1
|
Othman NW, Barron AB, Cooper PD. Feeding and Amines Stimulate the Growth of the Salivary Gland following Short-Term Starvation in the Black Field Cricket, Teleogryllus commodus. INSECTS 2023; 14:495. [PMID: 37367311 DOI: 10.3390/insects14060495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The salivary gland of the black field cricket, Teleogryllus commodus Walker changed size between being starved and fed. Crickets without access to food for 72 h showed a reduction in both wet and dry mass of the glands compared with the glands from continuously fed animals at 72 h. Glands returned to size following ingestion within 10 min. Salivary glands of starved crickets (72 h) were incubated in saline containing either serotonin (5-HT) or dopamine (DA). Glands increased to pre-starvation size after 1 h incubation in situ with either 10-4 moles L-1 5-HT or 10-4 moles L-1 DA, although lower concentrations (10-5 moles L-1) did not affect gland size. From immunohistochemistry, amines appeared to shift from zymogen cells during starvation to parietal cells following feeding. High-performance liquid chromatography showed that serotonin concentration is higher than dopamine in the salivary gland removed from starved and fed crickets, but the quantity of these compounds was not dependent upon feeding state; the amine quantities increased as gland size increased. Further work is necessary to determine what might be the stimulus for gland growth and if dopamine and serotonin play a role in the stimulation of salivary gland growth after a period of starvation.
Collapse
Affiliation(s)
- Nurul Wahida Othman
- Centre of Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul D Cooper
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Costa-Leonardo AM, da Silva IB, Janei V, Poiani SB, Dos Santos-Pinto JRA, Esteves FG, Palma MS. Salivary glands in workers of Ruptitermes spp. (Blattaria, Isoptera, Termitidae, Apicotermitinae): a morphological and preoteomic approach. Cell Tissue Res 2021; 385:603-621. [PMID: 33961129 DOI: 10.1007/s00441-021-03469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Salivary glands are omnipresent in termites and occur in all developmental stages and castes. They function to produce, store, and secrete compounds, ranging from a feeding function to defensive mechanisms. Here, we provide a complete morphological overview of the salivary glands in the soldierless species Ruptitermes reconditus and R. xanthochiton, and the first proteomic profile of the salivary glands in a Neotropical Apicotermitinae representative, R. reconditus. Salivary glands from both species were composed of several acini, roughly spherical structures composed of two types of central cells (type I and II) and peripheral parietal cells, as well as transporting ducts and two salivary reservoirs. Central cells were richly supplied with electron-lucent secretory vesicles and rough endoplasmic reticulum, a feature of protein-secreting cells. Parietal cells of Ruptitermes spp. had conspicuous characteristics such as electron-lucent secretory vesicles surrounded by mitochondria and well-developed microvilli. Moreover, different individuals showed variation in the secretory cycle of salivary acini, which may be related to polyethism. Ultrastructural analysis evidenced a high synthesis of secretion and also the occurrence of lysosomes and autophagic structures in central cells. Proteomic analysis of the salivary glands revealed 483 proteins divided into functional groups, highlighting toxins/defensins and compounds related to alarm communication and colony asepsis. Soldierless termites are quite successful, especially due to morphological adaptations of the workers, including unknown modifications of exocrine glands. Thus, according to our morphological and proteomic findings, we discuss the potential roles of the salivary gland secretion in different social aspects of the sampled species.
Collapse
Affiliation(s)
- Ana Maria Costa-Leonardo
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil. .,Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil.
| | - Iago Bueno da Silva
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Vanelize Janei
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Silvana Beani Poiani
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Franciele Grego Esteves
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Mario Sérgio Palma
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
3
|
Costa-Leonardo AM, Janei V, Santos AMRD, Silva IBD. Involvement of the Salivary Glands in the Suicidal Defensive Behavior of Workers in Neocapritermes opacus (Blattaria, Isoptera, Termitidae). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:846-854. [PMID: 32458772 DOI: 10.1017/s1431927620001646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Suicidal behavior in termite workers is an extreme defensive strategy, probably a consequence of having a low number of soldiers available in the colony and there being high predation from enemies. We investigated the suicidal mechanism in workers of the Neotropical termite Neocapritermes opacus, which involves salivary gland autothysis followed by body cuticle rupture and the release of a defensive secretion. Autothysis was triggered by a physical stimulus such as a soldier bite that causes the protrusion of the salivary acini, burst reservoirs, and foregut. Histochemical and ultrastructural analyses showed salivary acini composed of peripheral parietal cells and two types of central cells, types I and II. Type I cells are filled with large electron-lucent secretory vesicles, which reacted positively to bromophenol blue and xylidine-Ponceau tests, indicating the occurrence of proteins. Type II cells are elongated and display smaller apical secretory vesicles. Parietal cells present an intracellular canaliculus with dense microvilli and cytoplasm rich in mitochondria and large electron-dense vesicles, which may participate in the self-destructive mechanism. Worker suicidal behavior was previously reported for N. taracua and N. braziliensis. N. opacus is a new species in which a salivary weapon has been developed and factors contributing to this altruistic response are discussed.
