1
|
Grupp B, Denkhaus L, Gerhardt S, Vögele M, Johnsson N, Gronemeyer T. The structure of a tetrameric septin complex reveals a hydrophobic element essential for NC-interface integrity. Commun Biol 2024; 7:48. [PMID: 38184752 PMCID: PMC10771490 DOI: 10.1038/s42003-023-05734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024] Open
Abstract
The septins of the yeast Saccharomyces cerevisiae assemble into hetero-octameric rods by alternating interactions between neighboring G-domains or N- and C-termini, respectively. These rods polymerize end to end into apolar filaments, forming a ring beneath the prospective new bud that expands during the cell cycle into an hourglass structure. The hourglass finally splits during cytokinesis into a double ring. Understanding these transitions as well as the plasticity of the higher order assemblies requires a detailed knowledge of the underlying structures. Here we present the first X-ray crystal structure of a tetrameric Shs1-Cdc12-Cdc3-Cdc10 complex at a resolution of 3.2 Å. Close inspection of the NC-interfaces of this and other septin structures reveals a conserved contact motif that is essential for NC-interface integrity of yeast and human septins in vivo and in vitro. Using the tetrameric structure in combination with AlphaFold-Multimer allowed us to propose a model of the octameric septin rod.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Lukas Denkhaus
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg, Germany
| | - Stefan Gerhardt
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg, Germany
| | - Matthis Vögele
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Okada H, Chen X, Wang K, Marquardt J, Bi E. Bni5 tethers myosin-II to septins to enhance retrograde actin flow and the robustness of cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566094. [PMID: 37986946 PMCID: PMC10659389 DOI: 10.1101/2023.11.07.566094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The collaboration between septins and myosin-II in driving processes outside of cytokinesis remains largely uncharted. Here, we demonstrate that Bni5 in the budding yeast S. cerevisiae interacts with myosin-II, septin filaments, and the septin-associated kinase Elm1 via distinct domains at its N- and C-termini, thereby tethering the mobile myosin-II to the stable septin hourglass at the division site from bud emergence to the onset of cytokinesis. The septin and Elm1-binding domains, together with a central disordered region, of Bni5 control timely remodeling of the septin hourglass into a double ring, enabling the actomyosin ring constriction. The Bni5-tethered myosin-II enhances retrograde actin cable flow, which contributes to the asymmetric inheritance of mitochondria-associated protein aggregates during cell division, and also strengthens cytokinesis against various perturbations. Thus, we have established a biochemical pathway involving septin-Bni5-myosin-II interactions at the division site, which can inform mechanistic understanding of the role of myosin-II in other retrograde flow systems.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Current affiliation: Department of Biology, Western Kentucky University, Bowling Green, KY
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Grupp B, Gronemeyer T. A biochemical view on the septins, a less known component of the cytoskeleton. Biol Chem 2023; 404:1-13. [PMID: 36423333 DOI: 10.1515/hsz-2022-0263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/30/2022] [Indexed: 11/25/2022]
Abstract
The septins are a conserved family of guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. They self-assemble into non-polar filaments and further into higher ordered structures. Properly assembled septin structures are required for a wide range of indispensable intracellular processes such as cytokinesis, vesicular transport, polarity establishment and cellular adhesion. Septins belong structurally to the P-Loop NTPases. However, unlike the small GTPases like Ras, septins do not mediate signals to effectors through GTP binding and hydrolysis. The role of nucleotide binding and subsequent GTP hydrolysis by the septins is rather controversially debated. We compile here the structural features from the existing septin crystal- and cryo-EM structures regarding protofilament formation, inter-subunit interface architecture and nucleotide binding and hydrolysis. These findings are supplemented with a summary of available biochemical studies providing information regarding nucleotide binding and hydrolysis of fungal and mammalian septins.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| |
Collapse
|
4
|
Fischer M, Frank D, Rösler R, Johnsson N, Gronemeyer T. Biochemical Characterization of a Human Septin Octamer. Front Cell Dev Biol 2022; 10:771388. [PMID: 35309913 PMCID: PMC8928218 DOI: 10.3389/fcell.2022.771388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Septins are part of the cytoskeleton and polymerize into non-polar filaments of heteromeric hexamers or octamers. They belong to the class of P-loop GTPases but the roles of GTP binding and hydrolysis on filament formation and dynamics are not well understood. The basic human septin building block is the septin rod, a hetero-octamer composed of SEPT2, SEPT6, SEPT7, and SEPT9 with a stoichiometry of 2:2:2:2 (2-6-7-9-9-7-6-2). Septin rods polymerize by end-to-end and lateral joining into linear filaments and higher ordered structures such as rings, sheets, and gauzes. We purified a recombinant human septin octamer from E. coli for in vitro experimentation that is able to polymerize into filaments. We could show that the C-terminal region of the central SEPT9 subunit contributes to filament formation and that the human septin rod decreases the rate of in vitro actin polymerization. We provide further first kinetic data on the nucleotide uptake- and exchange properties of human hexameric and octameric septin rods. We could show that nucleotide uptake prior to hydrolysis is a dynamic process and that a bound nucleotide is exchangeable. However, the hydrolyzed γ-phosphate is not released from the native protein complex. We consequently propose that GTP hydrolysis in human septins does not follow the typical mechanism known from other small GTPases.
