, and changing immune signatures in the tumor immune landscape. We discuss how B7-H3-induced tumor plasticity contributes to immune evasion, metastasis, and therapy resistance. Furthermore, we delve into the most recent advancements in targeting B7-H3-based tumor immunotherapy as a potential approach to CRC treatment.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
7
|
Lutz MS, Wang K, Jung G, Salih H, Hagelstein I. An Fc-modified monoclonal antibody as novel treatment option for pancreatic cancer. Front Immunol 2024; 15:1343929. [PMID: 38322253 PMCID: PMC10845339 DOI: 10.3389/fimmu.2024.1343929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with limited treatment options. Hence, there is a considerable medical need for novel treatment strategies. Monoclonal antibodies (mAbs) have significantly improved cancer therapy, primarily due to their ability to stimulate antibody-dependent cellular cytotoxicity (ADCC), which plays a crucial role in their therapeutic efficacy. As a result, significant effort has been focused on improving this critical function by engineering mAbs with Fc regions that have increased affinity for the Fc receptor CD16 expressed on natural killer (NK) cells, the major cell population that mediates ADCC in humans. Here we report on the preclinical characterization of a mAb directed to the target antigen B7-H3 (CD276) containing an Fc part with the amino acid substitutions S239D/I332E to increase affinity for CD16 (B7-H3-SDIE) for the treatment of pancreatic cancer. B7-H3 (CD276) is highly expressed in many tumor entities, whereas expression on healthy tissues is more limited. Our findings confirm high expression of B7-H3 on pancreatic cancer cells. Furthermore, our study shows that B7-H3-SDIE effectively activates NK cells against pancreatic cancer cells in an antigen-dependent manner, as demonstrated by the analysis of NK cell activation, degranulation and cytokine release. The activation of NK cells resulted in significant tumor cell lysis in both short-term and long-term cytotoxicity assays. In conclusion, B7-H3-SDIE constitutes a promising agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Martina S. Lutz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Kevin Wang
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department of Immunology, Eberhard Karls Universität Tübingen, Tuebingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Fabrizio FP, Muscarella LA, Rossi A. B7-H3/CD276 and small-cell lung cancer: What's new? Transl Oncol 2024; 39:101801. [PMID: 37865049 PMCID: PMC10728701 DOI: 10.1016/j.tranon.2023.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023] Open
Abstract
Immunotherapy revolutionized the treatment landscape of several cancers, including small-cell lung cancer (SCLC), with a huge number of practice-changing trials, and becoming a new frontier for their management. The addition of an anti-PD-L1, atezolizumab or durvalumab, to platinum/etoposide regimen became the standard of care for first-line therapy of extensive-stage (ES)-SCLC with the 12 months median survival exceeded for the first time. Nevertheless, most patients show primary or acquired resistance to anti-PD-L1 therefore new promising therapeutic immune-targets are under clinical investigation in several solid tumors. Among these, B7-H3, also known as CD276, is a member of the B7 family overexpressed in tumor tissues, including SCLC, while showing limited expression in normal tissues becoming an attractive and promising target for cancer immunotherapy. B7-H3 plays a dual role in the immune system during the T-cell activation, acting as a T-cell costimulatory/coinhibitory immunoregulatory protein, and promoting pro-tumorigenic functions such as tumor migration, invasion, metastases, resistance, and metabolism. Immunohistochemistry, flow cytometry, and immunofluorescence were the most used methods to assess B7-H3 expression levels and validate a possible relationship between B7-H3 staining patterns and clinicopathological features in lung cancer patients. To date, there are no clinically available therapeutics/drugs targeting B7-H3 in any solid tumors. The most promising preliminary clinical results have been reported by DS7300a and HS-20093, both are antibody-drug conjugates, that are under investigation in ongoing trials for the treatment of pretreated SCLC. This review will provide an overview of B7-H3 and corresponding inhibitors and the clinical development in the management of SCLC.
Collapse
Affiliation(s)
- Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Rossi
- Oncology Centre of Excellence, Therapeutic Science & Strategy Unit, IQVIA, Milan 20019, Italy
| |
Collapse
|
9
|
Belluomini L, Sposito M, Avancini A, Insolda J, Milella M, Rossi A, Pilotto S. Unlocking New Horizons in Small-Cell Lung Cancer Treatment: The Onset of Antibody-Drug Conjugates. Cancers (Basel) 2023; 15:5368. [PMID: 38001628 PMCID: PMC10670928 DOI: 10.3390/cancers15225368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Small-cell lung cancer (SCLC) is a highly aggressive disease, accounting for about 15% of all lung cancer cases. Despite initial responses to chemoimmunotherapy, SCLC recurs and becomes resistant to treatment. Recently, antibody-drug conjugates (ADCs) have emerged as a promising therapeutic option for SCLC. ADCs consist of an antibody that specifically targets a tumor antigen linked to a cytotoxic drug. The antibody delivers the drug directly to the cancer cells, minimizing off-target toxicity and improving the therapeutic index. Several ADCs targeting different tumor antigens are currently being evaluated in clinical trials for SCLC. Despite the negative results of rovalpituzumab tesirine (Rova-T), other ADCs targeting different antigens, such as B7-H3, seizure-related homolog 6 (SEZ6), and CEACAM5, have also been investigated in clinical trials, including for SCLC, and their results suggest preliminary activity, either alone or in combination with other therapies. More recently, sacituzumab govitecan, an anti-TROP2 ADC, demonstrated promising activity in lung cancer, including SCLC. Furthermore, an anti-B7-H3 (CD276), ifinatamab deruxtecan (DS7300A), showed a high response rate and durable responses in heavily pretreated SCLC. Overall, ADCs represent an intriguing approach to treating SCLC, particularly in the relapsed or refractory setting. Further studies are needed to determine their efficacy and safety and the best location in the treatment algorithm for SCLC. In this review, we aim to collect and describe the results regarding the past, the present, and the future of ADCs in SCLC.
Collapse
Affiliation(s)
- Lorenzo Belluomini
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| | - Marco Sposito
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| | - Alice Avancini
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| | - Jessica Insolda
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| | - Michele Milella
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| | - Antonio Rossi
- Therapeutic Science & Strategy Unit, Oncology Centre of Excellence, IQVIA, 20019 Milan, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| |
Collapse
|
10
|
Shin SH, Ju EJ, Park J, Ko EJ, Kwon MR, Lee HW, Son GW, Park YY, Kim YJ, Song SY, Lee S, Seo BS, Song JA, Lim S, Jung D, Kim S, Lee H, Park SS, Jeong SY, Choi EK. ITC-6102RO, a novel B7-H3 antibody-drug conjugate, exhibits potent therapeutic effects against B7-H3 expressing solid tumors. Cancer Cell Int 2023; 23:172. [PMID: 37596639 PMCID: PMC10439577 DOI: 10.1186/s12935-023-02991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND The B7-H3 protein, encoded by the CD276 gene, is a member of the B7 family of proteins and a transmembrane glycoprotein. It is highly expressed in various solid tumors, such as lung and breast cancer, and has been associated with limited expression in normal tissues and poor clinical outcomes across different malignancies. Additionally, B7-H3 plays a crucial role in anticancer immune responses. Antibody-drug conjugates (ADCs) are a promising therapeutic modality, utilizing antibodies targeting tumor antigens to selectively and effectively deliver potent cytotoxic agents to tumors. METHODS In this study, we demonstrate the potential of a novel B7-H3-targeting ADC, ITC-6102RO, for B7-H3-targeted therapy. ITC-6102RO was developed and conjugated with dHBD, a soluble derivative of pyrrolobenzodiazepine (PBD), using Ortho Hydroxy-Protected Aryl Sulfate (OHPAS) linkers with high biostability. We assessed the cytotoxicity and internalization of ITC-6102RO in B7-H3 overexpressing cell lines in vitro and evaluated its anticancer efficacy and mode of action in B7-H3 overexpressing cell-derived and patient-derived xenograft models in vivo. RESULTS ITC-6102RO inhibited cell viability in B7-H3-positive lung and breast cancer cell lines, inducing cell cycle arrest in the S phase, DNA damage, and apoptosis in vitro. The binding activity and selectivity of ITC-6102RO with B7-H3 were comparable to those of the unconjugated anti-B7-H3 antibody. Furthermore, ITC-6102RO proved effective in B7-H3-positive JIMT-1 subcutaneously xenografted mice and exhibited a potent antitumor effect on B7-H3-positive lung cancer patient-derived xenograft (PDX) models. The mode of action, including S phase arrest and DNA damage induced by dHBD, was confirmed in JIMT-1 tumor tissues. CONCLUSIONS Our preclinical data indicate that ITC-6102RO is a promising therapeutic agent for B7-H3-targeted therapy. Moreover, we anticipate that OHPAS linkers will serve as a valuable platform for developing novel ADCs targeting a wide range of targets.
Collapse
Affiliation(s)
- Seol Hwa Shin
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Eun Jin Ju
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Jin Park
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Eun Jung Ko
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Mi Ri Kwon
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Hye Won Lee
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Ga Won Son
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - Yun-Yong Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yeon Joo Kim
- Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Si Yeol Song
- Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sangkwang Lee
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Beom Seok Seo
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Jin-A Song
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Sangbin Lim
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Doohwan Jung
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Sunyoung Kim
- IntoCell Inc, 101, Sinildong-ro, Daedeok-gu, Daejeon, 34324, Republic of Korea
| | - Hyangsook Lee
- Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seok Soon Park
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea.
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea.
| | - Seong-Yun Jeong
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea.
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea.
| | - Eun Kyung Choi
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Asan Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea.
- Asan Preclinical Evaluation Center for Cancer Therapeutics, ASAN Medical Center, Seoul, 05505, Republic of Korea.
- Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
11
|
Aldahlawi AM, Zaher KSA. Dendritic Cell-Based Immunity: Screening of Dendritic Cell Subsets in Breast Cancer-Bearing Mice. J Microsc Ultrastruct 2023; 11:150-160. [PMID: 38025181 PMCID: PMC10679829 DOI: 10.4103/jmau.jmau_85_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
Background Breast cancer (BC) is the most devastating disease, particularly the lethal invasive form. It is the most underlying cause of death among women worldwide. The expansion of BC is controlled by a variety of alterations in the tumor cells themselves, in addition to the state of the immune system, which has a direct influence on the tumor microenvironment. Numerous receptors expressed by T-cells interact with ligands on antigen-presenting cells to provide activation signals results in mounting effector anti-tumor T-cell responses. On the other hand, there is a dearth of information about the actual interactions and reactions of T-cells and dendritic cells (DCs) all through the progression of tumor development. Aim Immune system response against BC was investigated through tumor induction in mice. The size and volume of the tumor were calculated. Moreover, the phenotypical profile of T-cells and DCs from lymph nodes (LN) and spleens of BC-bearing mice was investigated. In addition, the levels of Transforming growth factor-β, Interferon-gamma (IFN-γ), Interleukin IL-2, IL-10, IL-4, IL-12, and tumor necrosis factor (TNF)-α were determined. Materials and Methods MDA231 cells were utilized to induce BC in 30 white BALB/C mice, whereas the other 30 mice acted as healthy controls and were not treated with any cancer-causing agents. The impact of malignancy was evaluated using flow cytometry based on the marking surface molecules, as well as the titer of specific cytokines of the mice's LN culture using the ELISA method. These cytokines included transforming growth factor-β (TGF-β), IFN-γ, IL-2, IL -10, IL -4, IL -12, and TNF-α. Results The findings showed that the maturation of DCs was inhibited, followed by an accumulation of immature DCs. These immature DCs increase the release of TGF-β and cytokines like IL-10 and inhibit the release of IFN-γ and IL-12 in the culture supernatant of nodal lymph and spleen suspension of BC-bearing mice compared to control. In addition, there was a low expression of CD80 and CD86 on DCs, which indicates a low maturation process. Conclusion According to the findings, the tumor microenvironment may have been responsible for preventing the maturation of DCs. This, in turn, weakened the immune response and facilitated the ability of the tumor to proliferate. Furthermore, the tumor microenvironment increased the number of immature DCs by inhibiting their stimulation by overexpression of TGF-β-produced by regulatory T lymphocytes and stimulation of tumor cells. In addition, the tumor microenvironment stimulated the secretion of cytokines such as IL-10, and CD4 and decreased the secretion of IFN-γ-and IL-12 in tumor-induced mice cultured LN and spleen.
Collapse
Affiliation(s)
- Alia M Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Kawther Sayed Ali Zaher
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| |
Collapse
|
12
|
Ding J, Sun Y, Sulaiman Z, Li C, Cheng Z, Liu S. Comprehensive Analysis Reveals Distinct Immunological and Prognostic Characteristics of CD276/B7-H3 in Pan-Cancer. Int J Gen Med 2023; 16:367-391. [PMID: 36756390 PMCID: PMC9901449 DOI: 10.2147/ijgm.s395553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Background CD276 (also known as B7-H3), a newly discovered immunoregulatory protein that belongs to the B7 family, is a significant and attractive target for cancer immunotherapy. Existing evidence demonstrates its pivotal role in the tumorigenesis of some cancers. However, there still lacks a systematic and comprehensive pan-cancer analysis of the role of CD276 in tumor immunology and prognosis. Methods We explored and validated the mRNA and protein expression levels of CD276 in multiple tumors through public databases and clinical tissues specimens. The Univariate Cox regression analysis and Kaplan-Meier analysis were applied to assess the prognostic value of CD276. The correlation between CD276 expression and clinical characteristics and immunological features in diverse tumors was also explored. GSEA was performed to illuminate the biological function and involved pathways of CD276. Moreover, the CellMiner database was used to interpret the relationship between CD276 and multiple chemotherapeutic agents. CCK-8 assay was performed to validate the biological function of CD276 in vitro. Results In general, CD276 was differentially expressed between most tumor tissues and their corresponding normal tissues. Higher expression levels of CD276 were associated with poorer survival outcomes in most tumor cohorts from TCGA. There was a close correlation between CD276 expression and clinical features, the infiltration levels of specific immune cells, immune subtypes, TMB, MSI, MMR, recognized immunoregulatory genes and drug sensitivity across diverse human cancers. The scRNA-seq data analysis further revealed that CD276 was mainly expressed on the tumor infiltrating macrophages. Additionally, in vitro experiments showed that knockdown of CD276 inhibited the proliferation of ovarian cancer (OV) and cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) cell lines. Conclusion CD276 is a potent biomarker for predicting the prognosis and immunological features in some tumors, and it may play a critical role in the tumor immune microenvironment (TIME) through macrophage-associated signaling.
Collapse
Affiliation(s)
- Jinye Ding
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yaoqi Sun
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zubaidan Sulaiman
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Caixia Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Correspondence: Zhongping Cheng; Shupeng Liu, Email ;
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Chen X, Li J, Chen Y, Que Z, Du J, Zhang J. B7 Family Members in Pancreatic Ductal Adenocarcinoma: Attractive Targets for Cancer Immunotherapy. Int J Mol Sci 2022; 23:ijms232315005. [PMID: 36499340 PMCID: PMC9740860 DOI: 10.3390/ijms232315005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with a five-year survival rate of approximately 5-10%. The immune checkpoint blockade represented by PD-1/PD-L1 inhibitors has been effective in a variety of solid tumors but has had little clinical response in pancreatic cancer patients. The unique suppressive immune microenvironment is the primary reason for this outcome, and it is essential to identify key targets to remodel the immune microenvironment. Some B7 family immune checkpoints, particularly PD-L1, PD-L2, B7-H3, B7-H4, VISTA and HHLA2, have been identified as playing a significant role in the control of tumor immune responses. This paper provides a comprehensive overview of the recent research progress of some members of the B7 family in pancreatic cancer, which revealed that they can be involved in tumor progression through immune-dependent and non-immune-dependent pathways, highlighting the mechanisms of their involvement in tumor immune escape and assessing the prospects of their clinical application. Targeting B7 family immune checkpoints is expected to result in novel immunotherapeutic treatments for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Xin Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, Medical School, Southeast University, Nanjing 210009, China
| | - Jie Li
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Yue Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Ziting Que
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Jiawei Du
- Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, Medical School, Southeast University, Nanjing 210009, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, Medical School, Southeast University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-25-83272314
| |
Collapse
|
14
|
To kill a cancer: Targeting the immune inhibitory checkpoint molecule, B7-H3. Biochim Biophys Acta Rev Cancer 2022; 1877:188783. [PMID: 36028149 DOI: 10.1016/j.bbcan.2022.188783] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022]
Abstract
Targeting the anti-tumor immune response via the B7 family of immune-regulatory checkpoint proteins has revolutionized cancer treatment and resulted in punctuated responses in patients. B7-H3 has gained recent attention given its prominent deregulation and immunomodulatory role in a multitude of cancers. Numerous cancer studies have firmly established a strong link between deregulated B7-H3 expression and poorer outcomes. B7-H3 has been shown to augment cancer cell survival, proliferation, metastasis, and drug resistance by inducing an immune evasive phenotype through its effects on tumor-infiltrating immune cells, cancer cells, cancer-associated vasculature, and the stroma. Given the complex interplay between each of these components of the tumor microenvironment, a deeper understanding of B7-H3 signaling properties is inherently crucial to developing efficacious therapies that can target and inhibit these cancer-promoting interactions. This review delves into the various ways B7-H3 acts as an immunomodulator to facilitate immune evasion and promote tumor growth and spread. With post-transcriptional and post-translational modifications giving rise to different active isoforms coupled with recent discoveries of its putative receptors, B7-H3 can perform diverse functions. Here, we first discuss the dual co-stimulatory/co-inhibitory functions of B7-H3 in the context of normal physiology and cancer. We then discuss the crosstalk facilitated by B7-H3 between stromal components and tumor cells that promote tumor growth and metastasis in different populations of tumor cells, associated vasculature, and the stroma. Concurrently, we highlight therapeutic strategies that can exploit these interactions and their associated limitations, concluding with a special focus on the promise of next-gen in silico-based approaches to small molecule inhibitor drug discovery for B7-H3 that may mitigate these limitations.
Collapse
|
15
|
Zhu Y, Chen J, Liu Y, Zheng X, Feng J, Chen X, Jiang T, Li Y, Chen L. Prognostic values of B7-H3, B7-H4, and HHLA2 expression in human pancreatic cancer tissues based on mIHC and spatial distribution analysis. Pathol Res Pract 2022; 234:153911. [PMID: 35489125 DOI: 10.1016/j.prp.2022.153911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most malignant solid tumors and its 5-year survival rate remains poor. Although immunotherapy has achieved certain therapeutic efficacy in some clinical trials, such treatment still shows low responses and overall remission rate. Therefore, it is urgently necessary to dissect the tumor microenvironment and optimize the immunotherapeutic strategies against this malignancy. METHODS Using the multi-color immunohistochemistry assay, we investigated the expressions of B7-H3, B7-H4, HHLA2, CD8, and CD68 in 63 cases of PC tissues in a tissue microarray. Moreover, we analyzed immunolocalization features, clinical associations and prognostic values of these molecules. RESULTS The expressions of B7-H3, B7-H4, and HHLA2 could be detected in cytokeratin staining positive (CK+) cancer epithelial cells, CD68+tumor-associated macrophages (TAMs), and even other cells defined as CK-CD8-CD68-. Higher expression of B7-H3 in tumor cells could predict a better survival of the PC patients. A positive correlation was found between the expressions of B7-H3 and HHLA2 in tumor cells, while there was a negative correlation between the expressions of B7-H4 and HHLA2 in tumor cells. A positive correlation was found between the expressions of B7-H3 and B7-H4 or HHLA2 in CD68+TAMs, but not B7-H4 and HHLA2. Tumor-infiltrating CD8+T cells in combination with CD68+TAMs could serve as an important predictor for the postoperative prognosis of PC patients. Higher expression of B7-H3, or HHLA2 in CD68+TAMs could serve as an important predictor for poorer prognosis of PC patients. Patients with B7-H3lowB7-H4low, B7-H3lowHHLA2low, or B7-H4lowHHLA2low on CD68+TAMs could have a better postoperative prognosis compared with the other sub-populations in the combinational analysis. CONCLUSIONS Taken together, our study indicated variable expressions and prognostic values of B7-H3, B7-H4, and HHLA2, in human PC tissues, and demonstrated that these co-stimulator molecules expressed by CD68+TAMs could be used as important bio-markers for the prognostic prediction of PC patients. Moreover, these results supported that the evaluation of these markers could be used as essential candidate targets for immunotherapy against PC.
