1
|
Zakaria FR, Chen CY, Li J, Wang S, Payne GF, Bentley WE. Redox active plant phenolic, acetosyringone, for electrogenetic signaling. Sci Rep 2024; 14:9666. [PMID: 38671069 PMCID: PMC11053109 DOI: 10.1038/s41598-024-60191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Redox is a unique, programmable modality capable of bridging communication between biology and electronics. Previous studies have shown that the E. coli redox-responsive OxyRS regulon can be re-wired to accept electrochemically generated hydrogen peroxide (H2O2) as an inducer of gene expression. Here we report that the redox-active phenolic plant signaling molecule acetosyringone (AS) can also induce gene expression from the OxyRS regulon. AS must be oxidized, however, as the reduced state present under normal conditions cannot induce gene expression. Thus, AS serves as a "pro-signaling molecule" that can be activated by its oxidation-in our case by application of oxidizing potential to an electrode. We show that the OxyRS regulon is not induced electrochemically if the imposed electrode potential is in the mid-physiological range. Electronically sliding the applied potential to either oxidative or reductive extremes induces this regulon but through different mechanisms: reduction of O2 to form H2O2 or oxidation of AS. Fundamentally, this work reinforces the emerging concept that redox signaling depends more on molecular activities than molecular structure. From an applications perspective, the creation of an electronically programmed "pro-signal" dramatically expands the toolbox for electronic control of biological responses in microbes, including in complex environments, cell-based materials, and biomanufacturing.
Collapse
Affiliation(s)
- Fauziah Rahma Zakaria
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Chen-Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Jinyang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
| |
Collapse
|
2
|
Lee AA, Gervasio ED, Hughes RO, Maalouf AA, Musso SA, Crisalli AM, Woolridge EM. Alginate Encapsulation Stabilizes Xylanase Toward the Laccase Mediator System. Appl Biochem Biotechnol 2022; 195:3311-3326. [PMID: 36585551 DOI: 10.1007/s12010-022-04296-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
Xylanase, a hydrolytic enzyme, is susceptible to inactivation by the oxidative conditions generated by the laccase mediator system (LMS). Given the impetus to develop a mixed enzyme system for application in biomass processing industries, xylanase was encapsulated with either Cu2+- or Ca2+-alginate and then exposed to the LMS with variations such as mediator type, mediator concentration, and treatment pH. Results demonstrate that alginate-encapsulated xylanase retains substantial activity (> 80%) when exposed to the LMS relative to non-encapsulated xylanase. Cu2+-alginate generally provided better protection than Ca2+-alginate for all mediators, and protection was observed even at a low pH, where the LMS is most potent. Despite encapsulation, xylanase was still capable of hydrolyzing its polymeric substrate xylan, given kcat/Km values within an order of magnitude of that for non-encapsulated xylanase. The alginate matrix does not impede the function of the oxidized mediator, since comparable Vmax values were observed for the conversion of veratryl alcohol to veratraldehyde by free and Cu2+-alginate encapsulated laccase. Overall, these results support development of a mixed enzyme system for biomass delignification and, more broadly, show potential for protecting protein function in an oxidative environment.
Collapse
Affiliation(s)
- Annemarie A Lee
- Department of Chemistry, Biochemistry, & Physics, Marist College, Poughkeepsie, NY, 12601, USA
| | - Esabelle D Gervasio
- Department of Chemistry, Biochemistry, & Physics, Marist College, Poughkeepsie, NY, 12601, USA
| | - Riley O Hughes
- Department of Chemistry, Biochemistry, & Physics, Marist College, Poughkeepsie, NY, 12601, USA
| | - Alexandra A Maalouf
- Department of Chemistry, Biochemistry, & Physics, Marist College, Poughkeepsie, NY, 12601, USA
| | - Samantha A Musso
- Department of Chemistry, Biochemistry, & Physics, Marist College, Poughkeepsie, NY, 12601, USA
| | - Alicia M Crisalli
- Department of Chemistry, Biochemistry, & Physics, Marist College, Poughkeepsie, NY, 12601, USA
| | - Elisa M Woolridge
- Department of Chemistry, Biochemistry, & Physics, Marist College, Poughkeepsie, NY, 12601, USA.
| |
Collapse
|
3
|
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. Int J Biol Macromol 2021; 181:1072-1080. [PMID: 33892032 DOI: 10.1016/j.ijbiomac.2021.04.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 01/13/2023]
Abstract
High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV-Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
Collapse
Affiliation(s)
- Nikolina Popović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dunja Pržulj
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Maja Mladenović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Olivera Prodanović
- Institute for Multidisciplinary Studies, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Selin Ece
- PerkinElmer chemagen Technologie GmbH, Arnold-Sommerfeld-Ring 2, 52499 Baesweiler, Germany
| | - Karla Ilić Đurđić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Raluca Ostafe
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Purdue Institute of Inflammation, Immunology and Infectious Disease, Molecular Evolution, Protein Engineering and Production, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Departments of Biological Sciences and Chemistry, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Radivoje Prodanović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
4
|
A Hybrid Microbial–Enzymatic Fuel Cell Cathode Overcomes Enzyme Inactivation Limits in Biological Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The construction of optimized biological fuel cells requires a cathode which combines the longevity of a microbial catalyst with the current density of an enzymatic catalyst. Laccase-secreting fungi were grown directly on the cathode of a biological fuel cell to facilitate the exchange of inactive enzymes with active enzymes, with the goal of extending the lifetime of laccase cathodes. Directly incorporating the laccase-producing fungus at the cathode extends the operational lifetime of laccase cathodes while eliminating the need for frequent replenishment of the electrolyte. The hybrid microbial–enzymatic cathode addresses the issue of enzyme inactivation by using the natural ability of fungi to exchange inactive laccases at the cathode with active laccases. Finally, enzyme adsorption was increased through the use of a functionally graded coating containing an optimized ratio of titanium dioxide nanoparticles and single-walled carbon nanotubes. The hybrid microbial–enzymatic fuel cell combines the higher current density of enzymatic fuel cells with the longevity of microbial fuel cells, and demonstrates the feasibility of a self-regenerating fuel cell in which inactive laccases are continuously exchanged with active laccases.
