1
|
Tuchmann-Durand C, Roda C, Renard P, Mortamet G, Bérat CM, Altenburger L, de Larauz MH, Thevenet E, Cottart CH, Moulin F, Bouchereau J, Brassier A, Arnoux JB, Schiff M, Bednarek N, Lamireau D, Garros A, Mention K, Cano A, Finger L, Pelosi M, Brochet CS, Caccavelli L, Raphalen JH, Renolleau S, Oualha M, de Lonlay P. Systemic corticosteroids for the treatment of acute episodes of rhabdomyolysis in lipin-1-deficient patients. J Inherit Metab Dis 2023. [PMID: 36680547 DOI: 10.1002/jimd.12592] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Mutations in the LPIN1 gene constitute a major cause of severe rhabdomyolysis (RM). The TLR9 activation prompted us to treat patients with corticosteroids in acute conditions. In patients with LPIN1 mutations, RM and at-risk situations that can trigger RM have been treated in a uniform manner. Since 2015, these patients have also received intravenous corticosteroids. We retrospectively compared data on hospital stays by corticosteroid-treated patients vs. patients not treated with corticosteroids. Nineteen patients were hospitalized. The median number of admissions per patient was 21 overall and did not differ when comparing the 10 corticosteroid-treated patients with the 9 patients not treated with corticosteroids. Four patients in the non-corticosteroid group died during a RM (mean age at death: 5.6 years). There were no deaths in the corticosteroid group. The two groups did not differ significantly in the number of RM episodes. However, for the six patients who had RM and occasionally been treated with corticosteroids, the median number of RM episodes was significantly lower when intravenous steroids had been administered. The peak plasma creatine kinase level and the area under the curve were or tended to be higher in patients treated with corticosteroids-even after the exclusion of deceased patients or focusing on the period after 2015. The median length of stay (10 days overall) was significantly longer for corticosteroid-treated patients but was similar after the exclusion of deceased patients. The absence of deaths and the higher severity of RM observed among corticosteroid-treated patients could suggest that corticotherapy is associated with greater survival.
Collapse
Affiliation(s)
- Caroline Tuchmann-Durand
- Imagine Institute, Biotherapy Clinical Investigation Center, Biotherapy Department, Necker-Enfants-Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Célina Roda
- Université Paris Cité, Health Environmental Risk Assessment (HERA) Team, CRESS, INSERM, INRAE, Paris, France
- Faculté de Pharmacie de Paris, Université Paris Cité, Paris, France
| | - Perrine Renard
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Paris, France
| | - Guillaume Mortamet
- Pediatric Intensive Care Unit, Grenoble Alpes University Hospital, Grenoble, France
| | - Claire-Marine Bérat
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Lucile Altenburger
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Marie Hug de Larauz
- Imagine Institute, Biotherapy Clinical Investigation Center, Biotherapy Department, Necker-Enfants-Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Eloise Thevenet
- Imagine Institute, Biotherapy Clinical Investigation Center, Biotherapy Department, Necker-Enfants-Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Charles-Henry Cottart
- Faculté de Pharmacie de Paris, Université Paris Cité, Paris, France
- Biochemistry Unit, Biology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Necker-Enfants-Malades University Hospital, Paris, France
| | - Florence Moulin
- Pediatric Intensive Care Unit for, Necker-Enfants-Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Juliette Bouchereau
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Anais Brassier
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Manuel Schiff
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
- Medical School, Université Paris Cité, Paris, France
| | - Nathalie Bednarek
- Intensive Care Unit and Competence Center for Inherited Metabolic Diseases, Reims University Hospital, Reims, France
| | - Delphine Lamireau
- Competence Center for Inherited Metabolic Diseases, Pellegrin University Hospital, Bordeaux, France
| | - Alexa Garros
- Competence Center for Inherited Metabolic Diseases, Grenoble Alpes University Hospital, Grenoble, France
| | - Karine Mention
- Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre Hospital, MetabERN, Lille, France
| | - Aline Cano
- Reference Center for Inherited Metabolic Diseases, La Timone University Hospital, MetabERN, Marseille, France
| | - Lionel Finger
- Biochemistry Unit, Biology Department, Troyes Hospital, Troyes, France
| | - Michele Pelosi
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | | | - Laure Caccavelli
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Jean-Herlé Raphalen
- Adult Intensive Care Unit, Necker-Enfants-Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sylvain Renolleau
- Pediatric Intensive Care Unit for, Necker-Enfants-Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Medical School, Université Paris Cité, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit for, Necker-Enfants-Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Medical School, Université Paris Cité, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
- Medical School, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Marafon BB, Pinto AP, Ropelle ER, de Moura LP, Cintra DE, Pauli JR, da Silva ASR. Muscle endoplasmic reticulum stress in exercise. Acta Physiol (Oxf) 2022; 235:e13799. [PMID: 35152547 DOI: 10.1111/apha.13799] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle responsible for the post-translational folding and modification of proteins. Under stress conditions, such as physical exercise, there is accumulation of misfolded proteins. The increased load of proteins in the ER results in ER stress, which activates the unfolded protein response (UPR). UPR is comprised of three parallel pathways, responsible for ensuring the quality of secreted proteins. Scientific studies show that resistance or endurance acute physical exercise can induce ER stress and activate the UPR pathways. On the other hand, regular moderate-intensity exercise can attenuate the responses of genes and proteins related to ER stress. However, these positive adaptations do not occur when exercise intensity and volume increase without adequate rest periods, which is observed in overtraining. The current review discusses the frontier-of-knowledge findings on the effects of different acute and chronic physical exercise protocols on skeletal muscle ER stress and its metabolic consequences.