Collapse
Affiliation(s)
- Yulan Zhu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Junjun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Yingting Liu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Jun Feng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Xuemin Chen
- Department of Hepatobiliary Surgery, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Tianwei Jiang
- Department of Neurosurgery, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Yuan Li
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, Jiangsu, China.
| |
Collapse
|
16
|
Targeted Therapy of B7 Family Checkpoints as an Innovative Approach to Overcome Cancer Therapy Resistance: A Review from Chemotherapy to Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113545. [PMID: 35684481 PMCID: PMC9182385 DOI: 10.3390/molecules27113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
It is estimated that there were 18.1 million cancer cases worldwide in 2018, with about 9 million deaths. Proper diagnosis of cancer is essential for its effective treatment because each type of cancer requires a specific treatment procedure. Cancer therapy includes one or more approaches such as surgery, radiotherapy, chemotherapy, and immunotherapy. In recent years, immunotherapy has received much attention and immune checkpoint molecules have been used to treat several cancers. These molecules are involved in regulating the activity of T lymphocytes. Accumulated evidence shows that targeting immune checkpoint regulators like PD-1/PD-L1 and CTLA-4 are significantly useful in treating cancers. According to studies, these molecules also have pivotal roles in the chemoresistance of cancer cells. Considering these findings, the combination of immunotherapy and chemotherapy can help to treat cancer with a more efficient approach. Among immune checkpoint molecules, the B7 family checkpoints have been studied in various cancer types such as breast cancer, myeloma, and lymphoma. In these cancers, they cause the cells to become resistant to the chemotherapeutic agents. Discovering the exact signaling pathways and selective targeting of these checkpoint molecules may provide a promising avenue to overcome cancer development and therapy resistance. Highlights: (1) The development of resistance to cancer chemotherapy or immunotherapy is the main obstacle to improving the outcome of these anti-cancer therapies. (2) Recent investigations have described the involvement of immune checkpoint molecules in the development of cancer therapy resistance. (3) In the present study, the molecular participation of the B7 immune checkpoint family in anticancer therapies has been highlighted. (4) Targeting these immune checkpoint molecules may be considered an efficient approach to overcoming this obstacle.
Collapse
|
17
|
Ding P, Ma Z, Liu D, Pan M, Li H, Feng Y, Zhang Y, Shao C, Jiang M, Lu D, Han J, Wang J, Yan X. Lysine Acetylation/Deacetylation Modification of Immune-Related Molecules in Cancer Immunotherapy. Front Immunol 2022; 13:865975. [PMID: 35585975 PMCID: PMC9108232 DOI: 10.3389/fimmu.2022.865975] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
As major post-translational modifications (PTMs), acetylation and deacetylation are significant factors in signal transmission and cellular metabolism, and are modulated by a dynamic process via two pivotal categories of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). In previous studies, dysregulation of lysine acetylation and deacetylation has been reported to be associated with the genesis and development of malignancy. Scientists have recently explored acetylation/deacetylation patterns and prospective cancer therapy techniques, and the FDA has approved four HDAC inhibitors (HDACi) to be used in clinical treatment. In the present review, the most recent developments in the area of lysine acetylation/deacetylation alteration in cancer immunotherapy were investigated. Firstly, a brief explanation of the acetylation/deacetylation process and relevant indispensable enzymes that participate therein is provided. Subsequently, a multitude of specific immune-related molecules involved in the lysine acetylation/deacetylation process are listed in the context of cancer, in addition to several therapeutic strategies associated with lysine acetylation/deacetylation modification in cancer immunotherapy. Finally, a number of prospective research fields related to cancer immunotherapy concepts are offered with detailed analysis. Overall, the present review may provide a reference for researchers in the relevant field of study, with the aim of being instructive and meaningful to further research as well as the selection of potential targets and effective measures for future cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Huizi Li
- Department of Outpatient, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Jinliang Wang
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| |
Collapse
|
18
|
A Novel Anti-B7-H3 × Anti-CD3 Bispecific Antibody with Potent Antitumor Activity. Life (Basel) 2022; 12:life12020157. [PMID: 35207448 PMCID: PMC8879513 DOI: 10.3390/life12020157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022] Open
Abstract
B7-H3 plays an important role in tumor apoptosis, proliferation, adhesion, angiogenesis, invasion, migration, and evasion of immune surveillance. It is overexpressed in various human solid tumor tissues. In patients, B7-H3 overexpression correlates with advanced stages, poor clinical outcomes, and resistance to therapy. The roles of B7-H3 in tumor progression make it a potential candidate for targeted therapy. Here, we generated a mouse anti-human B7-H3 antibody and demonstrated its binding activity via Tongji University Suzhou Instituteprotein-based and cell-based assays. We then developed a novel format anti-B7-H3 × anti-CD3 bispecific antibody based on the antibody-binding fragment of the anti-B7-H3 antibody and single-chain variable fragment structure of anti-CD3 antibody (OKT3) and demonstrated that this bispecific antibody mediated potent cytotoxic activities against various B7-H3-positive tumor cell lines in vitro by improving T cell activation and proliferation. This bispecific antibody also demonstrated potent antitumor activity in humanized mice xenograft models. These results revealed that the novel anti-B7-H3 × anti-CD3 bispecific antibody has the potential to be employed in treatment of B7-H3-positive solid tumors.
Collapse
|
19
|
Kanayama T, Miyachi M, Sugimoto Y, Yagyu S, Kikuchi K, Tsuchiya K, Iehara T, Hosoi H. Reduced B7-H3 expression by PAX3-FOXO1 knockdown inhibits cellular motility and promotes myogenic differentiation in alveolar rhabdomyosarcoma. Sci Rep 2021; 11:18802. [PMID: 34552155 PMCID: PMC8458399 DOI: 10.1038/s41598-021-98322-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
B7-H3 (also known as CD276) is associated with aggressive characteristics in various cancers. Meanwhile, in alveolar rhabdomyosarcoma (ARMS), PAX3-FOXO1 fusion protein is associated with increased aggressiveness and poor prognosis. In the present study, we explored the relationship between PAX3-FOXO1 and B7-H3 and the biological roles of B7-H3 in ARMS. Quantitative real time PCR and flow cytometry revealed that PAX3-FOXO1 knockdown downregulated B7-H3 expression in all the selected cell lines (Rh-30, Rh-41, and Rh-28), suggesting that PAX3-FOXO1 positively regulates B7-H3 expression. Gene expression analysis revealed that various genes and pathways involved in chemotaxis, INF-γ production, and myogenic differentiation were commonly affected by the knockdown of PAX3-FOXO1 and B7-H3. Wound healing and transwell migration assays revealed that both PAX3-FOXO1 and B7-H3 were associated with cell migration. Furthermore, knockdown of PAX3-FOXO1 or B7-H3 induced myogenin expression in all cell lines, although myosin heavy chain induction varied depending on the cellular context. Our results indicate that PAX3-FOXO1 regulates B7-H3 expression and that PAX3-FOXO1 and B7-H3 are commonly associated with multiple pathways related to an aggressive phenotype in ARMS, such as cell migration and myogenic differentiation block.
Collapse
Affiliation(s)
- Takuyo Kanayama
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Yohei Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ken Kikuchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kunihiko Tsuchiya
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
20
|
Zhou Q, Li K, Lai Y, Yao K, Wang Q, Zhan X, Peng S, Cai W, Yao W, Zang X, Xu K, Huang J, Huang H. B7 score and T cell infiltration stratify immune status in prostate cancer. J Immunother Cancer 2021; 9:jitc-2021-002455. [PMID: 34417325 PMCID: PMC8381330 DOI: 10.1136/jitc-2021-002455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs), especially programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) axis blockers, exhibit prominent antitumor effects against numerous malignancies, their benefit for patients with prostate cancer (PCa) has been somewhat marginal. This study aimed to assess the feasibility of B7-H3 or HHLA2 as alternative immunotherapeutic targets in PCa. METHODS Immunohistochemistry was performed to evaluate the expression pattern of PD-L1, B7-H3 and HHLA2 and the infiltration of CD8+ and Foxp3+ lymphocytes in 239 PCa tissues from two independent cohorts. The correlations between B7-H3 and HHLA2 and clinicopathological features, including the presence of CD8+ and Foxp3+ tumor-infiltrating lymphocytes (TILs), were explored. RESULTS HHLA2 expression was much higher than PD-L1 expression but lower than B7-H3 expression in PCa tissues. High expression of both B7-H3 and HHLA2 was significantly associated with higher Gleason score and tumor stage, lymph node metastasis and dismal overall survival (OS) and cancer-specific survival (CSS). Moreover, a high B7 score, defined as high B7-H3 expression and/or high HHLA2 expression, was an independent prognostic predictor for PCa. Of note, a high B7 score was negatively correlated with CD8+ TILs. Importantly, a new immune classification, based on the B7 score and CD8+ TILs, successfully stratified OS and CSS in PCa. CONCLUSIONS Both B7-H3 and HHLA2 have a critical impact on the immunosuppressive microenvironment, and the B7 score could be used as an independent prognostic factor for PCa. The B7 score combined with CD8+ TILs could be used as a new immune classification to stratify the risk of death, especially cancer-related death, for patients with PCa. These findings may provide insights that could improve response to immune-related comprehensive therapy for PCa in the future.
Collapse
Affiliation(s)
- Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kai Yao
- Department of urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiong Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiangyu Zhan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenli Cai
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wei Yao
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xingxing Zang
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, china
| |
Collapse
|
21
|
Pandey V, Fleming-Martinez A, Bastea L, Doeppler HR, Eisenhauer J, Le T, Edenfield B, Storz P. CXCL10/CXCR3 signaling contributes to an inflammatory microenvironment and its blockade enhances progression of murine pancreatic precancerous lesions. eLife 2021; 10:60646. [PMID: 34328416 PMCID: PMC8360647 DOI: 10.7554/elife.60646] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/29/2021] [Indexed: 01/18/2023] Open
Abstract
The development of pancreatic cancer requires recruitment and activation of different macrophage populations. However, little is known about how macrophages are attracted to the pancreas after injury or an oncogenic event, and how they crosstalk with lesion cells or other cells of the lesion microenvironment. Here, we delineate the importance of CXCL10/CXCR3 signaling during the early phase of murine pancreatic cancer. We show that CXCL10 is produced by pancreatic precancerous lesion cells in response to IFNγ signaling and that inflammatory macrophages are recipients for this chemokine. CXCL10/CXCR3 signaling in macrophages mediates their chemoattraction to the pancreas, enhances their proliferation, and maintains their inflammatory identity. Blocking of CXCL10/CXCR3 signaling in vivo shifts macrophage populations to a tumor-promoting (Ym1+, Fizz+, Arg1+) phenotype, increases fibrosis, and mediates progression of lesions, highlighting the importance of this pathway in PDA development. This is reversed when CXCL10 is overexpressed in PanIN cells.