Collapse
Affiliation(s)
- Martin Fischer
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Dominik Frank
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Garabedian MV, Wirshing A, Vakhrusheva A, Turegun B, Sokolova OS, Goode BL. A septin-Hof1 scaffold at the yeast bud neck binds and organizes actin cables. Mol Biol Cell 2020; 31:1988-2001. [PMID: 32579428 PMCID: PMC7543067 DOI: 10.1091/mbc.e19-12-0693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cellular actin arrays are often highly organized, with characteristic patterns critical to their in vivo functions, yet the mechanisms for establishing these higher order geometries remain poorly understood. In Saccharomyces cerevisiae, formin-polymerized actin cables are spatially organized and aligned along the mother–bud axis to facilitate polarized vesicle traffic. Here, we show that the bud neck–associated F-BAR protein Hof1, independent of its functions in regulating the formin Bnr1, binds to actin filaments and organizes actin cables in vivo. Hof1 bundles actin filaments and links them to septins in vitro. F-actin binding is mediated by the “linker” domain of Hof1, and its deletion leads to cable organization defects in vivo. Using superresolution imaging, we show that Hof1 and septins are patterned at the bud neck into evenly spaced axial pillars (∼200 nm apart), from which actin cables emerge and grow into the mother cell. These results suggest that Hof1, while bound to septins at the bud neck, not only regulates Bnr1 activity, but also binds to actin cables and aligns them along the mother–bud axis. More broadly, these findings provide a strong example of how an actin regulatory protein can be spatially patterned at the cell cortex to govern actin network geometry.
Collapse
Affiliation(s)
- Mikael V Garabedian
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| | - Alison Wirshing
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| | - Anna Vakhrusheva
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Bengi Turegun
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, 02454
| |
Collapse
|
6
|
Chollet J, Dünkler A, Bäuerle A, Vivero-Pol L, Mulaw MA, Gronemeyer T, Johnsson N. Cdc24 interacts with septins to create a positive feedback loop during bud site assembly in yeast. J Cell Sci 2020; 133:jcs240283. [PMID: 32327559 DOI: 10.1242/jcs.240283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/08/2020] [Indexed: 01/04/2023] Open
Abstract
Yeast cells select the position of their new bud at the beginning of each cell cycle. The recruitment of septins to this prospective bud site is one of the critical events in a complex assembly pathway that culminates in the outgrowth of a new daughter cell. During recruitment, septin rods follow the high concentration of Cdc42GTP that is generated by the focused localization of the Cdc42 guanine-nucleotide-exchange factor Cdc24. We show that, shortly before budding, Cdc24 not only activates Cdc42 but also transiently interacts with Cdc11, the septin subunit that caps both ends of the septin rods. Mutations in Cdc24 that reduce affinity to Cdc11 impair septin recruitment and decrease the stability of the polarity patch. The interaction between septins and Cdc24 thus reinforces bud assembly at sites where septin structures are formed. Once the septins polymerize to form the septin ring, Cdc24 is found at the cortex of the bud and directs further outgrowth from this position.
