1
|
Gilmer G, Bean AC, Iijima H, Jackson N, Thurston RC, Ambrosio F. Uncovering the "riddle of femininity" in osteoarthritis: a systematic review and meta-analysis of menopausal animal models and mathematical modeling of estrogen treatment. Osteoarthritis Cartilage 2023; 31:447-457. [PMID: 36621591 PMCID: PMC10033429 DOI: 10.1016/j.joca.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Post-menopausal women are disproportionately affected by osteoarthritis (OA). As such, the purpose of this study was to (1) summarize the state-of-the-science aimed at understanding the effects of menopause on OA in animal models and (2) investigate how dosage and timing of initiation of estrogen treatment affect cartilage degeneration. DESIGN A systematic review identified articles studying menopausal effects on cartilage in preclinical models. A meta-analysis was performed using overlapping cartilage outcomes in conjunction with a rigor and reproducibility analysis. Ordinary differential equation models were used to determine if a relationship exists between cartilage degeneration and the timing of initiation or dosage of estrogen treatment. RESULTS Thirty-eight manuscripts were eligible for inclusion. The most common menopause model used was ovariectomy (92%), and most animals were young at the time of menopause induction (86%). Most studies did not report inclusion criteria, animal monitoring, protocol registration, or data accessibility. Cartilage outcomes were worse in post-menopausal animals compared to age-matched, non-menopausal animals, as evidenced by cartilage histological scoring [0.75, 1.72], cartilage thickness [-4.96, -0.96], type II collagen [-4.87, -0.56], and c-terminal cross-linked telopeptide of type II collagen (CTX-II) [2.43, 5.79] (95% CI of Effect Size (+greater in menopause, -greater in non-menopause)). Moreover, modeling suggests that cartilage health may be improved with early initiation and higher doses of estrogen treatment. CONCLUSIONS To improve translatability, animal models that consider aging and natural menopause should be utilized, and more attention to rigor and reproducibility is needed. Timing of initiation and dosage may be important factors modulating therapeutic effects of estrogen on cartilage.
Collapse
Affiliation(s)
- G Gilmer
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Cellular and Molecular Pathology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA; Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Rehabilitation Hospital, Boston, MA, USA; Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA.
| | - A C Bean
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - H Iijima
- Institute for Advanced Research, Nagoya University, Nagoya University, Nagoya, Japan.
| | - N Jackson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - R C Thurston
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - F Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Rehabilitation Hospital, Boston, MA, USA; Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
KATİCA M, TEPEKOY F. The effect of Calcitriol 1,25 (OH)2 - D3 on osteoblast-like cell proliferation during in vitro cultivation. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2020. [DOI: 10.24880/maeuvfd.653000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
3
|
Chen CH, Chen WC, Lin CY, Chen CH, Tsuang YH, Kuo YJ. Sintered dicalcium pyrophosphate treatment attenuates estrogen deficiency-associated disc degeneration in ovariectomized rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3033-3041. [PMID: 30271118 PMCID: PMC6151093 DOI: 10.2147/dddt.s170816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Estrogen deficiency is associated with musculoskeletal disorders. Sintered dicalcium pyrophosphate (SDCP) is a novel antiosteoporotic agent. In this study, we examined its use for restoration of bone quality and attenuation of disc degeneration in ovariectomy rats. Methods Sixty female Sprague Dawley rats were randomly divided into 3 groups, namely sham group undergoing sham surgery, ovariectomy (OVX) group receiving an equivalent volume of isotonic sodium chloride solution, and OVX/SDCP group orally administered with 0.25 mg/mL SDCP. Animals were sacrificed at 3 and 6 months post ovariectomy and lumbar vertebrae and intervertebral discs were harvested. Bone mineral density, micro-computed tomography analysis, and biomechanical testing were performed to assess bone quality. Histological analysis with hematoxylin and eosin, Alcian blue, and Masson’s trichrome stain were conducted to determine disc degeneration. Immunohistochemistry and real-time PCR were carried out to measure the expressions of aggrecan, type I collagen, type II collagen, and MMP-1, MMP-3, and MMP-13. Results SDCP improved bone quality as observed by the results of increased bone mineral density and stiffness in OVX rats. The improvement in disc degeneration induced by estrogen withdrawal was associated with reduced gene expressions of MMPs and increased production of collagen type II. Conclusion SDCP prevents osteoporosis and ameliorates disc degeneration in OVX rats. It represents a favorable therapeutic agent for osteoporotic and osteoarthritic conditions in clinical practice.
