1
|
Yan X, Li J, Wu D. The Role of Short-Chain Fatty Acids in Acute Pancreatitis. Molecules 2023; 28:4985. [PMID: 37446647 DOI: 10.3390/molecules28134985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Acute pancreatitis (AP) is a digestive emergency and can develop into a systematic illness. The role of the gut in the progression and deterioration of AP has drawn much attention from researchers, and areas of interest include dysbiosis of the intestinal flora, weakened intestinal barrier function, and bacterial and endotoxin translocation. Short-chain fatty acids (SCFAs), as one of the metabolites of gut microbiota, have been proven to be depleted in AP patients. SCFAs help restore gut homeostasis by rebuilding gut flora, stabilizing the intestinal epithelial barrier, and regulating inflammation. SCFAs can also suppress systematic inflammatory responses, improve the injured pancreas, and prevent and protect other organ dysfunctions. Based on multiple beneficial effects, increasing SCFAs is an essential idea of gut protective treatment in AP. Specific strategies include the direct use of butyrate or indirect supplementation through fiber, pre/pro/synbiotics, or fecal microbiota transplantation as a promising adjective therapy to enteral nutrition.
Collapse
Affiliation(s)
- Xiaxiao Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianing Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
2
|
Yan Q, Jia L, Wen B, Wu Y, Zeng Y, Wang Q. Clostridium butyricum Protects Against Pancreatic and Intestinal Injury After Severe Acute Pancreatitis via Downregulation of MMP9. Front Pharmacol 2022; 13:919010. [PMID: 35924043 PMCID: PMC9342915 DOI: 10.3389/fphar.2022.919010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Evidence have shown that gut microbiota plays an important role in the development of severe acute pancreatitis (SAP). In addition, matrix metalloproteinase-9 (MMP9) plays an important role in intestinal injury in SAP. Thus, we aimed to determine whether gut microbiota could regulate the intestinal injury during SAP via modulating MMP9.Methods: In this study, the fecal samples of patients with SAP (n = 72) and healthy controls (n = 32) were analyzed by 16S rRNA gene sequencing. In addition, to investigate the association between gut microbiota and MMP9 in intestinal injury during SAP, we established MMP9 stable knockdown Caco2 and HT29 cells in vitro and generated a MMP9 knockout (MMP9−/−) mouse model of SAP in vivo.Results: We found that the abundance of Clostridium butyricum (C. butyricum) was significantly decreased in the SAP group. In addition, overexpression of MMP9 notably downregulated the expressions of tight junction proteins and upregulated the expressions of p-p38 and p-ERK in Caco2 and HT29 cells (p < 0.05). However, C. butyricum or butyrate treatment remarkably upregulated the expressions of tight junction proteins and downregulated the expressions of MMP9, p-p38 and p-ERK in MMP9-overexpressed Caco2 and HT29 cells (p < 0.05). Importantly, C. butyricum or butyrate could not affect the expressions of tight junction proteins, and MMP9, p-p38 and p-ERK proteins in MMP9-knockdown cells compared with MMP9-knockdown group. Consistently, C. butyricum or butyrate could not attenuate pancreatic and intestinal injury during SAP in MMP9−/− mice compared with the SAP group.Conclusion: Collectively, C. butyricum could protect against pancreatic and intestinal injury after SAP via downregulation of MMP9 in vitro and in vivo.
Collapse
Affiliation(s)
- Qingqing Yan
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lin Jia
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Lin Jia,
| | - Biyan Wen
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Nan Chang University, Nanchang, China
| | - Yanbo Zeng
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Qing Wang
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Zhang Q, Zheng M, Betancourt CE, Liu L, Sitikov A, Sladojevic N, Zhao Q, Zhang JH, Liao JK, Wu R. Increase in Blood-Brain Barrier (BBB) Permeability Is Regulated by MMP3 via the ERK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6655122. [PMID: 33859779 PMCID: PMC8026308 DOI: 10.1155/2021/6655122] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/24/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The blood-brain barrier (BBB) regulates the exchange of molecules between the brain and peripheral blood and is composed primarily of microvascular endothelial cells (BMVECs), which form the lining of cerebral blood vessels and are linked via tight junctions (TJs). The BBB is regulated by components of the extracellular matrix (ECM), and matrix metalloproteinase 3 (MMP3) remodels the ECM's basal lamina, which forms part of the BBB. Oxidative stress is implicated in activation of MMPs and impaired BBB. Thus, we investigated whether MMP3 modulates BBB permeability. METHODS Experiments included in vivo assessments of isoflurane anesthesia and dye extravasation from brain in wild-type (WT) and MMP3-deficient (MMP3-KO) mice, as well as in vitro assessments of the integrity of monolayers of WT and MMP3-KO BMVECs and the expression of junction proteins. RESULTS Compared to WT mice, measurements of isoflurane usage and anesthesia induction time were higher in MMP3-KO mice and lower in WT that had been treated with MMP3 (WT+MMP3), while anesthesia emergence times were shorter in MMP3-KO mice and longer in WT+MMP3 mice than in WT. Extravasation of systemically administered dyes was also lower in MMP3-KO mouse brains and higher in WT+MMP3 mouse brains, than in the brains of WT mice. The results from both TEER and Transwell assays indicated that MMP3 deficiency (or inhibition) increased, while MMP3 upregulation reduced barrier integrity in either BMVEC or the coculture. MMP3 deficiency also increased the abundance of TJs and VE-cadherin proteins in BMVECs, and the protein abundance declined when MMP3 activity was upregulated in BMVECs, but not when the cells were treated with an inhibitor of extracellular signal related-kinase (ERK). CONCLUSION MMP3 increases BBB permeability following the administration of isoflurane by upregulating the ERK signaling pathway, which subsequently reduces TJ and VE-cadherin proteins in BMVECs.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Mei Zheng