Collapse
Affiliation(s)
- Julian Chollet
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Alexander Dünkler
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Anne Bäuerle
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Laura Vivero-Pol
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Medhanie A Mulaw
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| |
Collapse
|
7
|
Baur JD, Rösler R, Wiese S, Johnsson N, Gronemeyer T. Dissecting the nucleotide binding properties of the septins from S. cerevisiae. Cytoskeleton (Hoboken) 2018; 76:45-54. [PMID: 30091242 DOI: 10.1002/cm.21484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 11/11/2022]
Abstract
Septins are a conserved family of guanosine triphosphate (GTP)-binding proteins that assemble into an ordered array of filaments at the mother bud neck in Saccharomyces cerevisiae cells. They are present in all higher eukaryotes except plants. Septins belong structurally to the P-Loop nucleoside triphosphatase (NTPases) like Rab and Ras. However, unlike other small guanosine triphosphatase (GTPases) septins are supposed to act as scaffolds rather than signalling mediators. This is why they are considered as the fourth class of cytoskeletal proteins. It is assumed that septins fulfil their functions independently of the bound nucleotide. The role of guanosine diphosphosphate (GDP) and GTP binding and subsequent hydrolysis was controversial debated in the last couple of years. Lack of crystal structures of yeast septin subunits or rods and difficulties to isolate single monomeric septin subunits often hindered the correlation of results obtained from in vivo studies with biochemical data. Recently, nucleotide binding and hydrolysis was connected to the formation of septin rods from its subunits. However, the evidence was only indirectly obtained through the use of septin mutants in the context of intact cells. We provide here mechanistic insight into the nucleotide binding of the yeast septins by in vitro assays using purified septin rods and building blocks, thereby adding further insights to the already available models on septin filament formation.
Collapse
Affiliation(s)
- Julian David Baur
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Kustermann J, Wu Y, Rieger L, Dedden D, Phan T, Walther P, Dünkler A, Johnsson N. The cell polarity proteins Boi1p and Boi2p stimulate vesicle fusion at the plasma membrane of yeast cells. J Cell Sci 2017; 130:2996-3008. [DOI: 10.1242/jcs.206334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic cells can direct secretion to defined regions of their plasma membrane. These regions are distinguished by an elaborate architecture of proteins and lipids that are specialized to capture and fuse post-Golgi vesicles. Here we show that the proteins Boi1p and Boi2p are important elements of this area of active exocytosis at the tip of growing yeast cells. Cells lacking Boi1p and Boi2p accumulate secretory vesicles in their bud. The essential PH domains of Boi1p and Boi2p interact with Sec1p, a protein required for SNARE complex formation and vesicle fusion. Sec1p loses its tip localization in cells depleted of Boi1p and Boi2p but can partially compensate for their loss upon overexpression. The capacity to simultaneously bind phospholipids, Sec1p, multiple subunits of the exocyst, Cdc42p, and the module for generating active Cdc42p identify Boi1p and Boi2p as essential mediators between exocytosis and polar growth.
Collapse
Affiliation(s)
- Jochen Kustermann
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Yehui Wu
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Lucia Rieger
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Dirk Dedden
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Tamara Phan
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Paul Walther
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Alexander Dünkler
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| |
Collapse
|
9
|
Booth EA, Sterling SM, Dovala D, Nogales E, Thorner J. Effects of Bni5 Binding on Septin Filament Organization. J Mol Biol 2016; 428:4962-4980. [PMID: 27806918 DOI: 10.1016/j.jmb.2016.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
Abstract
Septins are a protein family found in all eukaryotes (except higher plants) that have roles in membrane remodeling and formation of diffusion barriers and as a scaffold to recruit other proteins. In budding yeast, proper execution of cytokinesis and cell division requires the formation of a collar of circumferential filaments at the bud neck. These filaments are assembled from apolar septin hetero-octamers. Currently, little is known about the mechanisms that control the arrangement and dynamics of septin structures. In this study, we utilized both Förster resonance energy transfer and electron microscopy to analyze the biophysical properties of the septin-binding protein Bni5 and how its association with septin filaments affects their organization. We found that the interaction of Bni5 with the terminal subunit (Cdc11) at the junctions between adjacent hetero-octamers in paired filaments is highly cooperative. Both the C-terminal end of Bni5 and the C-terminal extension of Cdc11 make important contributions to their interaction. Moreover, this binding may stabilize the dimerization of Bni5, which, in turn, forms cross-filament braces that significantly narrow, and impose much more uniform spacing on, the gap between paired filaments.