Collapse
|
5
|
Fungal Secondary Metabolites for Bioremediation of Hazardous Heavy Metals. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Non-Hydrolyzable Plastics - An Interdisciplinary Look at Plastic Bio-Oxidation. Trends Biotechnol 2020; 39:12-23. [PMID: 32487438 DOI: 10.1016/j.tibtech.2020.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Enzymatic plastic conversion has emerged recently as a potential adjunct and alternative to conventional plastic waste management technology. Publicity over progress in the enzymatic degradation of polyesters largely neglects that the majority of commercial plastics, including polyethylene, polypropylene, polystyrene and polyvinyl chloride, are still not biodegradable. Details about the mechanisms used by enzymes and an understanding of macromolecular factors influencing these have proved to be vital in developing biodegradation methods for polyesters. To expand the application of enzymatic degradation to other more recalcitrant plastics, extensive knowledge gaps need to be addressed. By drawing on interdisciplinary knowledge, we suggest that physicochemical influences also have a crucial impact on reactions in less well-studied types of plastic, and these need to be investigated in detail.
Collapse
|
7
|
Kwiatos N, Jędrzejczak-Krzepkowska M, Krzemińska A, Delavari A, Paneth P, Bielecki S. Evolved Fusarium oxysporum laccase expressed in Saccharomyces cerevisiae. Sci Rep 2020; 10:3244. [PMID: 32094483 PMCID: PMC7039978 DOI: 10.1038/s41598-020-60204-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Fusarium oxysporum laccase was functionally expressed in Saccharomyces cerevisiae and engineered towards higher expression levels and higher reactivity towards 2,6-dimethoxyphenol, that could be used as a mediator for lignin modification. A combination of classical culture optimization and protein engineering led to around 30 times higher activity in the culture supernatant. The winner mutant exhibited three times lower Km, four times higher kcat and ten times higher catalytic efficiency than the parental enzyme. The strategy for laccase engineering was composed of a combination of random methods with a rational approach based on QM/MM MD studies of the enzyme complex with 2,6-dimethoxyphenol. Laccase mediator system with 2,6-dimethoxyphenol caused fulvic acids release from biosolubilized coal.
Collapse
Affiliation(s)
- Natalia Kwiatos
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Marzena Jędrzejczak-Krzepkowska
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Agnieszka Krzemińska
- Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924, Lodz, Poland
| | | | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wróblewskiego 15, 93-590, Lodz, Poland
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland.
| |
Collapse
|
8
|
Brands S, Brass HUC, Klein AS, Pietruszka J, Ruff AJ, Schwaneberg U. A colourimetric high-throughput screening system for directed evolution of prodigiosin ligase PigC. Chem Commun (Camb) 2020; 56:8631-8634. [DOI: 10.1039/d0cc02181d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A colourimetric high-throughput screening system was developed for the first directed evolution campaign on PigC towards production of artificial prodiginines.