Collapse
Affiliation(s)
- Chia-Hsien Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, .,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chuan Chen
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
| | - Chun-Yi Lin
- Department of Orthopedic Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hwa Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, .,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yang-Hwei Tsuang
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, .,Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan,
| |
Collapse
|
4
|
Börjesson AE, Farman HH, Movérare-Skrtic S, Engdahl C, Antal MC, Koskela A, Tuukkanen J, Carlsten H, Krust A, Chambon P, Sjögren K, Lagerquist MK, Windahl SH, Ohlsson C. SERMs have substance-specific effects on bone, and these effects are mediated via ERαAF-1 in female mice. Am J Physiol Endocrinol Metab 2016; 310:E912-8. [PMID: 27048997 PMCID: PMC4935145 DOI: 10.1152/ajpendo.00488.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/01/2016] [Indexed: 11/22/2022]
Abstract
The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)α, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ERαAF-1 for the estradiol (E2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ERαAF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ERαAF-1 (ERαAF-1(0)) with E2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ERαAF-1(0) mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ERαAF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis.
Collapse
Affiliation(s)
- Anna E Börjesson
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen H Farman
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Engdahl
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Cristina Antal
- Strasbourg University, Faculté de Médecine, Institut d'Histologie, Strasbourg, France
| | - Antti Koskela
- Department of Anatomy and Cell Biology, MRC Oulu, University of Oulu, Oulu, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, MRC Oulu, University of Oulu, Oulu, Finland
| | - Hans Carlsten
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrée Krust
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (Centre National de la Recherche Scientifique UMR7104; National de la Sante et de la Recherche Medicale U596; ULP, Collège de France), Illkirch, Strasbourg, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (Centre National de la Recherche Scientifique UMR7104; National de la Sante et de la Recherche Medicale U596; ULP, Collège de France), Illkirch, Strasbourg, France
| | - Klara Sjögren
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie K Lagerquist
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara H Windahl
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden;
| |
Collapse
|
5
|
Direct Comparison of a Natural Loss-Of-Function Single Nucleotide Polymorphism with a Targeted Deletion in the Ncf1 Gene Reveals Different Phenotypes. PLoS One 2015; 10:e0141974. [PMID: 26528554 PMCID: PMC4631371 DOI: 10.1371/journal.pone.0141974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022] Open
Abstract
The genetic targeting of mouse models has given insight into complex processes. However, phenotypes of genetically targeted mice are susceptible to artifacts due to gene manipulation, which may lead to misinterpretation of the observations. To directly address these issues, we have compared the immunological phenotypes of Ncf1 knockout mice with Ncf1m1J mice possessing a naturally occurring intronic loss-of-function SNP in their Ncf1 gene. Neutrophil cytosolic factor 1 (NCF1) is the key regulatory component of the phagocytic NADPH oxidase 2 (NOX2) complex. Defects in NCF1 lead to lower production of reactive oxygen species (ROS) associated with autoimmune diseases in humans. In mice, collagen induced arthritis (CIA) and psoriatic arthritis are autoimmune disorders known to be regulated by Ncf1, and they were utilized in the present study to compare the Ncf1 knockout with Ncf1m1J mice. Targeted Ncf1 knockout mice were generated on a pure C57BL/6N genetic background, and thereafter crossed with B10.Q.Ncf1m1J mice. The targeting silenced the Ncf1 gene as intended, and both the B6N;B10.Q.Ncf1m1J mice as well as the knockout littermates had reduced ROS production compared to wild type mice. Both also exhibited enhanced STAT1 (signal transducer and activator of transcription 1) protein expression as an indicator of pronounced interferon signature reported recently for Ncf1 deficient mice. Surprisingly, female Ncf1 knockout mice were protected from CIA whereas the Ncf1m1J females developed severe disease. Ovariectomization retrieved the susceptibility of Ncf1 knockout females pointing to a sex hormone regulated protection against CIA in these mice. The data partly explains the discrepancy of the phenotypes reported earlier utilizing the Ncf1m1J mice or Ncf1 knockout mice. These observations indicate that even a targeted knockout mutation may lead to a different biological outcome in comparison to the natural loss-of-function mutation of the same gene.