Collapse
Affiliation(s)
- Elizabeth A Booth
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| | - Sarah M Sterling
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| | - Dustin Dovala
- Program in Microbial Pathogenesis and Host Defense, Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, CA 94143, USA.
| | - Eva Nogales
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| |
Collapse
|
10
|
Glomb O, Gronemeyer T. Septin Organization and Functions in Budding Yeast. Front Cell Dev Biol 2016; 4:123. [PMID: 27857941 PMCID: PMC5093138 DOI: 10.3389/fcell.2016.00123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
The septins are a conserved family of GTP-binding proteins present in all eukaryotic cells except plants. They were originally discovered in the baker's yeast Saccharomyces cerevisiae that serves until today as an important model organism for septin research. In yeast, the septins assemble into a highly ordered array of filaments at the mother bud neck. The septins are regulators of spatial compartmentalization in yeast and act as key players in cytokinesis. This minireview summarizes the recent findings about structural features and cell biology of the yeast septins.
Collapse
Affiliation(s)
- Oliver Glomb
- Department of Molecular Genetics and Cell Biology, Ulm University Ulm, Germany
| | - Thomas Gronemeyer
- Department of Molecular Genetics and Cell Biology, Ulm University Ulm, Germany
| |
Collapse
|
11
|
A Split-Ubiquitin Based Strategy Selecting for Protein Complex-Interfering Mutations. G3-GENES GENOMES GENETICS 2016; 6:2809-15. [PMID: 27402358 PMCID: PMC5015938 DOI: 10.1534/g3.116.031369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the topologies and functions of protein interaction networks requires the selective removal of single interactions. We introduce a selection strategy that enriches among a random library of alleles for mutations that impair the binding to a given partner protein. The selection makes use of a split-ubiquitin based protein interaction assay. This assay provides yeast cells that carry protein complex disturbing mutations with the advantage of being able to survive on uracil-lacking media. Applied to the exemplary interaction between the PB domains of the yeast proteins Bem1 and Cdc24, we performed two independent selections. The selections were either analyzed by Sanger sequencing of isolated clones or by next generation sequencing (NGS) of pools of clones. Both screens enriched for the same mutation in position 833 of Cdc24. Biochemical analysis confirmed that this mutation disturbs the interaction with Bem1 but not the fold of the protein. The larger dataset obtained by NGS achieved a more complete representation of the bipartite interaction interface of Cdc24.
Collapse
|
12
|
Booth EA, Thorner J. A FRET-based method for monitoring septin polymerization and binding of septin-associated proteins. Methods Cell Biol 2016; 136:35-56. [PMID: 27473902 DOI: 10.1016/bs.mcb.2016.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Much about septin function has been inferred from in vivo studies using mainly genetic methods, and much of what we know about septin organization has been obtained through examination of static structures in vitro primarily by electron microscopy. Deeper mechanistic insight requires real-time analysis of the dynamics of the assembly of septin-based structures and how other proteins associate with them. We describe here a Förster resonance energy transfer (FRET)-based approach for measuring in vitro the rate and extent of filament formation from septin complexes, binding of other proteins to septin structures, and the apparent affinities of these interactions. FRET is particularly well suited for interrogating protein-protein interactions, especially on a rapid timescale; the spectral change provides an unambiguous indication of whether two elements within the system under study are associating and serves as a molecular-level "ruler" because it is very sensitive to the separation between the donor and acceptor fluorophores over biologically relevant distances (≤10nm). The necessary procedures involve generation of appropriate cysteine-less and single cysteine-containing septin variants, expression and purification of the heterooctameric complexes containing them, efficient labeling of the purified complexes with desired fluorophores, fluorimetric measurement of FRET, and appropriate safeguards and controls in data acquisition and analysis. Our methods can be used to interrogate the effects of buffer conditions, small molecules, and septin-binding proteins on septin filament assembly or stability; determine the effect of alternative septin subunits, mutational alterations, or posttranslational modifications on assembly; and, delineate the location of septin-binding proteins.