Collapse
Affiliation(s)
- Bruno B. Marafon
- School of Physical Education and Sport of Ribeirão Preto University of São Paulo (USP) São Paulo Brazil
| | - Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP) São Paulo Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences University of Campinas (UNICAMP) São Paulo Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences University of Campinas (UNICAMP) São Paulo Brazil
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences University of Campinas (UNICAMP) São Paulo Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences University of Campinas (UNICAMP) São Paulo Brazil
| | - Adelino S. R. da Silva
- School of Physical Education and Sport of Ribeirão Preto University of São Paulo (USP) São Paulo Brazil
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences University of Campinas (UNICAMP) São Paulo Brazil
| |
Collapse
|
3
|
Massett MP, Matejka C, Kim H. Systematic Review and Meta-Analysis of Endurance Exercise Training Protocols for Mice. Front Physiol 2021; 12:782695. [PMID: 34950054 PMCID: PMC8691460 DOI: 10.3389/fphys.2021.782695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Inbred and genetically modified mice are frequently used to investigate the molecular mechanisms responsible for the beneficial adaptations to exercise training. However, published paradigms for exercise training in mice are variable, making comparisons across studies for training efficacy difficult. The purpose of this systematic review and meta-analysis was to characterize the diversity across published treadmill-based endurance exercise training protocols for mice and to identify training protocol parameters that moderate the adaptations to endurance exercise training in mice. Published studies were retrieved from PubMed and EMBASE and reviewed for the following inclusion criteria: inbred mice; inclusion of a sedentary group; and exercise training using a motorized treadmill. Fifty-eight articles met those inclusion criteria and also included a "classical" marker of training efficacy. Outcome measures included changes in exercise performance, V ˙ O2max, skeletal muscle oxidative enzyme activity, blood lactate levels, or exercise-induced cardiac hypertrophy. The majority of studies were conducted using male mice. Approximately 48% of studies included all information regarding exercise training protocol parameters. Meta-analysis was performed using 105 distinct training groups (i.e., EX-SED pairs). Exercise training had a significant effect on training outcomes, but with high heterogeneity (Hedges' g=1.70, 95% CI=1.47-1.94, Tau2=1.14, I2 =80.4%, prediction interval=-0.43-3.84). Heterogeneity was partially explained by subgroup differences in treadmill incline, training duration, exercise performance test type, and outcome variable. Subsequent analyses were performed on subsets of studies based on training outcome, exercise performance, or biochemical markers. Exercise training significantly improved performance outcomes (Hedges' g=1.85, 95% CI=1.55-2.15). Subgroup differences were observed for treadmill incline, training duration, and exercise performance test protocol on improvements in performance. Biochemical markers also changed significantly with training (Hedges' g=1.62, 95% CI=1.14-2.11). Subgroup differences were observed for strain, sex, exercise session time, and training duration. These results demonstrate there is a high degree of heterogeneity across exercise training studies in mice. Training duration had the most significant impact on training outcome. However, the magnitude of the effect of exercise training varies based on the marker used to assess training efficacy.