Collapse
Affiliation(s)
- Veethika Pandey
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Alicia Fleming-Martinez
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Heike R Doeppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Jillian Eisenhauer
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Tam Le
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Brandy Edenfield
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| |
Collapse
|
22
|
Michelakos T, Kontos F, Barakat O, Maggs L, Schwab JH, Ferrone CR, Ferrone S. B7-H3 targeted antibody-based immunotherapy of malignant diseases. Expert Opin Biol Ther 2021; 21:587-602. [PMID: 33301369 PMCID: PMC8087627 DOI: 10.1080/14712598.2021.1862791] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Recent advances in immuno-oncology and bioengineering have rekindled the interest in monoclonal antibody (mAb)-based immunotherapies for malignancies. Crucial for their success is the identification of tumor antigens (TAs) that can serve as targets. B7-H3, a member of the B7 ligand family, represents such a TA. Although its exact functions and receptor(s) remain unclear, B7-H3 has predominantly a pro-tumorigenic effect mainly by suppressing the anti-tumor functions of T-cells.Areas covered: Initially we present a historical perspective on TA-specific antibodies for diagnosis and treatment of malignancies. Following a description of the TA requirements to be an attractive antibody-based immunotherapy target, we show that B7-H3 fulfills these criteria. We discuss its structure and functions. In a review and pooled analysis, we describe the limited B7-H3 expression in normal tissues and estimate B7-H3 expression frequency in tumors, tumor-associated vasculature and cancer initiating cells (CICs). Lastly, we discuss the association of B7-H3 expression in tumors with poor prognosis.Expert opinion: B7-H3 is an attractive target for mAb-based cancer immunotherapy. B7-H3-targeting strategies are expected to be highly effective and - importantly - safe. To fully exploit the diagnostic and therapeutic potential of B7-H3, its expression in pre-malignant lesions, serum, metastases, and CICs requires further investigation.
Collapse
Affiliation(s)
- Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Omar Barakat
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Luke Maggs
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Geerdes EE, Sideras K, Aziz MH, van Eijck CH, Bruno MJ, Sprengers D, Boor PPC, Kwekkeboom J. Cancer Cell B7-H3 Expression Is More Prevalent in the Pancreato-Biliary Subtype of Ampullary Cancer Than in Pancreatic Cancer. Front Oncol 2021; 11:615691. [PMID: 33996541 PMCID: PMC8117087 DOI: 10.3389/fonc.2021.615691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
B7-H3 is an immunomodulatory member of the B7-superfamily with limited expression in normal tissues, but overexpression in several types of cancer. Therefore it is currently being explored as a potential target for cancer immunotherapy. The biological relevance of B7-H3 expression in pancreatic cancer is unclear, while there are no data on B7-H3 expression in ampullary cancer. We aimed to compare intra-tumoral B7-H3 expression between these two closely related cancer types and analyze its association with post-surgical disease course. B7-H3 expression levels were determined by immunohistochemistry in tissue microarrays of resected tumors of 137 pancreatic cancer patients and 83 patients with ampullary cancer of the pancreato-biliary subtype. B7-H3 was more frequently expressed in cancer cells of ampullary cancer patients compared to pancreatic cancer patients (51% versus 21%; p< 0.001). In ampullary cancer patients, but not in pancreatic cancer patients, B7-H3 cancer cell expression was associated with longer disease-free survival and patient survival. However, the prognostic value of B7-H3 was lost upon adjustment for CA19-9 levels. The frequencies of B7-H3 expression in tumor stroma did not differ between the two types of cancer (66% versus 63%). In both cancer types, stromal B7-H3 expression was not associated with post-surgical disease course. Compared to pancreatic cancer, B7-H3 is more frequently expressed in cancer cells of patients with the pancreato-biliary subtype of ampullary cancer. These data suggest that B7-H3 may represent an interesting potential target for immunotherapy in ampullary cancer rather than in pancreatic cancer.
Collapse
Affiliation(s)
- Emma E Geerdes
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Kostandinos Sideras
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands.,Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - M Hosein Aziz
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Casper H van Eijck
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
24
|
Liu S, Liang J, Liu Z, Zhang C, Wang Y, Watson AH, Zhou C, Zhang F, Wu K, Zhang F, Lu Y, Wang X. The Role of CD276 in Cancers. Front Oncol 2021; 11:654684. [PMID: 33842369 PMCID: PMC8032984 DOI: 10.3389/fonc.2021.654684] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
Objective Aberrant expression of the immune checkpoint molecule, CD276, also known as B7-H3, is associated with tumorigenesis. In this review, we aim to comprehensively describe the role of CD276 in malignancies and its potential therapeutic effect. Data Sources Database including PubMed, EMbase, Cochrane Library, CNKI, and Clinical Trails.gov were searched for eligible studies and reviews. Study selection: Original studies and review articles on the topic of CD276 in tumors were retrieved. Results CD276 is an immune checkpoint molecule in the epithelial mesenchymal transition (EMT) pathway. In this review, we evaluated the available evidence on the expression and regulation of CD276. We also assessed the role of CD276 within the immune micro-environment, effect on tumor progression, and the potential therapeutic effect of CD276 targeted therapy for malignancies. Conclusion CD276 plays an essential role in cell proliferation, invasion, and migration in malignancies. Results from most recent studies indicate CD276 could be a promising therapeutic target for malignant tumors.
Collapse
Affiliation(s)
- Shengzhuo Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.,William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Chi Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Alice Helen Watson
- Clinical Science and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Chuan Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kan Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fuxun Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiping Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianding Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Zhou L, Jiang Z, Gu J, Gu W, Han S. B7-H3 and digestive system cancers. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancers (DSC) are the most common cancers worldwide and often associated with poor prognosis because of their characteristics of invasive and metastatic. Thus, it is particularly necessary to find novel molecular targets for early diagnosis, as well as targeted treatment of DSC. B7-H3, which was previously referred to as a modulatory ligand that regulate T-cell-mediated immune reaction, is a B7-family member of co-stimulatory biomolecules, and in recent years it was found that its concentration was remarkably up modulated in serum, as well as tissues of DSC patients. Numerous studies have documented that B7-H3 has a vital function in the DSC. Herein, we summarize the current literature on diagnosis and prognosis potential of B7-H3 in DSC including those of the esophagus, gastric, liver, pancreas, and colon.
Collapse
Affiliation(s)
- Liyun Zhou
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Zhenhua Jiang
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Jing Gu
- Department of Dermatology, Henan Honliv Hospital, Changyuan
| | - Wenhui Gu
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Shuangyin Han
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| |
Collapse
|
26
|
Vetvicka D, Sivak L, Jogdeo CM, Kumar R, Khan R, Hang Y, Oupický D. Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next? J Control Release 2021; 331:246-259. [PMID: 33482273 DOI: 10.1016/j.jconrel.2021.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Despite intensive research efforts and development of numerous new anticancer drugs and treatment strategies over the past decades, there has been only very limited improvement in overall patient survival and in effective treatment options for pancreatic cancer. Current chemotherapy improves survival in terms of months and death rates in pancreatic cancer patients are almost equivalent to incidence rates. It is imperative to develop new therapeutic approaches. Among them, gene silencing shows promise of effectiveness in both tumor cells and stromal cells by inhibiting tumor-promoting genes. This review summarizes potential targets for gene silencing in both pancreatic cancer cells and abundant stromal cells focusing on non-viral delivery systems for small RNAs and discusses the potential immunological implications. The review concludes with the importance of multifactorial therapy of pancreatic cancer.
Collapse
Affiliation(s)
- David Vetvicka
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovska 1, Prague 2 12000, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-61300, Czech Republic
| | - Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Rubayat Khan
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
27
|
Mirzaei S, Gholami MH, Mahabady MK, Nabavi N, Zabolian A, Banihashemi SM, Haddadi A, Entezari M, Hushmandi K, Makvandi P, Samarghandian S, Zarrabi A, Ashrafizadeh M, Khan H. Pre-clinical investigation of STAT3 pathway in bladder cancer: Paving the way for clinical translation. Biomed Pharmacother 2020; 133:111077. [PMID: 33378975 DOI: 10.1016/j.biopha.2020.111077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Effective cancer therapy requires identification of signaling networks and investigating their potential role in proliferation and invasion of cancer cells. Among molecular pathways, signal transducer and activator of transcription 3 (STAT3) has been of importance due to its involvement in promoting proliferation, and invasion of cancer cells, and mediating chemoresistance. In the present review, our aim is to reveal role of STAT3 pathway in bladder cancer (BC), as one of the leading causes of death worldwide. In respect to its tumor-promoting role, STAT3 is able to enhance the growth of BC cells via inhibiting apoptosis and cell cycle arrest. STAT3 also contributes to metastasis of BC cells via upregulating of MMP-2 and MMP-9 as well as genes in the EMT pathway. BC cells obtain chemoresistance via STAT3 overexpression and its inhibition paves the way for increasing efficacy of chemotherapy. Different molecular pathways such as KMT1A, EZH2, DAB2IP and non-coding RNAs including microRNAs and long non-coding RNAs can function as upstream mediators of STAT3 that are discussed in this review article.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- IstitutoItaliano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, OrtaMahalle, ÜniversiteCaddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| |
Collapse
|
28
|
Qi Y, Liu B, Sun Q, Xiong X, Chen Q. Immune Checkpoint Targeted Therapy in Glioma: Status and Hopes. Front Immunol 2020; 11:578877. [PMID: 33329549 PMCID: PMC7729019 DOI: 10.3389/fimmu.2020.578877] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Glioma is the most malignant primary tumor of the central nervous system and is characterized by an extremely low overall survival. Recent breakthroughs in cancer therapy using immune checkpoint blockade have attracted significant attention. However, despite representing the most promising (immunotherapy) treatment for cancer, the clinical application of immune checkpoint blockade in glioma patients remains challenging due to the "cold phenotype" of glioma and multiple factors inducing resistance, both intrinsic and acquired. Therefore, comprehensive understanding of the tumor microenvironment and the unique immunological status of the brain will be critical for the application of glioma immunotherapy. More sensitive biomarkers to monitor the immune response, as well as combining multiple immunotherapy strategies, may accelerate clinical progress and enable development of effective and safe treatments for glioma patients.