Collapse
Affiliation(s)
- E A Booth
- University of California, Berkeley, CA, United States
| | - J Thorner
- University of California, Berkeley, CA, United States
| |
Collapse
|
13
|
Renz C, Oeljeklaus S, Grinhagens S, Warscheid B, Johnsson N, Gronemeyer T. Identification of Cell Cycle Dependent Interaction Partners of the Septins by Quantitative Mass Spectrometry. PLoS One 2016; 11:e0148340. [PMID: 26871441 PMCID: PMC4752459 DOI: 10.1371/journal.pone.0148340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/15/2016] [Indexed: 01/21/2023] Open
Abstract
The septins are a conserved family of GTP-binding proteins that, in the baker's yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified. Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen.
Collapse
Affiliation(s)
- Christian Renz
- Ulm University, Department of Molecular Genetics and Cell Biology, Ulm, Germany
| | - Silke Oeljeklaus
- University of Freiburg, Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Sören Grinhagens
- Ulm University, Department of Molecular Genetics and Cell Biology, Ulm, Germany
| | - Bettina Warscheid
- University of Freiburg, Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Nils Johnsson
- Ulm University, Department of Molecular Genetics and Cell Biology, Ulm, Germany
| | - Thomas Gronemeyer
- Ulm University, Department of Molecular Genetics and Cell Biology, Ulm, Germany
- * E-mail:
| |
Collapse
|
14
|
Brausemann A, Gerhardt S, Schott AK, Einsle O, Große-Berkenbusch A, Johnsson N, Gronemeyer T. Crystal structure of Cdc11, a septin subunit from Saccharomyces cerevisiae. J Struct Biol 2016; 193:157-161. [PMID: 26780475 DOI: 10.1016/j.jsb.2016.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/21/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
Septins are a conserved family of GTP-binding proteins that assemble into a highly ordered array of filaments at the mother bud neck in Saccharomyces cerevisiae cells. Many molecular functions and mechanisms of the septins in S. cerevisiae were already uncovered. However, structural information is only available from modeling the crystallized subunits of the human septins into the EM cryomicroscopy data of the yeast hetero-octameric septin rod. Octameric rods are the building block of septin filaments in yeast. We present here the first crystal structure of Cdc11, the terminal subunit of the octameric rod and discuss its structure in relation to its human homologues. Size exclusion chromatography analysis revealed that Cdc11 forms homodimers through its C-terminal coiled coil tail.
Collapse
Affiliation(s)
- Anton Brausemann
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Stefan Gerhardt
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Anne-Kathrin Schott
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | | | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
15
|
Mavrakis M, Tsai FC, Koenderink G. Purification of recombinant human and Drosophila septin hexamers for TIRF assays of actin–septin filament assembly. Methods Cell Biol 2016; 136:199-220. [DOI: 10.1016/bs.mcb.2016.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
|
17
|
Booth EA, Vane EW, Dovala D, Thorner J. A Förster Resonance Energy Transfer (FRET)-based System Provides Insight into the Ordered Assembly of Yeast Septin Hetero-octamers. J Biol Chem 2015; 290:28388-28401. [PMID: 26416886 PMCID: PMC4653696 DOI: 10.1074/jbc.m115.683128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
Prior studies in both budding yeast (Saccharomyces cerevisiae) and in human cells have established that septin protomers assemble into linear hetero-octameric rods with 2-fold rotational symmetry. In mitotically growing yeast cells, five septin subunits are expressed (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) and assemble into two types of rods that differ only in their terminal subunit: Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 and Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Shs1. EM analysis has shown that, under low salt conditions, the Cdc11-capped rods polymerize end to end to form long paired filaments, whereas Shs1-capped rods form arcs, spirals, and rings. To develop a facile method to study septin polymerization in vitro, we exploited our previous work in which we generated septin complexes in which all endogenous cysteine (Cys) residues were eliminated by site-directed mutagenesis, except an introduced E294C mutation in Cdc11 in these experiments. Mixing samples of a preparation of such single-Cys containing Cdc11-capped rods that have been separately derivatized with organic dyes that serve as donor and acceptor, respectively, for FRET provided a spectroscopic method to monitor filament assembly mediated by Cdc11-Cdc11 interaction and to measure its affinity under specified conditions. Modifications of this same FRET scheme also allow us to assess whether Shs1-capped rods are capable of end to end association either with themselves or with Cdc11-capped rods. This FRET approach also was used to follow the binding to septin filaments of a septin-interacting protein, the type II myosin-binding protein Bni5.