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | | | - Lifeng Liu
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Albert Sitikov
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Nikola Sladojevic
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Qiong Zhao
- Division of Cardiology, Department of Medicine, Inova Heart and Vascular Institute, USA
| | - John H. Zhang
- Center for Neuroscience Research, Loma Linda University, School of Medicine, USA
| | - James K. Liao
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Rongxue Wu
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| |
Collapse
|
4
|
Rouka E, Vavougios GD, Solenov EI, Gourgoulianis KI, Hatzoglou C, Zarogiannis SG. Transcriptomic Analysis of the Claudin Interactome in Malignant Pleural Mesothelioma: Evaluation of the Effect of Disease Phenotype, Asbestos Exposure, and CDKN2A Deletion Status. Front Physiol 2017; 8:156. [PMID: 28377727 PMCID: PMC5359316 DOI: 10.3389/fphys.2017.00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/28/2017] [Indexed: 01/14/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor primarily associated with asbestos exposure. Early detection of MPM is restricted by the long latency period until clinical presentation, the ineffectiveness of imaging techniques in early stage detection and the lack of non-invasive biomarkers with high sensitivity and specificity. In this study we used transcriptome data mining in order to determine which CLAUDIN (CLDN) genes are differentially expressed in MPM as compared to controls. Using the same approach we identified the interactome of the differentially expressed CLDN genes and assessed their expression profile. Subsequently, we evaluated the effect of tumor histology, asbestos exposure, CDKN2A deletion status, and gender on the gene expression level of the claudin interactome. We found that 5 out of 15 studied CLDNs (4, 5, 8, 10, 15) and 4 out of 27 available interactors (S100B, SHBG, CDH5, CXCL8) were differentially expressed in MPM specimens vs. healthy tissues. The genes encoding the CLDN-15 and S100B proteins present differences in their expression profile between the three histological subtypes of MPM. Moreover, CLDN-15 is significantly under-expressed in the cohort of patients with previous history of asbestos exposure. CLDN-15 was also found significantly underexpressed in patients lacking the CDKN2A gene. These results warrant the detailed in vitro investigation of the role of CDLN-15 in the pathobiology of MPM.
Collapse
Affiliation(s)
- Erasmia Rouka
- Gradute Program in Primary Health Care, Faculty of Medicine, University of Thessaly Larissa, Greece
| | - Georgios D Vavougios
- Department of Respiratory Medicine, University of Thessaly Medical School Larissa, Greece
| | - Evgeniy I Solenov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of SciencesNovosibirsk, Russia; Department of Physiology, Novosibirsk State UniversityNovosibirsk, Russia
| | - Konstantinos I Gourgoulianis
- Gradute Program in Primary Health Care, Faculty of Medicine, University of ThessalyLarissa, Greece; Department of Respiratory Medicine, University of Thessaly Medical SchoolLarissa, Greece
| | - Chrissi Hatzoglou
- Gradute Program in Primary Health Care, Faculty of Medicine, University of ThessalyLarissa, Greece; Department of Respiratory Medicine, University of Thessaly Medical SchoolLarissa, Greece; Department of Physiology, Faculty of Medicine, University of ThessalyLarissa, Greece
| | - Sotirios G Zarogiannis
- Gradute Program in Primary Health Care, Faculty of Medicine, University of ThessalyLarissa, Greece; Department of Respiratory Medicine, University of Thessaly Medical SchoolLarissa, Greece; Department of Physiology, Faculty of Medicine, University of ThessalyLarissa, Greece
| |
Collapse
|
5
|
Yamada H, Yoneda M, Inaguma S, Watanabe D, Banno S, Yoshikawa K, Mizutani K, Iwaki M, Zako M. Infliximab counteracts tumor necrosis factor-α-enhanced induction of matrix metalloproteinases that degrade claudin and occludin in non-pigmented ciliary epithelium. Biochem Pharmacol 2013; 85:1770-82. [PMID: 23603294 DOI: 10.1016/j.bcp.2013.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/07/2013] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Abstract
Infliximab, a monoclonal antibody directed against human tumor necrosis factor-alpha (TNF-α), effectively treats anterior uveitis, which can accompany Behçet's disease. Here, we investigated the underlying mechanism of this action. We examined human, non-pigmented ciliary epithelial cells (HNPCECs), which make up the blood-aqueous barrier (BAB) in the uvea. We measured the expression levels of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the presence or absence of TNF-α using quantitative, real-time polymerase chain reaction and enzyme-linked immunosorbent assays. The expression of MMP-1, MMP-3, and MMP-9 increased in the presence of TNF-α, and the addition of infliximab reversed the increase. The TNF-α effects were more attenuated when infliximab was added before than when it was added after TNF-α exposure. Gelatin zymography demonstrated that the protease activity of these MMPs was also increased in the presence of TNF-α and attenuated with infliximab. Immunostaining showed that MMP-1, MMP-3, and MMP-9 degraded claudin-1 and occludin in HNPCECs and in non-pigmented ciliary epithelial cells of the swine ciliary body. In a monolayer of HNPCECs, we found that permeability was significantly increased with MMP treatment. Thus, TNF-α increased levels of MMPs in cells that form the BAB, and MMPs degraded components of the tight junctions in the BAB, which increased permeability through the cellular barrier. Furthermore, infliximab effectively attenuated the TNF-α-induced increases in MMP expression in cells that make up the BAB. These findings might suggest a basis for the clinical prevention of anterior uveitis.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Department of Ophthalmology, Aichi Medical University, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|