Collapse
Affiliation(s)
- Michael P Massett
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Caitlyn Matejka
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Hyoseon Kim
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
4
|
Oliveira LDC, de Morais GP, da Rocha AL, Teixeira GR, Pinto AP, de Vicente LG, Pauli JR, de Moura LP, Mekary RA, Ropelle ER, Cintra DE, da Silva ASR. Excessive treadmill training enhances the insulin signaling pathway and glycogen deposition in mice hearts. J Cell Biochem 2019; 120:1304-1317. [PMID: 30324688 DOI: 10.1002/jcb.27092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
Exhaustive and chronic physical exercise leads to peripheral inflammation, which is one of the molecular mechanisms responsible for the impairment of the insulin signaling pathway in the heart. Recently, 3 different running overtraining models performed downhill (OTR/down), uphill (OTR/up), and without inclination (OTR) increased the serum levels of proinflammatory cytokines. This proinflammatory status induced insulin signaling impairment in the skeletal muscle; however, the response of this signaling pathway in the cardiac muscle of overtrained mice was still unknown. Thus, we investigated the effects of OTR/down, OTR/up, and OTR protocols on the protein levels of phosphorylation of insulin receptor β (pIRβ) (Tyr), phosphorylation of protein kinase B (pAkt) (Ser473), plasma membrane glucose transporter-1 (GLUT1) and GLUT4, phosphorylation of insulin receptor substrate-1 (pIRS-1) (Ser307), phosphorylation of IκB kinase α/β) (pIKKα/β (Ser180/181), phosphorylation of p38 mitogen-activated protein kinase (p-p38MAPK) (Thr180/Tyr182), phosphorylation of stress-activated protein kinases-Jun amino-terminal kinases (pSAPK-JNK) (Thr183/Tyr185), and glycogen content in mice hearts. The rodents were divided into naïve (N, sedentary mice), control (CT, sedentary mice submitted to performance evaluations), trained (TR, performed the training protocol), OTR/down, OTR/up, and OTR groups. After the grip force test, the cardiac muscles (ie, left ventricle) were removed and used for immunoblotting and histology. Although the OTR/up and OTR groups exhibited higher cardiac levels of pIRβ (Tyr), only the OTR group exhibited higher cardiac levels of pAkt (Ser473) and plasma membrane GLUT4. On the contrary, the OTR/down group exhibited higher cardiac levels of pIRS-1 (Ser307). The OTR model enhanced the cardiac insulin signaling pathway. All overtraining models increased the left ventricle glycogen content, with this probably acting as a compensatory organ in response to skeletal muscle insulin signaling impairment.
Collapse
Affiliation(s)
- Luciana da C Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gustavo P de Morais
- Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Giovana R Teixeira
- Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Larissa G de Vicente
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rania A Mekary
- Department of Pharmaceutical Business and Administrative Sciences, MCPHS University, Boston, MA.,Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.,Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Kartiko BH, Siswanto FM. Overtraining elevates serum protease level, increases renal p16INK4α gene expression and induces apoptosis in rat kidney. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0433-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
MORAIS GP, DA ROCHA A, PINTO AP, DA C. OLIVEIRA L, DE VICENTE LG, FERREIRA GN, DE FREITAS EC, DA SILVA ASR. Uphill Running Excessive Training Increases Gastrocnemius Glycogen Content in C57BL/6 Mice. Physiol Res 2018; 67:107-115. [DOI: 10.33549/physiolres.933614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The main aim of the present investigation was to verify the effects of three overtraining (OT) protocols performed in downhill (OTR/down), uphill (OTR/up) and without inclination (OTR) on the protein levels of Akt (Ser473), AMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4 as well as on the glycogen contents in mice gastrocnemius. A trained (TR) protocol was used as positive control. Rodents were divided into naïve (N, sedentary mice), control (CT, sedentary mice submitted to the performance evaluations), TR, OTR/down, OTR/up and OTR groups. At the end of the experimental protocols, gastrocnemius samples were removed and used for immunoblotting analysis as well as for glycogen measurements. There was no significant difference between the experimental groups for the protein levels of pAkt (Ser473), pAMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4. However, the OTR/up protocol exhibited higher contents of glycogen compared to the CT and TR groups. In summary, the OTR/up group increased the gastrocnemius glycogen content without significant changes of pAkt (Ser473), pAMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A. S. R. DA SILVA
- Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Sadeghi F, Etebari M, Habibi Roudkenar M, Jahanian-Najafabadi A. Lipocalin2 Protects Human Embryonic Kidney Cells against Cisplatin-Induced Genotoxicity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:147-154. [PMID: 29755547 PMCID: PMC5937086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cisplatin is one of the most useful chemotherapeutics which performs its cytotoxic effect via accumulation of platinum resulting in oxidative stress, and destruction of cell DNA. This could probably cause secondary cancers in healthy tissues. Lipocalin2 (Lcn2) is a protein which its expression is increased in oxidative stresses. Therefore, the present study was performed to evaluate the protective effects of Lcn2 up-regulation on cisplatin genotoxicity. In order to up-regulate Lcn2 expression, HEK293 cells were transfected with pcDNA3.1-Lcn2 vector. Afterwards, stable cells consistently expressing Lcn2 were selected via screening with G418 antibiotic. Next, overexpression of Lcn2 was evaluated by RT-PCR and ELISA, comparing to the control non-transfected cells. Then, in order to evaluate the cytoprotective effects of Lcn2 overexpression, transfected and non-transfected cells were subjected to cisplatin treatment followed by MTT and alkaline Comet assays. RT-PCR and ELISA assays confirmed up-regulation of Lcn2 by the stable cells. MTT assay of the Lcn2 over-expressing cells showed higher IC50 values comparing to the non-transfected cells. Furthermore, the Comet assay confirmed Lcn2 protective effects on the cisplatin (1 µg/mL) induced genotoxicity. In the present study, for the first time, we showed the protective effect of Lcn2 on cisplatin induced genotoxicity. Therefore, one of the probable mechanisms of Lcn2 cytoprotctive effects under oxidative stress conditions could be due to the prevention of genotoxicity. However, further evaluations in this regard must be considered.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Student Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran.
| | - Mahmoud Etebari
- Department of Toxicology and Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran.
| | - Mehryar Habibi Roudkenar
- Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran.
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran.,Corresponding author: E-mail:
| |
Collapse
|
8
|
Machado MV, Vieira AB, da Conceição FG, Nascimento AR, da Nóbrega ACL, Tibirica E. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome. Exp Physiol 2017; 102:1716-1728. [PMID: 28921743 DOI: 10.1113/ep086416] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise frequency and duration for the improvement of metabolic syndrome and capillary density in skeletal muscle. Exercise intensity was a main factor in reversing microvascular rarefaction in the heart.
Collapse
Affiliation(s)
- Marcus Vinicius Machado
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil.,Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Aline Bomfim Vieira
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Eduardo Tibirica
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Corrêa MDS, Gelaleti RB, Bento GF, Damasceno DC, Peraçoli JC. DNA damage in Wistar Kyoto rats exercised during pregnancy. Acta Cir Bras 2017; 32:388-395. [PMID: 28591368 DOI: 10.1590/s0102-865020170050000008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
Purpose: To evaluate DNA damage levels in pregnant rats undergoing a treadmill exercise program. Methods: Wistar Kyoto rats were allocated into two groups (n= 5 animals/group): non-exercise and exercise. The pregnant rats were underwent an exercise protocol on a treadmill throughout pregnancy. Exercise intensity was set at 50% of maximal capacity during maximal exercise testing performed before mating. Body weight, blood pressure and glucose levels, and triglyceride concentration were measured during pregnancy. At day 10 post-natal, the animals were euthanized and maternal blood samples were collected for DNA damage. Results: Blood pressure and glucose levels and biochemical measurements showed no significant differences. Increased DNA damage levels were found in exercise group compared to those of non-exercise group (p<0.05). Conclusion: The exercise intensity protocol used in the study might have been exhaustive leading to maternal increased DNA damage levels, demonstrating the relevance of an adequate protocol of physical exercise.