Collapse
Affiliation(s)
- Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Cervelli R, Cencini M, Buonincontri G, Campana F, Cacciato Insilla A, Aringhieri G, De Simone P, Boggi U, Campani D, Tosetti M, Crocetti L. 7-T MRI of explanted liver and ex-vivo pancreatic specimens: prospective study protocol of radiological-pathological correlation feasibility (the EXLIPSE project). Eur Radiol Exp 2020; 4:58. [PMID: 33057851 PMCID: PMC7560686 DOI: 10.1186/s41747-020-00185-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
The study focuses on radiological-pathological correlation between imaging of ex vivo samples obtained by a 7-T scanner and histological examination. The specimens will be derived from native explanted cirrhotic livers, liver grafts excluded from donation because of severe steatosis, and primary pancreatic tumours. Magnetic resonance imaging (MRI) examinations will be performed within 24 h from liver or pancreatic lesion surgical removal. The MRI protocol will include morphological sequences, quantitative T1, T2, and fat-, water-fraction maps with Cartesian k-space acquisition, and multiparametric methods based on a transient-state “MRI fingerprinting”. Finally, the specimen will be fixed by formalin. Qualitative imaging analysis will be performed by two independent blinded radiologists to assess image consistency score. Quantitative analysis will be performed by drawing regions of interest on different tissue zones to measure T1 and T2 relaxation times as well as fat- and water-fraction. The same tissue areas will be analysed by the pathologists. This study will provide the possibility to improve our knowledge about qualitative and quantitative abdominal imaging assessment at 7 T, by correlating imaging characteristics and the corresponding histological composition of ex vivo specimens, in order to identify imaging biomarkers. Trial registration: ClinicalTrials.gov: 13646. Registered 9 July 2019—retrospectively registered
Collapse
Affiliation(s)
- Rosa Cervelli
- Division of Diagnostic and Interventional Radiology, University of Pisa, Via Paradisa, 2 - Cisanello Hospital, 56100, Pisa, Italy
| | | | | | - Francesco Campana
- Division of Diagnostic and Interventional Radiology, University of Pisa, Via Paradisa, 2 - Cisanello Hospital, 56100, Pisa, Italy
| | | | - Giacomo Aringhieri
- Division of Diagnostic and Interventional Radiology, University of Pisa, Via Paradisa, 2 - Cisanello Hospital, 56100, Pisa, Italy
| | - Paolo De Simone
- Division of Hepatic Surgery and Liver Transplant, University of Pisa, Pisa, Italy
| | - Ugo Boggi
- Division of General and Transplant and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Laura Crocetti
- Division of Diagnostic and Interventional Radiology, University of Pisa, Via Paradisa, 2 - Cisanello Hospital, 56100, Pisa, Italy.
| |
Collapse
|
30
|
Kontos F, Michelakos T, Kurokawa T, Sadagopan A, Schwab JH, Ferrone CR, Ferrone S. B7-H3: An Attractive Target for Antibody-based Immunotherapy. Clin Cancer Res 2020; 27:1227-1235. [PMID: 33051306 DOI: 10.1158/1078-0432.ccr-20-2584] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
Abstract
The recent impressive clinical responses to antibody-based immunotherapy have prompted the identification of clinically relevant tumor antigens that can serve as targets in solid tumors. Among them, B7-H3, a member of the B7 ligand family, represents an attractive target for antibody-based immunotherapy, it is overexpressed on differentiated malignant cells and cancer-initiating cells, with limited heterogeneity, and high frequency (60% of 25,000 tumor samples) in many different cancer types, but has a limited expression at low level in normal tissues. In nonmalignant tissues, B7-H3 has a predominantly inhibitory role in adaptive immunity, suppressing T-cell activation and proliferation. In malignant tissues, B7-H3 inhibits tumor antigen-specific immune responses, leading to a protumorigenic effect. B7-H3 also has nonimmunologic protumorigenic functions, such as promoting migration and invasion, angiogenesis, chemoresistance, and endothelial-to-mesenchymal transition, as well as affecting tumor cell metabolism. As a result, B7-H3 expression in tumors is associated with poor prognosis. Although experimental B7-H3 silencing reduces cancer cell malignant potential, there has been limited emphasis on the development of B7-H3-blocking antibodies, most likely because the B7-H3 receptor remains unknown. Instead, many antibody-based strategies utilizing distinct effector mechanisms to target B7-H3-expressing cancer cells have been developed. These strategies have demonstrated potent antitumor activity and acceptable safety profiles in preclinical models. Ongoing clinical trials are assessing their safety and efficacy in patients. Identification of the B7-H3 receptor will improve our understanding of its role in tumor immunity, and will suggest rational strategies to develop blocking antibodies, which may enhance the therapeutic efficacy of tumor immunity.
Collapse
Affiliation(s)
- Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tomohiro Kurokawa
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
31
|
The Landscape of CAR-T Cell Clinical Trials against Solid Tumors-A Comprehensive Overview. Cancers (Basel) 2020; 12:cancers12092567. [PMID: 32916883 PMCID: PMC7563774 DOI: 10.3390/cancers12092567] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Certain immune cells, namely T cells, of cancer patients can be genetically manipulated to express so-called chimeric antigen receptors (CARs), which enables these cells to kill the tumor cells after recognition by the receptor. This therapy is very successful in the treatment of hematologic tumors such as lymphoma or leukemia. However, tumors growing as a solid mass are less susceptible to this kind of treatment. This review summarizes known data of all clinical trials using this therapy against solid tumors that are registered at clinicaltrials.gov. Abstract CAR-T cells showed great potential in the treatment of patients with hematologic tumors. However, the clinical efficacy of CAR-T cells against solid tumors lags behind. To obtain a comprehensive overview of the landscape of CAR-T cell clinical trials against this type of cancer, this review summarizes all the 196 studies registered at clinicaltrials.gov. Special focus is on: (1) geographical distribution; (2) targeted organs, tumor entities, and antigens; (3) CAR transfer methods, CAR formats, and extra features introduced into the T cells; and (4) patient pretreatments, injection sites, and safety measurements. Finally, the few data on clinical outcome are reported. The last assessment of clinicaltrials.gov for the data summarized in this paper was on 4 August 2020.
Collapse
|
32
|
Flem-Karlsen K, Fodstad Ø, Nunes-Xavier CE. B7-H3 Immune Checkpoint Protein in Human Cancer. Curr Med Chem 2020; 27:4062-4086. [PMID: 31099317 DOI: 10.2174/0929867326666190517115515] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
B7-H3 belongs to the B7 family of immune checkpoint proteins, which are important regulators of the adaptive immune response and emerging key players in human cancer. B7-H3 is a transmembrane protein expressed on the surface of tumor cells, antigen presenting cells, natural killer cells, tumor endothelial cells, but can also be present in intra- and extracellular vesicles. Additionally, B7-H3 may be present as a circulating soluble isoform in serum and other body fluids. B7-H3 is overexpressed in a variety of tumor types, in correlation with poor prognosis. B7-H3 is a promising new immunotherapy target for anti-cancer immune response, as well as a potential biomarker. Besides its immunoregulatory role, B7-H3 has intrinsic pro-tumorigenic activities related to enhanced cell proliferation, migration, invasion, angiogenesis, metastatic capacity and anti-cancer drug resistance. B7-H3 has also been found to regulate key metabolic enzymes, promoting the high glycolytic capacity of cancer cells. B7-H3 receptors are still not identified, and little is known about the molecular mechanisms underlying B7-H3 functions. Here, we review the current knowledge on the involvement of B7-H3 in human cancer.
Collapse
Affiliation(s)
- Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| |
Collapse
|
33
|
Bonk S, Tasdelen P, Kluth M, Hube-Magg C, Makrypidi-Fraune G, Möller K, Höflmayer D, Dwertmann Rico S, Büscheck F, Minner S, Heinzer H, Graefen M, Hinsch A, Luebke AM, Dum D, Uhlig R, Schlomm T, Sauter G, Simon R, Weidemann SA. High B7-H3 expression is linked to increased risk of prostate cancer progression. Pathol Int 2020; 70:733-742. [PMID: 32776718 DOI: 10.1111/pin.12999] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022]
Abstract
B7-H3 is a member of the B7 superfamily of immune checkpoint molecules. B7-H3 up regulation has been linked to cancer development and progression in many tumors including prostate cancer. To clarify the potential utility of B7-H3 as a prognostic biomarker, B7-H3 expression was analyzed by immunohistochemistry in more than 17 000 prostate cancers. Normal prostatic glands were largely B7-H3 negative, while membranous B7-H3 immunostaining was seen in 47.0% of analyzed cancers. B7-H3 immunostaining was weak in 12.3%, moderate in 21.1% and strong in 13.5% of cases. High B7-H3 expression was associated with pT, Gleason score, lymph node metastasis, high Ki67 labeling index and early prostate-specific antigen recurrence (P < 0.0001 each). High B7-H3 expression was also linked to high androgen receptor expression and TMPRSS2:V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusions (P < 0.0001 each). Multivariate analyses showed a strong independent prognostic impact of high B7-H3 expression in all cancers and in the ERG negative subgroup. Comparison with previously analyzed frequent chromosomal deletions revealed a close association with Phosphatase and Tensin Homolog deletions. Analysis of B7-H3, alone or in combination with other markers, might be of clinical utility, especially in the subgroup of ERG negative prostate cancers.
Collapse
Affiliation(s)
- Sarah Bonk
- Department of General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pinar Tasdelen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören A Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Prognostic Impact of PD-1 and Tim-3 Expression in Tumor Tissue in Stage I-III Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5294043. [PMID: 32509862 PMCID: PMC7244975 DOI: 10.1155/2020/5294043] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Background Programmed cell death receptor 1 (PD-1) and T cell immunoglobulin mucin-3 (Tim-3) are considered as important immunosuppressive molecules and play an important role in tumor immune escape and cancer progression. However, it remains unclear whether PD-1 and Tim-3 are coexpressed in stage I-III colorectal cancer (CRC) and how they impact on the prognosis of the disease. Materials and Methods A total of two cohorts with 451 patients who underwent surgery for stage I-III CRC treatment were enrolled in the study. Among which, 378 cases were from The Cancer Genome Atlas (TCGA) database and 73 cases were from the Fourth Hospital of Hebei Medical University (FHHMU) cohort. The mRNA expressions of PD-1 and Tim-3 in tumor tissue in stage I-III CRC were obtained from TCGA database. Immunohistochemistry was used to assess the expressions of PD-1 and Tim-3 in tumor tissue in stage I-III CRC in the FHHMU cohort. Interactive relationships between PD-1 and Tim-3 were retrieved through the online STRING database, which was used to study the interactions between proteins. DAVID, consisting of comprehensive biological function annotation information, was applied for the GO and KEGG pathway enrichment analysis of the interactive genes. Results In the FHHMU cohort, the high expressions of PD-1 and Tim-3 were, respectively, found in 42.47% and 84.93% of stage I-III CRC tissue. PD-1 was significantly associated with age, primary site, and lymphatic metastasis. Tim-3 was closely related to the primary site. Correlation analysis showed that PD-1 and Tim-3 were positively correlated (r = 0.5682, P < 0.001). In TCGA cohort, PD-1 and Tim-3 were associated with the prognosis of CRC patients in terms of 5-year survival (P < 0.05). In the FHHMU cohort, the 5-year survival of patients with high levels of PD-1 and Tim-3 was 54.84% and 65.85%, respectively. Among which, the high expression of PD-1 was associated with poor prognosis (5-year OS: 54.84% vs. 88.10%, P = 0.003). The 5-year survival rate of CRC patients with coexpression of PD-1 and Tim-3 was 45.00%, which was significantly worse than non-coexpression (72.73%, 85.71%, and 90.48% separately). The functional network of PD-1 and Tim-3 primarily participates in the regulation of immune cell activation and proliferation, immune cell receptor complex, cell adhesion molecules, and T cell receptor signaling pathway. Conclusion In summary, upregulation of PD-1 and Tim-3 in stage I-III CRC tumor tissue could be associated with the poor prognosis of patients. Those patients with coexpression of PD-1 and Tim-3 may have a significantly worse prognosis.