Collapse
|
6
|
Craddock TJA, Harvey JM, Nathanson L, Barnes ZM, Klimas NG, Fletcher MA, Broderick G. Using gene expression signatures to identify novel treatment strategies in gulf war illness. BMC Med Genomics 2015; 8:36. [PMID: 26156520 PMCID: PMC4495687 DOI: 10.1186/s12920-015-0111-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/26/2015] [Indexed: 12/12/2022] Open
Abstract
Background Gulf War Illness (GWI) is a complex multi-symptom disorder that affects up to one in three veterans of this 1991 conflict and for which no effective treatment has been found. Discovering novel treatment strategies for such a complex chronic illness is extremely expensive, carries a high probability of failure and a lengthy cycle time. Repurposing Food and Drug Administration approved drugs offers a cost-effective solution with a significantly abbreviated timeline. Methods Here, we explore drug re-purposing opportunities in GWI by combining systems biology and bioinformatics techniques with pharmacogenomic information to find overlapping elements in gene expression linking GWI to successfully treated diseases. Gene modules were defined based on cellular function and their activation estimated from the differential expression of each module’s constituent genes. These gene modules were then cross-referenced with drug atlas and pharmacogenomic databases to identify agents currently used successfully for treatment in other diseases. To explore the clinical use of these drugs in illnesses similar to GWI we compared gene expression patterns in modules that were significantly expressed in GWI with expression patterns in those same modules in other illnesses. Results We found 19 functional modules with significantly altered gene expression patterns in GWI. Within these modules, 45 genes were documented drug targets. Illnesses with highly correlated gene expression patterns overlapping considerably with GWI were found in 18 of the disease conditions studied. Brain, muscular and autoimmune disorders composed the bulk of these. Conclusion Of the associated drugs, immunosuppressants currently used in treating rheumatoid arthritis, and hormone based therapies were identified as the best available candidates for treating GWI symptoms. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0111-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Travis J A Craddock
- Center for Psychological Studies, Nova Southeastern University, Fort Lauderdale, USA. .,Graduate School of Computer and Information Sciences, Nova Southeastern University, Fort Lauderdale, USA. .,Institute for Neuro-Immune Medicine, Nova Southeastern University, 3440 South University Drive, Fort Lauderdale, FL, 33328, USA. .,College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA. .,Department of Medicine, University of Alberta, Edmonton, Canada.
| | | | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3440 South University Drive, Fort Lauderdale, FL, 33328, USA.,College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Zachary M Barnes
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3440 South University Drive, Fort Lauderdale, FL, 33328, USA.,College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA.,Miller School of Medicine, University of Miami, Miami, USA.,Miami Veterans Affairs Medical Center, Miami, USA.,Diabetes Research Institute, University of Miami, Miami, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3440 South University Drive, Fort Lauderdale, FL, 33328, USA.,College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA.,Miller School of Medicine, University of Miami, Miami, USA.,Miami Veterans Affairs Medical Center, Miami, USA
| | - Mary Ann Fletcher
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3440 South University Drive, Fort Lauderdale, FL, 33328, USA.,College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA.,Miller School of Medicine, University of Miami, Miami, USA
| | - Gordon Broderick