Collapse
Affiliation(s)
- Mikaela da Silva Corrêa
- Fellow Master degree, Postgraduate Program in Ginecology, Obstetrics and Mastology, Department of Gynecology and Obstetrics, Laboratory of Experimental Research in Gynecology and Obstetrics, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu-SP, Brazil. Scientific, intellectual, conception and design of the study; acquisition, analysis and interpretation of data; technical procedures; manuscript preparation
| | - Rafael Bottaro Gelaleti
- Fellow PhD degree, Postgraduate Program in Ginecology, Obstetrics and Mastology, Department of Gynecology and Obstetrics, Laboratory of Experimental Research in Gynecology and Obstetrics, Botucatu Medical School, UNESP, Botucatu-SP, Brazil. Scientific and intellectual content of the study, analysis and interpretation of data, technical procedures, statistics analysis, manuscript preparation, critical revision
| | - Giovana Fernanda Bento
- Graduate student, Botucatu Medical School, UNESP, Botucatu-SP, Brazil. Scientific and intellectual content of the study, acquisition of data, technical procedures
| | - Débora Cristina Damasceno
- Full Professor, CNPq Researcher Followship 2, Postgraduate Program in Ginecology, Obstetrics and Mastology, Department of Gynecology and Obstetrics, Laboratory of Experimental Research in Gynecology and Obstetrics, Botucatu Medical School, UNESP, Botucatu-SP, Brazil. Scientific, intellectual, conception and design of the study; analysis and interpretation of data; statistics analysis; manuscript preparation; critical revision; final approval
| | - José Carlos Peraçoli
- Full Professor and Head, CNPq Researcher Fellowship 2, Postgraduate Program in Ginecology, Obstetrics and Mastology, Department of Gynecology and Obstetrics, Laboratory of Experimental Research in Gynecology and Obstetrics, Botucatu Medical School, UNESP, Botucatu-SP, Brazil. Scientific, intellectual, conception and design of the study; analysis and interpretation of data; critical revision; final approval
| |
Collapse
|
10
|
Marasco V, Stier A, Boner W, Griffiths K, Heidinger B, Monaghan P. Environmental conditions can modulate the links among oxidative stress, age, and longevity. Mech Ageing Dev 2017; 164:100-107. [PMID: 28487181 DOI: 10.1016/j.mad.2017.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/17/2017] [Accepted: 04/29/2017] [Indexed: 12/14/2022]
Abstract
Understanding the links between environmental conditions and longevity remains a major focus in biological research. We examined within-individual changes between early- and mid-adulthood in the circulating levels of four oxidative stress markers linked to ageing, using zebra finches (Taeniopygia guttata): a DNA damage product (8-hydroxy-2'-deoxyguanosine; 8-OHdG), protein carbonyls (PC), non-enzymatic antioxidant capacity (OXY), and superoxide dismutase activity (SOD). We further examined whether such within-individual changes differed among birds living under control (ad lib food) or more challenging environmental conditions (unpredictable food availability), having previously found that the latter increased corticosterone levels when food was absent but improved survival over a three year period. Our key findings were: (i) 8-OHdG and PC increased with age in both environments, with a higher increase in 8-OHdG in the challenging environment; (ii) SOD increased with age in the controls but not in the challenged birds, while the opposite was true for OXY; (iii) control birds with high levels of 8-OHdG died at a younger age, but this was not the case in challenged birds. Our data clearly show that while exposure to the potentially damaging effects of oxidative stress increases with age, environmental conditions can modulate the pace of this age-related change.
Collapse
Affiliation(s)
- Valeria Marasco
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Antoine Stier
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
11
|
Kara M, Ozcagli E, Fragkiadaki P, Kotil T, Stivaktakis PD, Spandidos DA, Tsatsakis AM, Alpertunga B. Determination of DNA damage and telomerase activity in stanozolol-treated rats. Exp Ther Med 2017; 13:614-618. [PMID: 28352339 PMCID: PMC5348646 DOI: 10.3892/etm.2016.3974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/02/2016] [Indexed: 01/13/2023] Open
Abstract
Anabolic androgenic steroids (AAS) are performance-enhancing drugs commonly abused by atheletes. Stanozolol is a synthetic testosterone-derived anabolic steroid. Although it is well known that AAS have several side-effects, there are only few toxicological studies available on the toxic effects and mechanisms of action of stanozolol. The aim of this study was to investigate the genotoxic effects of stanozolol and to determine its effects on telomerase activity in Sprague-Dawley male rats. For this purpose, 34 male rats were divided into 5 groups as follows: i) the control group (n=5); ii) the propylene glycol (PG)-treated group (n=5); iii) the stanozolol-treated group (n=8); iv) the PG-treated group subjected to exercise (n=8); and v) the stanozolol-treated group subjected to exercise (n=8). PG is used as a solvent control in our study. Stanozolol (5 mg/kg) and PG (1 ml/kg) were injected subcutaneously 5 days/week for 28 days. After 28 days, the animals were sacrificed, and DNA damage evaluation (comet assay) and telomerase activity assays were then performed using peripheral blood mononuclear cells (PBMCs). Telomerase activity was measured by using the TeloTAGGG Telomerase PCR ELISA PLUS kit. The results of this study revealed that stanozolol treatment induced DNA damage, while exercise exerted a protective effect. Stanozolol treatment without exercise stimulation was associated with a significant increase in telomerase activity in the PBMCs.