Collapse
Affiliation(s)
- Stefanie Brands
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Hannah U. C. Brass
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- 52426 Jülich
- Germany
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- 52426 Jülich
- Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- 52426 Jülich
- Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI-Leibniz Institut für Interaktive Materialien
| |
Collapse
|
9
|
Gao D, Zheng S, Wang L, Wang C, Zhang H, Wang Q. SILAR preparation of visible-light-driven TiO2 NTs/Ag2WO4-AgI photoelectrodes for waste water treatment and photoelectric conversion. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Wang Q, Qiu L, Tan X, Liu Z, Gao S, Wang R. Amorphous TiO2 granular nanodisks on porous Ti foam for highly effective solar cells and photocatalysts. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Herzog PL, Sützl L, Eisenhut B, Maresch D, Haltrich D, Obinger C, Peterbauer CK. Versatile Oxidase and Dehydrogenase Activities of Bacterial Pyranose 2-Oxidase Facilitate Redox Cycling with Manganese Peroxidase In Vitro. Appl Environ Microbiol 2019; 85:e00390-19. [PMID: 31028028 PMCID: PMC6581175 DOI: 10.1128/aem.00390-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
Pyranose 2-oxidase (POx) has long been accredited a physiological role in lignin degradation, but evidence to provide insights into the biochemical mechanisms and interactions is insufficient. There are ample data in the literature on the oxidase and dehydrogenase activities of POx, yet the biological relevance of this duality could not be established conclusively. Here we present a comprehensive biochemical and phylogenetic characterization of a novel pyranose 2-oxidase from the actinomycetous bacterium Kitasatospora aureofaciens (KaPOx) as well as a possible biomolecular synergism of this enzyme with peroxidases using phenolic model substrates in vitro A phylogenetic analysis of both fungal and bacterial putative POx-encoding sequences revealed their close evolutionary relationship and supports a late horizontal gene transfer of ancestral POx sequences. We successfully expressed and characterized a novel bacterial POx gene from K. aureofaciens, one of the putative POx genes closely related to well-known fungal POx genes. Its biochemical characteristics comply with most of the classical hallmarks of known fungal pyranose 2-oxidases, i.e., reactivity with a range of different monosaccharides as electron donors as well as activity with oxygen, various quinones, and complexed metal ions as electron acceptors. Thus, KaPOx shows the pronounced duality of oxidase and dehydrogenase similar to that of fungal POx. We further performed efficient redox cycling of aromatic lignin model compounds between KaPOx and manganese peroxidase (MnP). In addition, we found a Mn(III) reduction activity in KaPOx, which, in combination with its ability to provide H2O2, implies this and potentially other POx as complementary enzymatic tools for oxidative lignin degradation by specialized peroxidases.IMPORTANCE Establishment of a mechanistic synergism between pyranose oxidase and (manganese) peroxidases represents a vital step in the course of elucidating microbial lignin degradation. Here, the comprehensive characterization of a bacterial pyranose 2-oxidase from Kitasatospora aureofaciens is of particular interest for several reasons. First, the phylogenetic analysis of putative pyranose oxidase genes reveals a widespread occurrence of highly similar enzymes in bacteria. Still, there is only a single report on a bacterial pyranose oxidase, stressing the need of closing this gap in the scientific literature. In addition, the relatively small K. aureofaciens proteome supposedly supplies a limited set of enzymatic functions to realize lignocellulosic biomass degradation. Both enzyme and organism therefore present a viable model to study the mechanisms of bacterial lignin decomposition, elucidate physiologically relevant interactions with specialized peroxidases, and potentially realize biotechnological applications.
Collapse
Affiliation(s)
- Peter L Herzog
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Leander Sützl
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Beate Eisenhut
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens K Peterbauer
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
12
|
Alessa AHA, Tee KL, Gonzalez-Perez D, Omar Ali HEM, Evans CA, Trevaskis A, Xu JH, Wong TS. Accelerated directed evolution of dye-decolorizing peroxidase using a bacterial extracellular protein secretion system (BENNY). BIORESOUR BIOPROCESS 2019; 6:20. [PMID: 31231605 PMCID: PMC6544594 DOI: 10.1186/s40643-019-0255-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 01/19/2023] Open
Abstract
Background Dye-decolorizing peroxidases (DyPs) are haem-containing peroxidases that show great promises in industrial biocatalysis and lignocellulosic degradation. Through the use of Escherichia coli osmotically-inducible protein Y (OsmY) as a bacterial extracellular protein secretion system (BENNY), we successfully developed a streamlined directed evolution workflow to accelerate the protein engineering of DyP4 from Pleurotus ostreatus strain PC15. Result After 3 rounds of random mutagenesis with error-prone polymerase chain reaction (epPCR) and 1 round of saturation mutagenesis, we obtained 4D4 variant (I56V, K109R, N227S and N312S) that displays multiple desirable phenotypes, including higher protein yield and secretion, higher specific activity (2.7-fold improvement in kcat/Km) and higher H2O2 tolerance (sevenfold improvement based on IC50). Conclusion To our best knowledge, this is the first report of applying OsmY to simplify the directed evolution workflow and to direct the extracellular secretion of a haem protein such as DyP4.![]() Electronic supplementary material The online version of this article (10.1186/s40643-019-0255-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdulrahman H A Alessa
- 1Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD UK
| | - Kang Lan Tee
- 1Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD UK
| | - David Gonzalez-Perez
- 1Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD UK
| | - Hossam E M Omar Ali
- 1Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD UK
| | - Caroline A Evans
- 1Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD UK
| | - Alex Trevaskis
- 1Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD UK
| | - Jian-He Xu
- 2Laboratory of Biocatalysis and Bioprocessing, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 People's Republic of China
| | - Tuck Seng Wong
- 1Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD UK
| |
Collapse
|
13
|
Mateljak I, Monza E, Lucas MF, Guallar V, Aleksejeva O, Ludwig R, Leech D, Shleev S, Alcalde M. Increasing Redox Potential, Redox Mediator Activity, and Stability in a Fungal Laccase by Computer-Guided Mutagenesis and Directed Evolution. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00531] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ivan Mateljak