Collapse
Affiliation(s)
- Ana Maria Costa-Leonardo
- Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, UNESP - Univ Estadual Paulista, Av. 24A, No. 1515, 13506-900Rio Claro, SP, Brazil
| | - Vanelize Janei
- Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, UNESP - Univ Estadual Paulista, Av. 24A, No. 1515, 13506-900Rio Claro, SP, Brazil
| | - Amanda Marcelino Ribeiro Dos Santos
- Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, UNESP - Univ Estadual Paulista, Av. 24A, No. 1515, 13506-900Rio Claro, SP, Brazil
| | - Iago Bueno da Silva
- Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, UNESP - Univ Estadual Paulista, Av. 24A, No. 1515, 13506-900Rio Claro, SP, Brazil
| |
Collapse
|
4
|
Pereira MC, Cooper PD. A Novel Head Capsule Labial Gland Lobe in the Black Field Cricket (Orthoptera: Gryllidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5875050. [PMID: 32697826 PMCID: PMC7375494 DOI: 10.1093/jisesa/ieaa068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 06/11/2023]
Abstract
We describe a pair of labial gland lobes on either side of the retrocerebral complex in the head of the Australian black field cricket, Teleogryllus commodus Walker. As the retrocerebral complex includes the corpora cardiaca and corpora allata, hormones secreted by these glands can be absorbed by these lobes. These lobes of the labial gland are connected to the thoracic lobes via a relatively long duct that enters the main duct draining the thoracic lobes. Measurement of the flow rate of dye from head to thorax in the ducts is rapid, suggesting that these glands may serve as a transport system into the thoracic region. Both serotonin and adipokinetic hormone are shown to be present in the lobes near the retrocerebral complex and the ducts of the thoracic lobes, but whether this connection between the head and thorax acts as a hormone transporter is still unclear.
Collapse
Affiliation(s)
- Monique Campos Pereira
- Entomology Laboratory, Department of Morphology, Bioscience Institute, UNESP – São, Paulo State University, Botucatu, SP, Brazil
| | - Paul D Cooper
- Ecology & Evolution, Research School of Biology, Bld 46, ANU - The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Castellanos N, Martínez LC, Silva EH, Teodoro AV, Serrão JE, Oliveira EE. Ultrastructural analysis of salivary glands in a phytophagous stink bug revealed the presence of unexpected muscles. PLoS One 2017; 12:e0179478. [PMID: 28658296 PMCID: PMC5489154 DOI: 10.1371/journal.pone.0179478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/31/2017] [Indexed: 11/19/2022] Open
Abstract
The exceptional abilities of stink bugs (Hemiptera: Pentatomidae) to colonize a diverse group of plants have been attributed to the feeding behaviors and the functions of the salivary complex of these insects. Here, we describe the ultrastructure of the salivary glands of the Neotropical brown stink bug, Euschistus heros, which is a major component of the pentatomid pest complex on soybeans, Glycine max, in the neotropics. Our results revealed a salivary gland complex consisting of two lobes (i.e., anterior and posterior), with a constriction between them (i.e., the hilum), in which the salivary and accessory gland ducts are inserted. The principal gland epithelium has a single layer of cells lining an enlarged lumen filled with saliva, and these cells are cuboidal, rich in rough endoplasmic reticulum and secretory vesicles, with well-developed nuclei, all of which are typical features of protein-secreting cells. We report, for the first time in insects, the presence of a layer of muscle cells surrounding the columnar hilum epithelium. The accessory salivary gland cells are cuboidal with nuclei containing condensed chromatin and cytoplasm rich in vacuoles and rough endoplasmic reticulum, indicating the potential involvement of these glands in water transport/secretion. The lumen content of each lobe of the principal gland suggests that the lobes produce different compounds. Thus, our results suggest that the E. heros salivary complex might have unconventional mechanisms to mix/release saliva, which might help explain the polyphagous abilities of these insects.