Collapse
|
35
|
Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy. Int J Biol Sci 2020; 16:1767-1773. [PMID: 32398947 PMCID: PMC7211166 DOI: 10.7150/ijbs.41105] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
B7-H3 (also known as CD276) is a newly found molecule of B7 family, which may be a promising target for cancer treatment. B7-H3 protein was demonstrated to be expressed in several kinds of tumor tissues including non-small-cell lung cancer (NSCLC) and prostate cancer. Its expression is highly associated with undesirable treatment outcomes and survival time, due to function of the immune checkpoint molecule. It was classified as either a co-stimulatory molecule for T cell activation or the nonimmunological role of regulating signaling pathways. Although there is still no agreed conclusion on the function of B7-H3, it may be a valuable target for cancer therapy. This review aims to provide a comprehensive, up-to-date summary of the advances in B7-H3 targeting approaches in cancer therapy. Although several challenges remain, B7-H3 offers a new therapeutic target with increased efficacy and less toxicity in future cancer treatment.
Collapse
Affiliation(s)
- Shuo Yang
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Biological Imaging & Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Wei Wei
- Guangdong Cord Blood Bank; Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, China
| | - Qi Zhao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Biological Imaging & Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| |
Collapse
|
36
|
Hull A, Li Y, Bartholomeusz D, Hsieh W, Allen B, Bezak E. Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma: A Review of the Current Status of Literature. Cancers (Basel) 2020; 12:E481. [PMID: 32092952 PMCID: PMC7072553 DOI: 10.3390/cancers12020481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has long been associated with low survival rates. A lack of accurate diagnostic tests and limited treatment options contribute to the poor prognosis of PDAC. Radioimmunotherapy using α- or β-emitting radionuclides has been identified as a potential treatment for PDAC. By harnessing the cytotoxicity of α or β particles, radioimmunotherapy may overcome the anatomic and physiological factors which traditionally make PDAC resistant to most conventional treatments. Appropriate selection of target receptors and the development of selective and cytotoxic radioimmunoconjugates are needed to achieve the desired results of radioimmunotherapy. The aim of this review is to examine the growing preclinical and clinical trial evidence regarding the application of α and β radioimmunotherapy for the treatment of PDAC. A systematic search of MEDLINE® and Scopus databases was performed to identify 34 relevant studies conducted on α or β radioimmunotherapy of PDAC. Preclinical results demonstrated α and β radioimmunotherapy provided effective tumour control. Clinical studies were limited to investigating β radioimmunotherapy only. Phase I and II trials observed disease control rates of 11.2%-57.9%, with synergistic effects noted for combination therapies. Further developments and optimisation of treatment regimens are needed to improve the clinical relevance of α and β radioimmunotherapy in PDAC.
Collapse
Affiliation(s)
- Ashleigh Hull
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
| | - Yanrui Li
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
| | - Dylan Bartholomeusz
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia;
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - William Hsieh
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia;
| | - Barry Allen
- Faculty of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia;
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
- Department of Physics, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
37
|
Zhao Y, Chen D, Wang W, Zhao T, Wen J, Zhang F, Duan S, Chen C, Sang Y, Zhang Y, Chen Y. Significance of TIM-3 Expression in Resected Esophageal Squamous Cell Carcinoma. Ann Thorac Surg 2020; 109:1551-1557. [PMID: 31987829 DOI: 10.1016/j.athoracsur.2019.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) is a promising checkpoint. However, its features and prognostic value remain undetermined in esophageal squamous cell carcinoma (ESCC). This study evaluated the prognostic value of TIM-3 expression and its relationship with programmed cell death 1 (PD-1) and CD8+ tumor-infiltrating lymphocytes (TILs) in patients with surgically resected ESCC. METHODS Expression levels of TIM-3, PD-1, and CD8+ TILs in ESCC were determined by immunohistochemistry. The association between clinicopathologic features or clinical outcomes and TIM-3 expression was analyzed. RESULTS A total of 183 patients with ESCC who had undergone esophagectomy without implementation of neoadjuvant therapy at the Second Affiliated Hospital of Soochow University in Suzhou, China from January 2009 to December 2014 were included. PD-1 positivity (P = .032) and high CD8+ TIL density (P = .035) significantly correlated with positive TIM-3 expression. TIM-3 positivity was an independent risk factor for recurrence-free survival (RFS) (P < .001) and overall survival (OS) (P < .001). Subgroup analysis revealed that the TIM-3+PD-1+CD8 low group had the worst RFS and OS, whereas the TIM-3-PD-1-CD8 high group had the best RFS and OS (RFS: log-rank test P < .001; OS: log-rank test P < .001). CONCLUSIONS Positive TIM-3 expression was associated with PD-1 positivity and high CD8+ TIL density and was an independent risk factor for RFS and OS in ESCC. Furthermore, the combination of TIM-3 and PD-1 expression or CD8+ TIL density could further stratify patients into different groups with distinct prognosis.
Collapse
Affiliation(s)
- Yuhuan Zhao
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Donglai Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Wang
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Zhao
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junmiao Wen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fuquan Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shanzhou Duan
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yonghua Sang
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongsheng Zhang
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongbing Chen
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
38
|
Clinicopathological and Prognostic Characteristics of CD276 (B7-H3) Expression in Adrenocortical Carcinoma. DISEASE MARKERS 2020; 2020:5354825. [PMID: 31998416 PMCID: PMC6977319 DOI: 10.1155/2020/5354825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 02/05/2023]
Abstract
Background Adrenocortical carcinoma (ACC) is a rare malignant endocrine tumor with a high tumor recurrence rate and poor postoperative survival. Recent studies suggest that CD276- (B7-H3) targeted therapy represents a promising therapeutic option for solid tumors. However, little is known about the expression status of CD276 or its association with progression and prognosis of ACC. Methods Clinical data were retrospectively analyzed from patients who underwent resection of ACC at our institution (n = 48). Archived, formalin-fixed, and paraffin-embedded samples were collected for immunohistochemical analysis, and the correlation between CD276 expression and clinicopathological parameters was evaluated. Kaplan-Meier and univariate/multivariate Cox regression methods were implemented to identify any prognostic effects. Data from The Cancer Genome Atlas (TCGA) ACC cohort (n = 48). Archived, formalin-fixed, and paraffin-embedded samples were collected for immunohistochemical analysis, and the correlation between CD276 expression and clinicopathological parameters was evaluated. Kaplan-Meier and univariate/multivariate Cox regression methods were implemented to identify any prognostic effects. Data from The Cancer Genome Atlas (TCGA) ACC cohort (. Results Positive expression of CD276 was detected on the cell membrane and in the cytoplasm of cancer cells or tumor-associated vascular cells in 91.67% (44/48) of ACCs. Vascular expression of CD276 was associated with local aggression (higher T stage, P = 0.029) and advanced ENSAT stage (P = 0.029) and advanced ENSAT stage (P = 0.029) and advanced ENSAT stage (P = 0.029) and advanced ENSAT stage (P = 0.029) and advanced ENSAT stage (P = 0.029) and advanced ENSAT stage (. Conclusion These findings highlight the immune checkpoint factor CD276 as an independent prognostic factor and a potential therapeutic target in ACC.
Collapse
|
39
|
Wang W, Chen D, Zhao Y, Zhao T, Wen J, Mao Y, Chen C, Sang Y, Zhang Y, Chen Y. Characterization of LAG-3, CTLA-4, and CD8 + TIL density and their joint influence on the prognosis of patients with esophageal squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:776. [PMID: 32042792 DOI: 10.21037/atm.2019.11.38] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background We aimed to characterize the relationships of lymphocyte activation gene-3 (LAG-3) expression, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) expression, and CD8+ tumor-infiltrating lymphocyte (TIL) density, and to investigate the joint prognostic impact of these three markers in patients with surgically resected esophageal squamous cell carcinoma (ESCC). Methods Expression of LAG-3, CTLA-4 and the density of CD8+ TILs were evaluated by immunohistochemistry in resected ESCC. The associations between LAG-3 expression and clinicopathologic characteristics, as well as patient prognoses, were analyzed. Results A total of 183 patients were included. LAG-3 expression was observed in 69 (37.7%) patients. Positive LAG-3 expression was significantly associated with CTLA-4 expression (P=0.004). LAG-3 positivity, CTLA-4 positivity, and low CD8+ TIL densities were significantly associated with worsening recurrence-free survival (RFS) [LAG-3: hazard ratio (HR), 1.72; 95% confidence interval (CI), 1.10-2.89; P=0.019; CTLA-4: HR, 1.69; 95% CI, 1.04-2.73; P=0.033; CD8+: HR, 0.60; 95% CI, 0.38-0.94; P=0.025] and overall survival (OS) (LAG-3: HR, 2.09; 95% CI, 1.24-3.53; P=0.006; CTLA-4: HR, 1.47; 95% CI, 0.86-2.53; P=0.161; CD8+: HR, 0.56; 95% CI, 0.33-0.95; P=0.032). Subgroup analysis revealed that the LAG-3 CTLA-4 CD8+ group had the best RFS (P<0.001) and OS (P<0.001). Conclusions LAG-3 expression was correlated with CTLA-4 expression on TILs. Positive LAG-3 expression was associated with poor prognoses in ESCC. A combination of LAG-3, CTLA-4 expression and CD8+ TILs density could further stratify patients into different subgroups with distinct prognoses.
Collapse
Affiliation(s)
- Wenjia Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Donglai Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Yuhuan Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ting Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Junmiao Wen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yiming Mao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Department of Thoracic Surgery, Suzhou Kowloon Hospital Shanghai Jiaotong University School of Medicine, Suzhou 215028, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Yonghua Sang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yongsheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yongbing Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
40
|
Qi Y, Deng G, Xu P, Zhang H, Yuan F, Geng R, Jiang H, Liu B, Chen Q. HHLA2 is a novel prognostic predictor and potential therapeutic target in malignant glioma. Oncol Rep 2019; 42:2309-2322. [PMID: 31578594 PMCID: PMC6826309 DOI: 10.3892/or.2019.7343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/30/2019] [Indexed: 12/30/2022] Open
Abstract
Glioma is the most common and aggressive tumor type of the central nervous system and is associated with poor prognosis. To date, novel emerging immunotherapies have significantly improved outcomes for patients with various cancer types. Human endogenous retrovirus‑H long terminal repeat‑associating protein 2 (HHLA2), a newly discovered immune checkpoint molecule, has demonstrated its potential as a novel therapeutic target. Therefore, the present study aimed to investigate the clinical prognostic value of HHLA2 in gliomas and its mechanistic role. A systematic review of datasets from The Cancer Genome Atlas was performed. The RNA‑seq data of a total of 669 cases were analyzed and the biological function of HHLA2 was predicted by Gene Ontology (GO) and pathway enrichment analysis. Immunohistochemistry labelling images for HHLA2 was obtained from the Human Protein Atlas. xCell was used to comprehensively analyze the model of tumor‑infiltrating immune cell in glioma. The Cox proportional hazards regression model was used to predict outcomes for glioma patients. The results revealed that the expression levels of HHLA2 were significantly lower in high‑grade glioma, as well as glioma with wild‑type isocitrate dehydrogenase, no deletion of 1p/19q and telomerase reverse transcriptase promoter mutation. Receiver operating characteristic analysis revealed that HHLA2 was a predictor of the neural subtype. The tumor‑infiltrating immune cell model indicated that HHLA2 was negatively associated with tumor‑associated macrophages. GO analysis and pathway enrichment analysis revealed that HHLA2‑associated genes were functionally involved in inhibition of neoplasia‑associated processes. HHLA2 was significantly negatively correlated with certain genes, including interleukin‑10, transforming growth factor‑β, vascular endothelial growth factor and δ‑like canonical Notch ligand 4, and other immune checkpoint molecules, including programmed cell death 1, lymphocyte activating 3 and CD276. Survival analysis indicated that high expression of HHLA2 predicted a favorable prognosis. In conclusion, the present study revealed that upregulation of HHLA2 is significantly associated with a favorable outcome for patients with glioma. Targeting HHLA2 as an immune stimulator may become a valuable approach for the treatment of glioma in clinical practice.