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28094 Madrid, Spain
| | - Emanuele Monza
- Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
- Zymvol, C/Almogavers 165, 08018 Barcelona, Spain
| | - Maria Fatima Lucas
- Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
- Zymvol, C/Almogavers 165, 08018 Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
- ICREA: Institució Catalana de Recerca i Estudis Avancats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Olga Aleksejeva
- Biomedical Sciences, Health and Society, Malmö University, 20560 Malmö, Sweden
| | - Roland Ludwig
- Department of Food Sciences and Technology, VIBT—Vienna Institute of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Donal Leech
- Department of Chemistry, National University of Ireland, Galway University Road, SW4 794 Galway, Ireland
| | - Sergey Shleev
- Biomedical Sciences, Health and Society, Malmö University, 20560 Malmö, Sweden
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28094 Madrid, Spain
| |
Collapse
|
14
|
Zhu Y, Zhang Y, Zhan J, Lin Y, Yang X. Axial bonds at the T1 Cu site of Thermus thermophilus SG0.5JP17-16 laccase influence enzymatic properties. FEBS Open Bio 2019; 9:986-995. [PMID: 30964606 PMCID: PMC6487685 DOI: 10.1002/2211-5463.12633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022] Open
Abstract
Laccase is a multi‐copper oxidase which oxidizes substrate at the type 1 copper site, simultaneously coupling the reduction of dioxygen to water at the trinuclear copper center. In this study, we used site‐directed mutagenesis to study the effect of axial bonds between the metal and amino acid residue side chains in lacTT. Our kinetic and spectral data showed that the replacement of the axial residue with non‐coordinating residues resulted in higher efficiency (kcat/Km) and a lower Cu2+ population at the type 1 copper site, while substitution with strongly coordinating residues resulted in lower efficiency and a higher Cu2+ population, as compared with the wild‐type. The redox potentials of mutants with hydrophobic axial residues (Ala and Phe) were higher than that of the wild‐type. In conclusion, these insights into the catalytic mechanism of laccase may be of use in protein engineering to fine‐tune its enzymatic properties for industrial application.
Collapse
Affiliation(s)
- Yanyun Zhu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Jiangbo Zhan
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Xiaorong Yang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
15
|
Perna V, Baum A, Ernst HA, Agger JW, Meyer AS. Laccase activity measurement by FTIR spectral fingerprinting. Enzyme Microb Technol 2019; 122:64-73. [DOI: 10.1016/j.enzmictec.2018.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
16
|
Singh G, Singh S, Kaur K, Kumar Arya S, Sharma P. Thermo and halo tolerant laccase from Bacillus sp. SS4: Evaluation for its industrial usefulness. J GEN APPL MICROBIOL 2019; 65:26-33. [DOI: 10.2323/jgam.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
The Role of Natural Laccase Redox Mediators in Simultaneous Dye Decolorization and Power Production in Microbial Fuel Cells. ENERGIES 2018. [DOI: 10.3390/en11123455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Redox mediators could be used to improve the efficiency of microbial fuel cells (MFCs) by enhancing electron transfer rates and decreasing charge transfer resistance at electrodes. However, many artificial redox mediators are expensive and/or toxic. In this study, laccase enzyme was employed as a biocathode of MFCs in the presence of two natural redox mediators (syringaldehyde (Syr) and acetosyringone (As)), and for comparison, a commonly-used artificial mediator 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was used to investigate their influence on azo dye decolorization and power production. The redox properties of the mediator-laccase systems were studied by cyclic voltammetry. The presence of ABTS and As increased power density from 54.7 ± 3.5 mW m−2 (control) to 77.2 ± 4.2 mW m−2 and 62.5 ± 3.7 mW m−2 respectively. The power decreased to 23.2 ± 2.1 mW m−2 for laccase with Syr. The cathodic decolorization of Acid orange 7 (AO7) by laccase indicated a 12–16% increase in decolorization efficiency with addition of mediators; and the Laccase-Acetosyringone system was the fastest, with 94% of original dye (100 mgL−1) decolorized within 24 h. Electrochemical analysis to determine the redox properties of the mediators revealed that syringaldehyde did not produce any redox peaks, inferring that it was oxidized by laccase to other products, making it unavailable as a mediator, while acetosyringone and ABTS revealed two redox couples demonstrating the redox mediator properties of these compounds. Thus, acetosyringone served as an efficient natural redox mediator for laccase, aiding in increasing the rate of dye decolorization and power production in MFCs. Taken together, the results suggest that natural laccase redox mediators could have the potential to improve dye decolorization and power density in microbial fuel cells.
Collapse
|
18
|
A highly stable laccase obtained by swapping the second cupredoxin domain. Sci Rep 2018; 8:15669. [PMID: 30353103 PMCID: PMC6199291 DOI: 10.1038/s41598-018-34008-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/10/2018] [Indexed: 11/08/2022] Open
Abstract
The robustness of a high-redox potential laccase has been enhanced by swapping its second cupredoxin domain with that from another fungal laccase, which introduced a pool of neutral mutations in the protein sequence without affecting enzyme functionality. The new laccase showed outstanding stability to temperature, pH (2-9) and to organic solvents, while maintaining the ability to oxidize high-redox potential substrates. By engineering the signal peptide, enzyme secretion levels in Saccharomyces cerevisiae were increased, which allowed to purify the engineered enzyme for further characterization. The purified domain-swap laccase presented higher activity in the presence of ethanol or methanol, superior half-lives at 50-70 °C, improved stability at acidic pH, and similar catalytic efficiency for DMP albeit a lower one for ABTS (due to a shift in optimum pH). A new N-glycosylation site and a putative new surface salt-bridge were evaluated as possible determinants for the improved stability by site-directed mutagenesis. Although neither seemed to be strictly responsible for the improved thermostability, the new salt bridge was found to notably contribute to the high stability of the swapped enzyme in a broad pH range. Finally, the application potential of the new laccase was demonstrated with the enzymatic treatment of kraft lignin, an industrially relevant lignin stream, at high temperature, neutral pH and short incubation times.