Collapse
Affiliation(s)
- Nathaly Castellanos
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa-MG, Brasil
| | - Luis C. Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa-MG, Brasil
| | - Eder H. Silva
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa-MG, Brasil
| | - Adenir V. Teodoro
- Embrapa Tabuleiros Costeiros, Av. Beira Mar 3250, Aracaju–SE, Brasil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa-MG, Brasil
| | - Eugênio E. Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa-MG, Brasil
| |
Collapse
|
6
|
Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana. PLoS One 2016; 11:e0160531. [PMID: 27494326 PMCID: PMC4975486 DOI: 10.1371/journal.pone.0160531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022] Open
Abstract
The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation and arousal, in insects.
Collapse
|
7
|
Secretory cells in honeybee hypopharyngeal gland: polarized organization and age-dependent dynamics of plasma membrane. Cell Tissue Res 2016; 366:163-74. [PMID: 27210106 DOI: 10.1007/s00441-016-2423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/25/2016] [Indexed: 01/14/2023]
Abstract
The honeybee hypopharyngeal gland consists in numerous units, each comprising a secretory cell and a canal cell. The secretory cell discharges its products into a convoluted tubular membrane system, the canaliculus, which is surrounded at regular intervals by rings of actin filaments. Using probes for various membrane components, we analyze the organization of the secretory cells relative to the apicobasal configuration of epithelial cells. The canaliculus was defined by labeling with an antibody against phosphorylated ezrin/radixin/moesin (pERM), a marker protein for the apical membrane domain of epithelial cells. Anti-phosphotyrosine visualizes the canalicular system, possibly by staining the microvillar tips. The open end of the canaliculus leads to a region in which the secretory cell is attached to the canal cell by adherens and septate junctions. The remaining plasma membrane stains for Na,K-ATPase and spectrin and represents the basolateral domain. We also used fluorophore-tagged phalloidin, anti-phosphotyrosine and anti-pERM as probes for the canaliculus in order to describe fine-structural changes in the organization of the canalicular system during the adult life cycle. These probes in conjunction with fluorescence microscopy allow the fast and detailed three-dimensional analysis of the canalicular membrane system and its structural changes in a developmental mode or in response to environmental factors.
Collapse
|
8
|
Regna K, Kurshan PT, Harwood BN, Jenkins AM, Lai CQ, Muskavitch MAT, Kopin AS, Draper I. A critical role for the Drosophila dopamine D1-like receptor Dop1R2 at the onset of metamorphosis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:15. [PMID: 27184815 PMCID: PMC4868058 DOI: 10.1186/s12861-016-0115-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/08/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Insect metamorphosis relies on temporal and spatial cues that are precisely controlled. Previous studies in Drosophila have shown that untimely activation of genes that are essential to metamorphosis results in growth defects, developmental delay and death. Multiple factors exist that safeguard these genes against dysregulated expression. The list of identified negative regulators that play such a role in Drosophila development continues to expand. RESULTS By using RNAi transgene-induced gene silencing coupled to spatio/temporal assessment, we have unraveled an important role for the Drosophila dopamine 1-like receptor, Dop1R2, in development. We show that Dop1R2 knockdown leads to pre-adult lethality. In adults that escape death, abnormal wing expansion and/or melanization defects occur. Furthermore we show that salivary gland expression of this GPCR during the late larval/prepupal stage is essential for the flies to survive through adulthood. In addition to RNAi-induced effects, treatment of larvae with the high affinity D1-like receptor antagonist flupenthixol, also results in developmental arrest, and in morphological defects comparable to those seen in Dop1R2 RNAi flies. To examine the basis for pupal lethality in Dop1R2 RNAi flies, we carried out transcriptome analysis. These studies revealed up-regulation of genes that respond to ecdysone, regulate morphogenesis and/or modulate defense/immunity. CONCLUSION Taken together our findings suggest a role for Dop1R2 in the repression of genes that coordinate metamorphosis. Premature release of this inhibition is not tolerated by the developing fly.
Collapse
Affiliation(s)
- Kimberly Regna
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Peri T Kurshan
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Present Address: Department of Biology, Stanford University, California, 94305, USA
| | - Benjamin N Harwood
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Adam M Jenkins
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Marc A T Muskavitch
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA.,Discovery Research, Biogen Idec, Cambridge, MA, 02142, USA
| | - Alan S Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Isabelle Draper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
9
|
Blankenburg S, Balfanz S, Hayashi Y, Shigenobu S, Miura T, Baumann O, Baumann A, Blenau W. Cockroach GABAB receptor subtypes: molecular characterization, pharmacological properties and tissue distribution. Neuropharmacology 2014; 88:134-44. [PMID: 25242738 DOI: 10.1016/j.neuropharm.2014.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/10/2014] [Accepted: 08/23/2014] [Indexed: 11/29/2022]
Abstract
γ-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABAA receptors or metabotropic GABAB receptors. GABAB receptors regulate, via Gi/o G-proteins, ion channels, and adenylyl cyclases. In humans, GABAB receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABAB receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABAB receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABAB receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABAB receptors act as autoreceptors in this neuron.