Collapse
Affiliation(s)
- Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Pengfei Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huikai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China,Correspondence to: Professor Baohui Liu or Professor Qianxue Chen, Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, P.R. China, E-mail: , E-mail:
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China,Correspondence to: Professor Baohui Liu or Professor Qianxue Chen, Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, P.R. China, E-mail: , E-mail:
| |
Collapse
|
41
|
Chapoval AI, Chapoval SP, Shcherbakova NS, Shcherbakov DN. Immune Checkpoints of the B7 Family. Part 2. Representatives of the B7 Family B7-H3, B7-H4, B7-H5, B7-H6, B7-H7, and ILDR2 and Their Receptors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019050091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Lina TT, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE. Helicobacter pylori elicits B7H3 expression on gastric epithelial cells: Implications in local T cell regulation and subset development during infection. ACTA ACUST UNITED AC 2019; 2. [PMID: 31998864 DOI: 10.31487/j.cor.2019.05.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) is a gram negative bacterium that infects more than 50% of humanity and is associated with gastritis, peptic ulcer and gastric cancer. Although CD4+ T cells are recruited to the gastric mucosa, the host is unable to clear the bacteria. Previously, we demonstrated that H. pylori infection upregulates the expression of the T cell co-inhibitory molecule B7-H1 while simultaneously downregulating the expression of T cell co-stimulatory molecule B7-H2 on gastric epithelial cells (GEC), which together affect the Treg and Th17 cell balance and foster bacterial persistence. Because B7-H3, another member of the B7 family of co-inhibitory receptors, has been found to have important immunoregulatory roles and in cancer, in this study we examined the expression of B7-H3 molecules on GEC and how the expression is regulated by H. pylori during infection. Our study showed that both human and murine GEC constitutively express B7-H3 molecules, but their expression levels increased during H. pylori infection. We further demonstrated that H. pylori uses its type 4 secretion system (T4SS) components CagA and cell wall peptidoglycan (PG) fragment to upregulate B7-H3. Th17 cells and Treg cells which are increased during H. pylori infection also had an effect on B7-H3 induction. The underlying cell signaling pathway involves modulation of p38MAPK pathway. Since B7-H3 were shown to up-regulate Th2 responses, the phenotype of T cell subpopulations in mice infected with H. pylori PMSS1 or SS1 strains were characterized. A mixed Th1/Th2 response in H. pylori infected mice was observed. Consistent with previous findings, increased Treg cells and decreased Th17 cells in MLN of PMSS1 infected mice compared to SS1 infected mice was observed. Human biopsy samples collected from gastritis biopsies and gastric tumors showed a strong association between increased B7-H3 and Th2 responses in H. pylori strains associated with gastritis. T cell: GEC co-cultures and anti-B7-H3 blocking Ab confirmed that the induction of Th2 is mediated by B7-H3 and associated exclusively with an H. pylori gastritis strain not cancer or ulcer strains. In conclusion, these studies revealed a novel regulatory mechanism employed by H. pylori to influence the type of T cell response that develops within the infected gastric mucosa.
Collapse
Affiliation(s)
- Taslima T Lina
- Department of Pediatrics, University of Texas Medical Branch
| | - Jazmin Gonzalez
- Department of Pediatrics, University of Texas Medical Branch
| | - Irina V Pinchuk
- Division of Gastroenterology and Hepatology, Penn State Cancer Institute
| | - Ellen J Beswick
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah School of Medicine
| | - Victor E Reyes
- Department of Pediatrics, University of Texas Medical Branch
| |
Collapse
|
43
|
Lina TT, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE. Helicobacter pylori elicits B7H3 expression on gastric epithelial cells: Implications in local T cell regulation and subset development during infection. CLINICAL ONCOLOGY AND RESEARCH 2019; 2:10.31487/j.cor.2019.05.05. [PMID: 31998864 PMCID: PMC6988449 DOI: 10.31487/j.cor.2019.05.05 10.31487/j.cor.2019.05.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Helicobacter pylori (H. pylori) is a gram negative bacterium that infects more than 50% of humanity and is associated with gastritis, peptic ulcer and gastric cancer. Although CD4+ T cells are recruited to the gastric mucosa, the host is unable to clear the bacteria. Previously, we demonstrated that H. pylori infection upregulates the expression of the T cell co-inhibitory molecule B7-H1 while simultaneously downregulating the expression of T cell co-stimulatory molecule B7-H2 on gastric epithelial cells (GEC), which together affect the Treg and Th17 cell balance and foster bacterial persistence. Because B7-H3, another member of the B7 family of co-inhibitory receptors, has been found to have important immunoregulatory roles and in cancer, in this study we examined the expression of B7-H3 molecules on GEC and how the expression is regulated by H. pylori during infection. Our study showed that both human and murine GEC constitutively express B7-H3 molecules, but their expression levels increased during H. pylori infection. We further demonstrated that H. pylori uses its type 4 secretion system (T4SS) components CagA and cell wall peptidoglycan (PG) fragment to upregulate B7-H3. Th17 cells and Treg cells which are increased during H. pylori infection also had an effect on B7-H3 induction. The underlying cell signaling pathway involves modulation of p38MAPK pathway. Since B7-H3 were shown to up-regulate Th2 responses, the phenotype of T cell subpopulations in mice infected with H. pylori PMSS1 or SS1 strains were characterized. A mixed Th1/Th2 response in H. pylori infected mice was observed. Consistent with previous findings, increased Treg cells and decreased Th17 cells in MLN of PMSS1 infected mice compared to SS1 infected mice was observed. Human biopsy samples collected from gastritis biopsies and gastric tumors showed a strong association between increased B7-H3 and Th2 responses in H. pylori strains associated with gastritis. T cell: GEC co-cultures and anti-B7-H3 blocking Ab confirmed that the induction of Th2 is mediated by B7-H3 and associated exclusively with an H. pylori gastritis strain not cancer or ulcer strains. In conclusion, these studies revealed a novel regulatory mechanism employed by H. pylori to influence the type of T cell response that develops within the infected gastric mucosa.
Collapse
Affiliation(s)
- Taslima T Lina
- Department of Pediatrics, University of Texas Medical Branch
| | - Jazmin Gonzalez
- Department of Pediatrics, University of Texas Medical Branch
| | - Irina V Pinchuk
- Division of Gastroenterology and Hepatology, Penn State Cancer Institute
| | - Ellen J Beswick
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah School of Medicine
| | - Victor E Reyes
- Department of Pediatrics, University of Texas Medical Branch
| |
Collapse
|
44
|
Cui Y, Zhang L, Wang W, Ma S, Liu H, Zang X, Zhang Y, Guan F. Downregulation of nicotinamide N-methyltransferase inhibits migration and epithelial-mesenchymal transition of esophageal squamous cell carcinoma via Wnt/β-catenin pathway. Mol Cell Biochem 2019; 460:93-103. [PMID: 31278587 DOI: 10.1007/s11010-019-03573-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/21/2019] [Indexed: 01/27/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) is an important methyltransferase involved in the biotransformation of many drugs and exogenous compounds. Abnormal expression of NNMT protein is closely associated with the onset and progression of many malignancies, but little is known about its role in esophageal squamous cell carcinoma (ESCC). Therefore, we aimed to explore whether NNMT plays any roles in carcinogenesis and metastasis in ESCC. NNMT expression was determined by immunohistochemistry in ESCC and corresponding adjacent normal tissues. Functional experiments were performed to elucidate the effects of NNMT knockdown on the proliferation, apoptosis, cell cycle, migration, and epithelial-mesenchymal transition (EMT) in EC9706 and TE1 cells. NNMT expression was significantly elevated in ESCC tissues compared with corresponding adjacent normal tissues. Moreover, a significant association emerged between NNMT expression and lymph node metastasis. SiRNA-mediated knockdown of NNMT in ESCC cells can significantly suppress cell viability and migration, induce cell cycle arrest, and promote cell apoptosis. In addition, NNMT downregulation led to the reversal of EMT, as reflected by upregulation of the intercellular adhesion molecule E-cadherin and downregulation of the mesenchymal markers N-cadherin and Vimentin. Further study found that NNMT knockdown suppressed the Wnt/β-catenin signaling pathway. Taken together, these findings indicate that NNMT is a critical regulator of EMT in ESCC and may be a potential therapeutic target for ESCC metastasis.