Collapse
|
19
|
Mtibaà R, Barriuso J, de Eugenio L, Aranda E, Belbahri L, Nasri M, Martínez MJ, Mechichi T. Purification and characterization of a fungal laccase from the ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye. Int J Biol Macromol 2018; 120:1744-1751. [PMID: 30268749 DOI: 10.1016/j.ijbiomac.2018.09.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 01/25/2023]
Abstract
A laccase-producing ascomycete was isolated from arid soil in Tunisia. This fungus was identified as Thielavia sp. using the phylogenetic analysis of rDNA internal transcribed spacers. The extracellular laccase produced by the fungus was purified to electrophoretic homogeneity, showing a molecular mass around 70 kDa. The enzyme had an optimum pH of 5.0 and 6.0 for ABTS and 2,6‑DMP, respectively and it showed remarkable high thermal stability, showing its optimal temperature at 70 °C (against 2,6‑DMP). It presented slight inhibiting effect by EDTA, SDS and l‑cyst although this effect was more marked by sodium azide (0.1 mM). On the other hand, it showed tolerance to up to 300 mM NaCl, retaining around 50% of its activity at 900 mM. Among the metal ions tested on TaLac1, Mn2+ showed an activating effect. Their kinetic parameters Km and kcat were 23.7 μM and 4.14 s-1 for ABTS, and 24.3 μM and 3.46 s-1 towards 2,6‑DMP. The purified enzyme displayed greater efficiency in Remazol Brilliant Blue R decolorization (90%) in absence of redox mediator, an important property for biotechnological applications.
Collapse
Affiliation(s)
- Rim Mtibaà
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineers of Sfax, BP «1173», 3038 Sfax, Tunisia.
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientίficas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura de Eugenio
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientίficas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elisabet Aranda
- Department of Microbiology, Institute of Water Research, University of Granada, Calle Ramón y Cajal 4, E-18071 Granada, Spain
| | - Lasaad Belbahri
- Laboratory of Soil Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2009 Neuchâtel, Switzerland
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineers of Sfax, BP «1173», 3038 Sfax, Tunisia
| | - María Jesùs Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientίficas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Tahar Mechichi
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineers of Sfax, BP «1173», 3038 Sfax, Tunisia
| |
Collapse
|
20
|
Nihei R, Usami M, Taguchi T, Amachi S. Role of fungal laccase in iodide oxidation in soils. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 189:127-134. [PMID: 29665575 DOI: 10.1016/j.jenvrad.2018.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Previously, we hypothesized that microbial laccase oxidizes iodide (I-) in soils to molecular iodine (I2) or hypoiodous acid (HIO), both of which are easily incorporated into natural soil organic matter, and thus plays a role in iodine sorption on soils. In this study, soil iodide oxidase activity was determined by a colorimetric assay to evaluate if laccase is responsible for iodide oxidation in soils. Three types of Japanese soil showed significant iodide oxidase activities (0.751-2.87 mU g soil-1) at pH 4.0, which decreased with increasing pH, until it was no longer detected at pH 5.5. The activity was inhibited strongly by autoclaving or by the addition of common laccase inhibitors. Similar tendency of inhibition was observed in soil laccase activity, which was determined with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a substrate. Significant positive correlations (R2 values of 0.855-0.896) between iodide oxidase activity and laccase activity were observed in two of three soils. Commercially available fungal laccases showed only very low iodide oxidase activities (4.68-18.0 mU mg-1), but enhanced activities of 102-739 mU mg-1 were observed in the presence of redox mediators. Finally, we successfully isolated fungal strains with iodide-oxidizing phenotype in the presence of redox mediators. Polyacrylamide gel electrophoresis of the culture supernatant of Scytalidium sp. strain UMS and subsequent active stain revealed that the fungal laccase actually oxidized iodide in the presence of redox mediators. These results suggest that at least part of iodide in soils is oxidized by fungal laccase through the laccase-mediator system.
Collapse
Affiliation(s)
- Reiko Nihei
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | - Mizuki Usami
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | - Taro Taguchi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | - Seigo Amachi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan.
| |
Collapse
|
21
|
Bello-Gil D, Roig-Molina E, Fonseca J, Sarmiento-Ferrández MD, Ferrándiz M, Franco E, Mira E, Maestro B, Sanz JM. An enzymatic system for decolorization of wastewater dyes using immobilized CueO laccase-like multicopper oxidase on poly-3-hydroxybutyrate. Microb Biotechnol 2018; 11:881-892. [PMID: 29896867 PMCID: PMC6116751 DOI: 10.1111/1751-7915.13287] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/28/2018] [Accepted: 05/24/2018] [Indexed: 01/06/2023] Open
Abstract
The presence of synthetic dyes in wastewaters generated by the textile industry constitutes a serious environmental and health problem that urges the scientific community on an appropriate action. As a proof‐of‐concept, we have developed a novel approach to design enzymatic bioreactors with the ability to decolorize dye solutions through the immobilization of the bacterial CueO laccase‐like multicopper oxidase from Escherichia coli on polyhydroxybutyrate (PHB) beads by making use of the BioF affinity tag. The decolorization efficiency of the system was characterized by a series of parameters, namely maximum enzyme adsorption capacity, pH profile, kinetic constants, substrate range, temperature and bioreactor recycling. Depending on the tested dye, immobilization increased the catalytic activity of CueO by up to 40‐fold with respect to the soluble enzyme, reaching decolorization efficiencies of 45–90%. Our results indicate that oxidase bioreactors based on polyhydroxyalkanoates are a promising alternative for the treatment of coloured industrial wastewaters.