- Center for Psychological Studies, Nova Southeastern University, Fort Lauderdale, USA.,Institute for Neuro-Immune Medicine, Nova Southeastern University, 3440 South University Drive, Fort Lauderdale, FL, 33328, USA.,College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA.,Department of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Luo SX, Li S, Zhang XH, Zhang JJ, Long GH, Dong GF, Su W, Deng Y, Liu Y, Zhao JM, Qin X. Genetic polymorphisms of interleukin-16 and risk of knee osteoarthritis. PLoS One 2015; 10:e0123442. [PMID: 25954818 PMCID: PMC4425433 DOI: 10.1371/journal.pone.0123442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interleukin-16 (IL-16), a pleiotropic cytokine, plays a fundamental role in inflammatory diseases. This study investigates the association between IL-16 polymorphisms and the risk of knee osteoarthritis (OA) in a Chinese population. METHODS The IL-16 rs11556218, rs4072111, and rs4778889 polymorphisms were determined in 150 knee OA cases and 147 healthy controls through polymerase chain reaction-restriction fragment length polymorphism. RESULTS The results suggested that the variants in IL-16 gene rs11556218 site were associated with a decreased knee OA risk after adjusting for age, sex, BMI, and smoking and drinking status (TG vs. TT: OR, 0.69; 95% CI, 0.53-0.89; P = 0.006; GG vs. TT: OR, 0.64; 95% CI, 0.45-0.90; P = 0.042; dominant model: OR, 0.68; 95% CI, 0.29-0.87; P = 0.002; G vs. T allele: OR, 0.77; 95% CI, 0.66-0.90; P = 0.003). Similarly, subjects bearing the rs4072111 variant genotypes and alleles also had a lower susceptibility to knee OA compared with those bearing the wild-type (CT vs. CC: OR, 0.66; 95% CI, 0.53-0.83; P = 0.002; TT vs. CC: OR, 0.57; 95% CI, 0.40-0.82; P = 0.027; dominant model: OR, 0.65; 95%, CI 0.52-0.80; P <0.001; T vs. C allele: OR, 0.69; 95% CI, 0.58-0.81; P <0.001). Further, the C allele and the combined genotype (CC+CT) of rs4778889 were associated with a slightly decreased risk of knee OA. In addition, we found two high-risk haplotypes: TTT (OR, 3.70) and GCC (OR, 6.22). Finally, serum IL-16 levels of knee OA patients were significantly higher than those of controls (P = 0.001). CONCLUSIONS Despite the small sample size, this is the first study suggesting IL-16 gene polymorphisms to be associated with the risk of knee OA.
Collapse
Affiliation(s)
- Shi-Xing Luo
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Trauma Orthopedics, Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue-Hui Zhang
- Department of Nuclear medicine, Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
- Graduate school of Guangxi Medical University, Nanning, Guangxi, China
| | - Jun-Jing Zhang
- Department of Trauma Orthopedics, Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Guang-Hua Long
- Department of Trauma Orthopedics, Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Gui-Fu Dong
- Department of Trauma Orthopedics, Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Wei Su
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Deng
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yanqiong Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Min Zhao
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail: (JMZ) (XQ)
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail: (JMZ) (XQ)
| |
Collapse
|
8
|
Pennell LM, Galligan CL, Fish EN. Sex affects immunity. J Autoimmun 2012; 38:J282-91. [DOI: 10.1016/j.jaut.2011.11.013] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 11/27/2011] [Accepted: 11/27/2011] [Indexed: 11/26/2022]
|
9
|
Stubelius A, Andréasson E, Karlsson A, Ohlsson C, Tivesten A, Islander U, Carlsten H. Role of 2-methoxyestradiol as inhibitor of arthritis and osteoporosis in a model of postmenopausal rheumatoid arthritis. Clin Immunol 2011; 140:37-46. [PMID: 21459677 DOI: 10.1016/j.clim.2011.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/08/2011] [Accepted: 03/08/2011] [Indexed: 11/17/2022]
Abstract
In postmenopausal rheumatoid arthritis, both the inflammatory disease and estrogen deficiency contribute to the development of osteoporosis. As hormone replacement therapy is no longer an option, we hypothesized that 2-methoxyestradiol (2me2) could be beneficial, and asked if such therapy was associated with effects on reproductive organs. Mice were ovariectomized and arthritis was induced, whereafter mice were administered 2me2, estradiol, or placebo. Clinical and histological scores of arthritis, together with bone mineral density were evaluated. Uteri weight, reactive oxygen species (ROS) from spleen cells, and characterization of cells from joints and lymph nodes were analyzed. In addition, in vivo activation of estrogen response elements (ERE) by 2me2 was evaluated. Treatment with 2me2 and estradiol decreased the frequency and severity of arthritis and preserved bone. Joint destruction was reduced, neutrophils diminished and ROS production decreased. The uterine weight increased upon long-term 2me2 exposure, however short-term exposure did not activate ERE in vivo.
Collapse
Affiliation(s)
- Alexandra Stubelius
- Center for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|