Collapse
Affiliation(s)
- Yanyan Cui
- College of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Luyu Zhang
- College of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjie Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shanshan Ma
- College of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongtao Liu
- College of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, NY, 10461, USA
| | - Yanting Zhang
- College of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Fangxia Guan
- College of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
45
|
Li P, Yang Y, Jin Y, Zhao R, Dong C, Zheng W, Zhang T, Li J, Gu Z. B7-H3 participates in human salivary gland epithelial cells apoptosis through NF-κB pathway in primary Sjögren's syndrome. J Transl Med 2019; 17:268. [PMID: 31412888 PMCID: PMC6694606 DOI: 10.1186/s12967-019-2017-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Background Primary Sjögren’s syndrome (pSS) is an autoimmune disorder mainly characterized by exocrine gland injury. Costimulatory molecules play an important role in immune-regulatory networks. Although B7 family costimulatory molecules were previously discovered in human salivary gland epithelial (HSGE) cells in pSS, the effects of the B7 family member B7-H3 (CD276) have not been well elucidated. Thus, this study aimed to investigate the role and mechanism of B7-H3 in HSGE cells in pSS. Methods The expression of B7-H3, B7-H1, PD-1 in serum, saliva and salivary gland were examined by immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Immunofluorescence was used to test the expression and distribution of B7-H3, AQP5 and CK-8 in salivary gland tissues. Flow cytometry, Cell Counting Kit 8 (CCK-8) and western blot (WB) were performed to research the apoptotic, proliferative and inflammatory effects of B7-H3 in primary HSGE cells and HSGE cell lines. Results Our results showed that the expression of PD-1, B7-H1 and B7-H3 in peripheral blood, and salivary glands in pSS patients was higher than that in healthy controls, which was positive correlation with the grade of the salivary glands. The expression of B7-H3 in saliva was higher in pSS patients than that in healthy controls, which was detected with the most significant difference of them. The expression of B7-H3 in primary HSGE cells of pSS patients was significantly higher than healthy controls. B7-H3 increased activity of NF-κB pathway and promoted inflammation of HSGE cells, decreasing the expression of AQP5. Furthermore, B7-H3 overexpression inhibited proliferation and induced apoptosis in HSGE cell lines. Conclusion B7-H3 could promote inflammation and induce apoptosis of HSGE cells by activating NF-κB pathway, which might be a promising therapeutic target for pSS.
Collapse
Affiliation(s)
- Ping Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ying Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yi Jin
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Rui Zhao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Chen Dong
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tianyi Zhang
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jing Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China. .,Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China. .,Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
46
|
B7H3 regulates differentiation and serves as a potential biomarker and theranostic target for human glioblastoma. J Transl Med 2019; 99:1117-1129. [PMID: 30914782 DOI: 10.1038/s41374-019-0238-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022] Open
Abstract
B7H3 (CD276), a co-stimulator molecule of the cell surface B7 protein superfamily, is expressed on glioblastomas (GBM). Recently, B7H3 functions beyond immune costimulation have been demonstrated. However, the mechanisms underlying B7H3 function are diverse and not well understood. GBM tumors contain undifferentiated self-renewing cells, which confound therapeutic attempts. We investigated the role of B7H3 in the regulation of GBM cell differentiation and the regulatory pathways involved. Analysis of public databases (TCGA, Rembrandt, and GEO NCBI) and RNA sequencing were performed to explore the role of B7H3 in GBM. Knockdown and overexpression of B7H3, were used to verify the downstream pathway in vitro. Further studies in vivo were performed to support the new finding. Bioinformatics analysis identified a correlation between the expression of B7H3, the expression of glioma self-renewing cell (GSC)-related genes, and MYC expression. These observations were verified by RNA-sequencing analyses in primary GBM cell lines. In vitro knockdown of B7H3-induced differentiation, associated with downregulation of SMAD6 (a TGF-β pathway inhibitor) and enhancement of SMAD1 phosphorylation-induced SMAD4 expression. Importantly, activation of the TGF-β pathway resulted in downregulation of MYC expression. In vivo assays conducted in a human GBM cell line xenograft mouse model demonstrated that B7H3 knockdown decreased MYC expression and inhibited tumor growth. B7H3 knockdown could regulate GBM differentiation by modulating MYC expression. So, B7H3 could serve as a potential theranostic target for the treatment of patients with GBM.
Collapse
|
47
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
48
|
Aung PP, Parra ER, Barua S, Sui D, Ning J, Mino B, Ledesma DA, Curry JL, Nagarajan P, Torres-Cabala CA, Efstathiou E, Hoang AG, Wong MK, Wargo JA, Lazar AJ, Rao A, Prieto VG, Wistuba I, Tetzlaff MT. B7-H3 Expression in Merkel Cell Carcinoma-Associated Endothelial Cells Correlates with Locally Aggressive Primary Tumor Features and Increased Vascular Density. Clin Cancer Res 2019; 25:3455-3467. [PMID: 30808776 DOI: 10.1158/1078-0432.ccr-18-2355] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/04/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Merkel cell carcinoma (MCC) is an aggressive cutaneous malignancy whose pathogenesis and prognosis are related to the integrity of the host immune system. Despite promising clinical responses to immune-checkpoint blockade, response and resistance remain unpredictable, underscoring a critical need to delineate novel prognostic biomarkers and/or therapeutic targets for this disease.Experimental Design: Expression of immune-regulatory markers (PD-L2, B7-H3, B7-H4, IDO-1, ICOS, TIM3, LAG3, VISTA, and OX-40) was assessed using singlet chromogenic IHC in 10 primary MCCs. Multiplex immunofluorescence quantified CD31 and B7-H3 expression in 52 primary and 25 metastatic MCCs. B7-H3 and CD31 expressions were tabulated as a series of independent (X,Y) cell centroids. A spatial G-function, calculated based on the distribution of distances of B7-H3+ (X,Y) cell centroids around the CD31+ (X,Y) cell centroids, was used to estimate a colocalization index equivalent to the percentage of CD31-positive cell centroids that overlap with a B7-H3-positive cell centroid. RESULTS Primary and metastatic MCCs exhibit a dynamic range of colocalized CD31 and B7-H3 expression. Increasing colocalized expression of B7-H3 with CD31 significantly associated with increased tumor size (P = 0.0060), greater depth of invasion (P = 0.0110), presence of lymphovascular invasion (P = 0.0453), and invasion beyond skin (P = 0.0428) in primary MCC. Consistent with these findings, increasing colocalized expression of B7-H3 and CD31 correlated with increasing vascular density in primary MCC, but not metastatic MCC. CONCLUSIONS Our results demonstrate that colocalized expression of B7-H3/CD31 is a poor prognostic indicator and suggest therapies targeting B7-H3 may represent an effective approach to augmenting immune-activating therapies for MCC.
Collapse
Affiliation(s)
- Phyu P Aung
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Souptik Barua
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas
| | - Dawen Sui
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Ning
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Barbara Mino
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debora Alejandra Ledesma
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan L Curry
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Carlos A Torres-Cabala
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anh G Hoang
- Department of Genitourinary Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael K Wong
- Department of Melanoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A Wargo
- Department of Surgical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander J Lazar
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arvind Rao
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas.,Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Victor G Prieto
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael T Tetzlaff
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
49
|
Du H, Hirabayashi K, Ahn S, Kren NP, Montgomery SA, Wang X, Tiruthani K, Mirlekar B, Michaud D, Greene K, Herrera SG, Xu Y, Sun C, Chen Y, Ma X, Ferrone CR, Pylayeva-Gupta Y, Yeh JJ, Liu R, Savoldo B, Ferrone S, Dotti G. Antitumor Responses in the Absence of Toxicity in Solid Tumors by Targeting B7-H3 via Chimeric Antigen Receptor T Cells. Cancer Cell 2019; 35:221-237.e8. [PMID: 30753824 PMCID: PMC6645919 DOI: 10.1016/j.ccell.2019.01.002] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/31/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Abstract
The high expression across multiple tumor types and restricted expression in normal tissues make B7-H3 an attractive target for immunotherapy. We generated chimeric antigen receptor (CAR) T cells targeting B7-H3 (B7-H3.CAR-Ts) and found that B7-H3.CAR-Ts controlled the growth of pancreatic ductal adenocarcinoma, ovarian cancer and neuroblastoma in vitro and in orthotopic and metastatic xenograft mouse models, which included patient-derived xenograft. We also found that 4-1BB co-stimulation promotes lower PD-1 expression in B7-H3.CAR-Ts, and superior antitumor activity when targeting tumor cells that constitutively expressed PD-L1. We took advantage of the cross-reactivity of the B7-H3.CAR with murine B7-H3, and found that B7-H3.CAR-Ts significantly controlled tumor growth in a syngeneic tumor model without evident toxicity. These findings support the clinical development of B7-H3.CAR-Ts.
Collapse
MESH Headings
- Animals
- B7 Antigens/genetics
- B7 Antigens/immunology
- B7-H1 Antigen/immunology
- CD28 Antigens/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Coculture Techniques
- Female
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Male
- Mice, Inbred C57BL
- Neuroblastoma/genetics
- Neuroblastoma/immunology
- Neuroblastoma/pathology
- Neuroblastoma/therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Signal Transduction
- Tumor Burden
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hongwei Du
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Koichi Hirabayashi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy Porterfield Kren
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie Ann Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Karthik Tiruthani
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel Michaud
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin Greene
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Silvia Gabriela Herrera
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yang Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuhui Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xingcong Ma
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cristina Rosa Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Surgery, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
50
|
Cai L, Michelakos T, Deshpande V, Arora KS, Yamada T, Ting DT, Taylor MS, Castillo CFD, Warshaw AL, Lillemoe KD, Ferrone S, Ferrone CR. Role of Tumor-Associated Macrophages in the Clinical Course of Pancreatic Neuroendocrine Tumors (PanNETs). Clin Cancer Res 2019; 25:2644-2655. [PMID: 30670493 DOI: 10.1158/1078-0432.ccr-18-1401] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/28/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE This study evaluated the potential role of immune cells and molecules in the pathogenesis and clinical course of pancreatic neuroendocrine tumors (PanNET). EXPERIMENTAL DESIGN Surgically resected PanNETs (N = 104) were immunohistochemically analyzed for Ki67 index, mitotic rate, macrophage, CD4+ cells, and CD8+ T-cell infiltration, as well as HLA class I, PD-L1, and B7-H3 expression. Results were correlated with clinicopathologic characteristics as well as with disease-free (DFS) and disease-specific (DSS) survival. RESULTS The median age of the 57 WHO grade 1 and 47 WHO grade 2 patients was 55 years. High intratumoral CD8+ T-cell infiltration correlated with prolonged DFS (P = 0.05), especially when the number of tumor-associated macrophages (TAM) was low. In contrast, high peritumoral CD4+ cell and TAM infiltration was associated with a worse DFS and DSS. PD-L1 and B7-H3 were expressed in 53% and 78% PanNETs, respectively. HLA class I expression was defective in about 70% PanNETs. HLA-A expression correlated with favorable DSS in PD-L1-negative tumors (P = 0.02). TAM infiltration (P = 0.02), WHO grade (P = 0.04), T stage (P = 0.01), and lymph node positivity (P = 0.04) were independent predictors of DFS. TAM infiltration (P = 0.026) and T stage (P = 0.012) continued to be predictors of DFS in WHO grade 1 PanNET patients. TAM infiltration was the sole independent predictor of DSS for WHO grade 1 and 2 patients (P = 0.02). Therefore, this biomarker may contribute to identifying WHO grade 1 patients with poor prognosis. CONCLUSIONS TAM infiltration appears to be the most informative prognostic biomarker in PanNET. It may represent a useful immunotherapeutic target in patients with PanNET.
Collapse
Affiliation(s)
- Lei Cai
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kshitij S Arora
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Teppei Yamada
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David T Ting
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marty S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Andrew L Warshaw
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith D Lillemoe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|