Collapse
Affiliation(s)
- Daniel Bello-Gil
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. Universidad s/n, 03202, Elche, Spain
| | - Emma Roig-Molina
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. Universidad s/n, 03202, Elche, Spain
| | - Jennifer Fonseca
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. Universidad s/n, 03202, Elche, Spain
| | | | - Marcela Ferrándiz
- Biotechnology Research Group, Textile Research Institute (AITEX), Plaza Emilio Sala 1, 03801, Alcoy, Spain
| | - Esther Franco
- Biotechnology Research Group, Textile Research Institute (AITEX), Plaza Emilio Sala 1, 03801, Alcoy, Spain
| | - Elena Mira
- Biotechnology Research Group, Textile Research Institute (AITEX), Plaza Emilio Sala 1, 03801, Alcoy, Spain
| | - Beatriz Maestro
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. Universidad s/n, 03202, Elche, Spain
| | - Jesús M Sanz
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. Universidad s/n, 03202, Elche, Spain.,Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
22
|
Perna V, Agger JW, Holck J, Meyer AS. Multiple Reaction Monitoring for quantitative laccase kinetics by LC-MS. Sci Rep 2018; 8:8114. [PMID: 29802313 PMCID: PMC5970232 DOI: 10.1038/s41598-018-26523-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022] Open
Abstract
Laccases (EC 1.10.3.2) are enzymes known for their ability to catalyse the oxidation of phenolic compounds using molecular oxygen as the final electron acceptor. Lignin is a natural phenylpropanoids biopolymer whose degradation in nature is thought to be aided by enzymatic oxidation by laccases. Laccase activity is often measured spectrophotometrically on compounds such as syringaldazine and ABTS which poorly relate to lignin. We employed natural phenolic hydroxycinnamates having different degree of methoxylations, p-coumaric, ferulic and sinapic acid, and a lignin model OH-dilignol compound as substrates to assess enzyme kinetics by HPLC-MS on two fungal laccases Trametes versicolor laccase, Tv and Ganoderma lucidum laccase, Gl. The method allowed accurate kinetic measurements and detailed insight into the product profiles of both laccases. Both Tv and Gl laccase are active on the hydroxycinnammates and show a preference for substrate with methoxylations. Product profiles were dominated by the presence of dimeric and trimeric species already after 10 minutes of reaction and similar profiles were obtained with the two laccases. This new HPLC-MS method is highly suitable and accurate as a new method for assaying laccase activity on genuine phenolic substrates, as well as a tool for examining laccase oxidation product profiles.
Collapse
Affiliation(s)
- Valentina Perna
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Jane W Agger
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark.
| | - Jesper Holck
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Anne S Meyer
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| |
Collapse
|
23
|
Ufarté L, Potocki-Veronese G, Cecchini D, Tauzin AS, Rizzo A, Morgavi DP, Cathala B, Moreau C, Cleret M, Robe P, Klopp C, Laville E. Highly Promiscuous Oxidases Discovered in the Bovine Rumen Microbiome. Front Microbiol 2018; 9:861. [PMID: 29780372 PMCID: PMC5945886 DOI: 10.3389/fmicb.2018.00861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 04/13/2018] [Indexed: 11/17/2022] Open
Abstract
The bovine rumen hosts a diverse microbiota, which is highly specialized in the degradation of lignocellulose. Ruminal bacteria, in particular, are well equipped to deconstruct plant cell wall polysaccharides. Nevertheless, their potential role in the breakdown of the lignin network has never been investigated. In this study, we used functional metagenomics to identify bacterial redox enzymes acting on polyaromatic compounds. A new methodology was developed to explore the potential of uncultured microbes to degrade lignin derivatives, namely kraft lignin and lignosulfonate. From a fosmid library covering 0.7 Gb of metagenomic DNA, three hit clones were identified, producing enzymes able to oxidize a wide variety of polyaromatic compounds without the need for the addition of copper, manganese, or mediators. These promiscuous redox enzymes could thus be of potential interest both in plant biomass refining and dye remediation. The enzymes were derived from uncultured Clostridia, and belong to complex gene clusters involving proteins of different functional types, including hemicellulases, which likely work in synergy to produce substrate degradation.