Collapse
Affiliation(s)
- Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| | - Eren Ozcagli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| | - Persefoni Fragkiadaki
- Center of Toxicology Science and Research, Medical School, University of Crete, Heraklion 71003, Greece
| | - Tugba Kotil
- Department of Histology and Embryology, School of Medicine, Istanbul University, Istanbul 34116, Turkey
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Aristides M. Tsatsakis
- Center of Toxicology Science and Research, Medical School, University of Crete, Heraklion 71003, Greece
| | - Buket Alpertunga
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| |
Collapse
|
12
|
Oxidative Stress in Training, Overtraining and Detraining: from Experimental to Applied Research. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2016. [DOI: 10.1515/sjecr-2016-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
According to the hormesis theory, the responses of biological systems to stressors in exercise training may be explained by a U-shaped curve with inactivity and overtraining as the two endpoints. Both of these endpoints decrease physiological functions. Markers of oxidative stress may be important parameters for biological monitoring of athletes. Numerous studies have shown that acute exercise has the potential to induce oxidative stress, but regular exposure to an increased level of prooxidants leads to upregulation of the endogenous antioxidative defence system (ADS) of an athlete. Studies that explored the redox state in athletes during the competitive season showed that the antioxidative status changes depending on the training load and training phase. During the training season, a state of fatigue known as overtraining may occur, which results from an excessive training load. Oxidative stress has been suggested as one of the causes of overtraining syndrome. Based on the existing studies, it can be said that a connection exists, but whether oxidative stress is a cause or a consequence of overtraining is yet to be clarified. Furthermore, detraining (training reduction or cessation) leads to a partial or complete loss of training-induced anatomical, physiological and performance adaptations; therefore, it seems reasonable to assume that changes in ADS are also reversible.
Collapse
|
13
|
Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG. Going retro: Oxidative stress biomarkers in modern redox biology. Free Radic Biol Med 2016; 98:2-12. [PMID: 26855421 DOI: 10.1016/j.freeradbiomed.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/23/2022]
Abstract
The field of redox biology is inherently intertwined with oxidative stress biomarkers. Oxidative stress biomarkers have been utilized for many different objectives. Our analysis indicates that oxidative stress biomarkers have several salient applications: (1) diagnosing oxidative stress, (2) pinpointing likely redox components in a physiological or pathological process and (3) estimating the severity, progression and/or regression of a disease. On the contrary, oxidative stress biomarkers do not report on redox signaling. Alternative approaches to gain more mechanistic insights are: (1) measuring molecules that are integrated in pathways linking redox biochemistry with physiology, (2) using the exomarker approach and (3) exploiting -omics techniques. More sophisticated approaches and large trials are needed to establish oxidative stress biomarkers in the clinical setting.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece; Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - J N Cobley
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK
| | - V Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece; Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A S Veskoukis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - A A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece.
| |
Collapse
|
14
|
Karpouzi C, Nikolaidis S, Kabasakalis A, Tsalis G, Mougios V. Exercise-induced oxidatively damaged DNA in humans: evaluation in plasma or urine? Biomarkers 2016; 21:204-7. [DOI: 10.3109/1354750x.2015.1134667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Tsuzuki N, Endo Y, Kikkawa L, Korosue K, Kaneko Y, Kitauchi A, Katamoto H, Hidaka Y, Hagio M, Torisu S. Effects of ozonated autohemotherapy on the antioxidant capacity of Thoroughbred horses. J Vet Med Sci 2015; 77:1647-50. [PMID: 26166812 PMCID: PMC4710722 DOI: 10.1292/jvms.15-0225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The performance of horses undergoing regular intense exercise is adversely affected by
oxidative stress. Thus, it is important to increase antioxidant production in horses in
order to reduce oxidative stress. Ozonated autohemotherapy (OAHT) reportedly promotes
antioxidant production. This study aimed to evaluate the effects of OAHT on antioxidant
capacity. Ten Thoroughbred horses were used in this study. After the OAHT, we collected
serum samples and measured biological antioxidant potential (BAP). We found that BAP began
to increase after the OAHT and was significantly higher in the OAHT group than at 3
(P<0.01) and 7 days (P<0.05) after OAHT than in
the control group at 3 and 7 days after starting collection of blood samples. Therefore,
it was shown that OAHT improved the antioxidant capacity of the horses.
Collapse
Affiliation(s)
- Nao Tsuzuki
- Laboratory of Veterinary Surgery, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|