Collapse
Affiliation(s)
- Elizabeth A Booth
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Eleanor W Vane
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Dustin Dovala
- Program in Microbial Pathogenesis and Host Defense, Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, California 94158-2200
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202.
| |
Collapse
|
18
|
Kaplan C, Jing B, Winterflood CM, Bridges AA, Occhipinti P, Schmied J, Grinhagens S, Gronemeyer T, Tinnefeld P, Gladfelter AS, Ries J, Ewers H. Absolute Arrangement of Subunits in Cytoskeletal Septin Filaments in Cells Measured by Fluorescence Microscopy. NANO LETTERS 2015; 15:3859-3864. [PMID: 25939363 DOI: 10.1021/acs.nanolett.5b00693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We resolved the organization of subunits in cytoskeletal polymers in cells by light microscopy. Septin GTPases form linear complexes of about 32 nm length that polymerize into filaments. We visualized both termini of septin complexes by single molecule microscopy in vitro. Complexes appeared as 32 nm spaced localization pairs, and filaments appeared as stretches of equidistant localizations. Cellular septins were resolved as localization pairs and thin stretches of equidistant localizations.
Collapse
Affiliation(s)
- Charlotte Kaplan
- †Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Bo Jing
- †Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Andrew A Bridges
- ‡Life Science Center, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Patricia Occhipinti
- ‡Life Science Center, Dartmouth College, Hanover, New Hampshire 03755, United States
| | | | - Sören Grinhagens
- ∥Institute of Molecular Genetics and Cell Biology, University of Ulm, 89081 Ulm, Germany
| | - Thomas Gronemeyer
- ∥Institute of Molecular Genetics and Cell Biology, University of Ulm, 89081 Ulm, Germany
| | | | - Amy S Gladfelter
- ‡Life Science Center, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jonas Ries
- †Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Helge Ewers
- †Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
19
|
The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces cerevisiae. Genetics 2015; 200:843-62. [PMID: 25971666 DOI: 10.1534/genetics.115.176503] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Septins are a conserved family of GTP-binding proteins that form heterooctameric complexes that assemble into higher-order structures. In yeast, septin superstructure at the bud neck serves as a barrier to separate a daughter cell from its mother and as a scaffold to recruit the proteins that execute cytokinesis. However, how septins recruit specific factors has not been well characterized. In the accompanying article in this issue, (Finnigan et al. 2015), we demonstrated that the C-terminal extensions (CTEs) of the alternative terminal subunits of septin heterooctamers, Cdc11 and Shs1, share a role required for optimal septin function in vivo. Here we describe our use of unbiased genetic approaches (both selection of dosage suppressors and analysis of synthetic interactions) that pinpointed Bni5 as a protein that interacts with the CTEs of Cdc11 and Shs1. Furthermore, we used three independent methods-construction of chimeric proteins, noncovalent tethering mediated by a GFP-targeted nanobody, and imaging by fluorescence microscopy-to confirm that a physiologically important function of the CTEs of Cdc11 and Shs1 is optimizing recruitment of Bni5 and thereby ensuring efficient localization at the bud neck of Myo1, the type II myosin of the actomyosin contractile ring.Related article in GENETICS Finnigan, G. C. et al., 2015 Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200: 841-861.
Collapse
|