Collapse
Affiliation(s)
- Lisa Ufarté
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Gabrielle Potocki-Veronese
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Davide Cecchini
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Alexandra S Tauzin
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Angeline Rizzo
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | | | - Bernard Cathala
- UR1268 Biopolymères Interactions Assemblages, INRA, Nantes, France
| | - Céline Moreau
- UR1268 Biopolymères Interactions Assemblages, INRA, Nantes, France
| | - Megane Cleret
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | | | - Christophe Klopp
- Plateforme Bio-informatique Toulouse Genopole, UBIA INRA, BP 52627, Castanet-Tolosan, France
| | - Elisabeth Laville
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| |
Collapse
|
24
|
Britos CN, Gianolini JE, Portillo H, Trelles JA. Biodegradation of industrial dyes by a solvent, metal and surfactant-stable extracellular bacterial laccase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Pardo I, Camarero S. Colorimetric High-Throughput Screening Assays for the Directed Evolution of Fungal Laccases. Methods Mol Biol 2018; 1685:247-254. [PMID: 29086313 DOI: 10.1007/978-1-4939-7366-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this chapter we describe several high-throughput screening assays for the evaluation of mutant libraries for the directed evolution of fungal laccases in the yeast Saccharomyces cerevisiae. The assays are based on the direct oxidation of three syringyl-type phenols derived from lignin (sinapic acid, acetosyringone, and syringaldehyde), an artificial laccase mediator (violuric acid), and three organic synthetic dyes (Methyl Orange, Evans Blue, and Remazol Brilliant Blue). While the assays with the natural phenols can be used for laccases with low redox potential, the rest are exclusive for high-redox potential laccases. In fact, the violuric acid assay is devised as a method to ascertain that the high-redox potential of laccase is not lost during directed evolution.
Collapse
Affiliation(s)
- Isabel Pardo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Susana Camarero
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
26
|
Kolomytseva M, Myasoedova N, Samoilova A, Podieiablonskaia E, Chernykh A, Classen T, Pietruszka J, Golovleva L. Rapid identification of fungal laccases/oxidases with different pH-optimum. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Chauhan PS, Goradia B, Saxena A. Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 2017; 7:323. [PMID: 28955620 PMCID: PMC5602783 DOI: 10.1007/s13205-017-0955-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/07/2017] [Indexed: 01/17/2023] Open
Abstract
Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are multi-copper enzymes which catalyze the oxidation of a wide range of phenolic and non-phenolic aromatic compounds in the presence or absence of a mediator. Till date, laccases have mostly been isolated from fungi and plants, whereas laccase from bacteria has not been well studied. Bacterial laccases have several unique properties that are not characteristics of fungal laccases such as stability at high temperature and high pH. Bacteria produce these enzymes either extracellularly or intracellularly and their activity is in a wide range of temperature and pH. It has application in pulp biobleaching, bioremediation, textile dye decolorization, pollutant degradation, biosensors, etc. Hence, comprehensive information including sources, production conditions, characterization, cloning and biotechnological applications is needed for the effective understanding and application of these enzymes at the industrial level. The present review provides exhaustive information of bacterial laccases reported till date.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- School of Biological Sciences, G. B. Pant, University of Agricultural and Technology, Pantnagar, Uttarakhand 263145 India
| | - Bindi Goradia
- Marine Biotechnology and Ecology Division, Council of Scientific and Industrial Research – Central Salt & Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 021 India
| | - Arunika Saxena
- Department of Chemistry, Samrat Prithviraj Chauhan Government College, Beawar Road, Ajmer, Rajasthan 305001 India
| |
Collapse
|
28
|
Fan Y, Wang D, Han D, Ma Y, Ni S, Sun Z, Dong X, Niu L. Integrated hydrogen evolution and water-cleaning via a robust graphene supported noble-metal-free Fe 1-xCo xS 2 system. NANOSCALE 2017; 9:5887-5895. [PMID: 28436522 DOI: 10.1039/c7nr00665a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In an electrocatalytic hydrogen evolution reaction (HER) system, a cathodic H+ resource, an anodic sacrificial agent and a robust catalyst are three essential factors. Industry wastewater emissions, containing high levels of acidity and organic dyes, actually can satisfy the material requirements for the HER. Herein, a new HER method is proposed, taking acidic ions from wastewater as a cathodic resource to produce H2, while organic dye waste acts as an anodic sacrifice to balance the reaction. In such a way, a sustainable H2 energy source can be generated and clean water is obtained as well. For the HER catalyst, low cost and highly efficient graphene supported Fe1-xCoxS2 was synthesized with an onset overpotential of ∼50 mV and it demonstrated impressive HER performance in both practical industry wastewater and analogous wastewater simulations. Besides the cathodic H2 evolution, anodic organic dyes (MO, MB, RhB and industry waste organic dyes) were all entirely decomposed within 8 min, 18 min, 9 min and 4 h under oxidation potentials of ∼1.46, 1.50, 1.47 and 1.40 V. As verified both in practical industry wastewater and wastewater simulations in the laboratory, our approach for integrating the HER and wastewater treatment puts forward an attractive opportunity in energy and environmental research fields.
Collapse
Affiliation(s)
- Yingying Fan
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, CAS Center for Excellence in Nanoscience, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Deshmukh R, Khardenavis AA, Purohit HJ. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J Microbiol 2016; 56:247-64. [PMID: 27407289 PMCID: PMC4920763 DOI: 10.1007/s12088-016-0584-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 04/12/2016] [Indexed: 11/30/2022] Open
Abstract
Bioremediation refers to cost-effective and environment-friendly method for converting the toxic, recalcitrant pollutants into environmentally benign products through the action of various biological treatments. Fungi play a major role in bioremediation owing to their robust morphology and diverse metabolic capacity. The review focuses on different fungal groups from a variety of habitats with their role in bioremediation of different toxic and recalcitrant compounds; persistent organic pollutants, textile dyes, effluents from textile, bleached kraft pulp, leather tanning industries, petroleum, polyaromatic hydrocarbons, pharmaceuticals and personal care products, and pesticides. Bioremediation of toxic organics by fungi is the most sustainable and green route for cleanup of contaminated sites and we discuss the multiple modes employed by fungi for detoxification of different toxic and recalcitrant compounds including prominent fungal enzymes viz., catalases, laccases, peroxidases and cyrochrome P450 monooxygeneses. We have also discussed the recent advances in enzyme engineering and genomics and research being carried out to trace the less understood bioremediation pathways.
Collapse
Affiliation(s)
- Radhika Deshmukh
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| | - Anshuman A. Khardenavis
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| | - Hemant J. Purohit
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| |
Collapse
|
30
|
Britos CN, Trelles JA. Development of strong enzymatic biocatalysts for dye decolorization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Pardo I, Santiago G, Gentili P, Lucas F, Monza E, Medrano FJ, Galli C, Martínez AT, Guallar V, Camarero S. Re-designing the substrate binding pocket of laccase for enhanced oxidation of sinapic acid. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01725d] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iterative saturation mutagenesis was performed over six residues delimiting the substrate binding pocket of a high redox potential chimeric laccase with the aim of enhancing its activity over sinapic acid, a lignin-related phenol of industrial interest.
Collapse
Affiliation(s)
- I. Pardo
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid
- Spain
| | - G. Santiago
- Joint BSC-CRG-IRB Research Program in Computational Biology
- Barcelona Supercomputing Center
- 08034 Barcelona
- Spain
| | - P. Gentili
- Dipartimento di Chimica
- Università “La Sapienza” and IMC-CNR Sezione Meccanismi di Reazione
- 00185 Rome
- Italy
| | - F. Lucas
- Joint BSC-CRG-IRB Research Program in Computational Biology
- Barcelona Supercomputing Center
- 08034 Barcelona
- Spain
- Anaxomics Biotech
| | - E. Monza
- Joint BSC-CRG-IRB Research Program in Computational Biology
- Barcelona Supercomputing Center
- 08034 Barcelona
- Spain
| | - F. J. Medrano
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid
- Spain
| | - C. Galli
- Dipartimento di Chimica
- Università “La Sapienza” and IMC-CNR Sezione Meccanismi di Reazione
- 00185 Rome
- Italy
| | - A. T. Martínez
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid
- Spain
| | - V. Guallar
- Joint BSC-CRG-IRB Research Program in Computational Biology
- Barcelona Supercomputing Center
- 08034 Barcelona
- Spain
- ICREA
| | - S. Camarero
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid
- Spain
| |
Collapse
|
32
|
Pardo I, Camarero S. Exploring the Oxidation of Lignin-Derived Phenols by a Library of Laccase Mutants. Molecules 2015; 20:15929-43. [PMID: 26364626 PMCID: PMC6332420 DOI: 10.3390/molecules200915929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022] Open
Abstract
Saturation mutagenesis was performed over six residues delimiting the substrate binding pocket of a fungal laccase previously engineered in the lab. Mutant libraries were screened using sinapic acid as a model substrate, and those mutants presenting increased activity were selected for exploring the oxidation of lignin-derived phenols. The latter comprised a battery of phenolic compounds of interest due to their use as redox mediators or precursors of added-value products and their biological activity. The new laccase variants were investigated in a multi-screening assay and the structural determinants, at both the substrate and the protein level, for the oxidation of the different phenols are discussed. Laccase activity greatly varied only by changing one or two residues of the enzyme pocket. Our results suggest that once the redox potential threshold is surpassed, the contribution of the residues of the enzymatic pocket for substrate recognition and binding strongly influence the overall rate of the catalytic reaction.
Collapse
Affiliation(s)
- Isabel Pardo
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Susana Camarero
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
33
|
Laccase engineering by rational and evolutionary design. Cell Mol Life Sci 2015; 72:897-910. [PMID: 25586560 PMCID: PMC4323517 DOI: 10.1007/s00018-014-1824-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 11/27/2022]
Abstract
Laccases are considered as green catalysts of great biotechnological potential. This has attracted a great interest in designing laccases a la carte with enhanced stabilities or activities tailored to specific conditions for different fields of application. Over 20 years, numerous efforts have been taken to engineer these multicopper oxidases and to understand their reaction mechanisms by site-directed mutagenesis, and more recently, using computational calculations and directed evolution tools. In this work, we review the most relevant contributions made in the field of laccase engineering, from the comprehensive study of their structure–function relationships to the tailoring of outstanding biocatalysts.
Collapse
|
34
|
Camarero S, Vicente AI, Alcalde M, Pardo I. Engineering high-redox potential laccases in the lab to aid biomass conversion into chemicals, materials and biofuels. N Biotechnol 2014. [DOI: 10.1016/j.nbt.2014.05.1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|