Collapse
Affiliation(s)
- S Blankenburg
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - S Balfanz
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Research Center Jülich, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Y Hayashi
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| | - S Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
| | - T Miura
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| | - O Baumann
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - A Baumann
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Research Center Jülich, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - W Blenau
- Institut für Bienenkunde, Polytechnische Gesellschaft, Goethe-Universität Frankfurt am Main, FB Biowissenschaften, Karl-von-Frisch-Weg 2, 61440, Oberursel, Germany.
| |
Collapse
|
10
|
Characterization of an invertebrate-type dopamine receptor of the American cockroach, Periplaneta americana. Int J Mol Sci 2014; 15:629-53. [PMID: 24398985 PMCID: PMC3907829 DOI: 10.3390/ijms15010629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 12/22/2022] Open
Abstract
We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2) from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology.
Collapse
|
11
|
Wahida ON, Cooper PD. Feeding and the salivary gland response in free-ranging yellow-winged grasshoppers (Gastrimargus musicus). AUST J ZOOL 2014. [DOI: 10.1071/zo14068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Yellow-winged grasshoppers (Gastrimargus musicus) were captured in the field to examine the morphology and amine immunohistochemistry of their salivary glands. Fifty-eight grasshoppers were collected, with only five being males. Eight of 53 female grasshoppers had food in their crop, and the salivary glands of those insects were significantly heavier than those of grasshoppers without food in their crops. The salivary gland of the yellow-winged grasshopper was an acinar-type gland, similar to gland descriptions for other Orthoptera. The primary secretory part of acini of each gland is composed of zymogen and parietal cells. Staining patterns indicated that serotonin and dopamine could act as neurotransmitters and/or neurohormones to stimulate the glands. The pattern of staining of serotonin in the salivary gland suggested that serotonin stimulates both zymogen and parietal cells. Only the parietal cells were positively stained with dopamine. Comparing staining of glands of grasshoppers with food in their crop with the glands of grasshoppers with empty crops suggested a reduction in staining for serotonin in the latter. The differential staining pattern suggests that these amines have different roles in the salivary gland of G. musicus. The lack of difference in structure but increased mass with feeding suggests that all glands were active, but that secretion was actively occurring only in animals with the heavier glands.
Collapse
|
12
|
Abstract
Foraging- and feeding-related behaviors across eumetazoans share similar molecular mechanisms, suggesting the early evolution of an optimal foraging behavior called area-restricted search (ARS), involving mechanisms of dopamine and glutamate in the modulation of behavioral focus. Similar mechanisms in the vertebrate basal ganglia control motor behavior and cognition and reveal an evolutionary progression toward increasing internal connections between prefrontal cortex and striatum in moving from amphibian to primate. The basal ganglia in higher vertebrates show the ability to transfer dopaminergic activity from unconditioned stimuli to conditioned stimuli. The evolutionary role of dopamine in the modulation of goal-directed behavior and cognition is further supported by pathologies of human goal-directed cognition, which have motor and cognitive dysfunction and organize themselves, with respect to dopaminergic activity, along the gradient described by ARS, from perseverative to unfocused. The evidence strongly supports the evolution of goal-directed cognition out of mechanisms initially in control of spatial foraging but, through increasing cortical connections, eventually used to forage for information.
Collapse
Affiliation(s)
- Thomas T Hills
- Department of Psychological and Brain Sciences, Indiana University
| |
Collapse
|
13
|
Watanabe T, Sadamoto H, Aonuma H. Identification and expression analysis of the genes involved in serotonin biosynthesis and transduction in the field cricket Gryllus bimaculatus. INSECT MOLECULAR BIOLOGY 2011; 20:619-635. [PMID: 21699597 DOI: 10.1111/j.1365-2583.2011.01093.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Serotonin (5-HT) modulates various aspects of behaviours such as aggressive behaviour and circadian behaviour in the cricket. To elucidate the molecular basis of the cricket 5-HT system, we identified 5-HT-related genes in the field cricket Gryllus bimaculatus DeGeer. Complementary DNA of tryptophan hydroxylase and phenylalanine-tryptophan hydroxylase, which convert tryptophan into 5-hydroxy-L-tryptophan (5-HTP), and that of aromatic L-amino acid decarboxylase, which converts 5-HTP into 5-HT, were isolated from a cricket brain cDNA library. In addition, four 5-HT receptor genes (5-HT(1A) , 5-HT(1B) , 5-HT(2α) , and 5-HT(7) ) were identified. Expression analysis of the tryptophan hydroxylase gene TRH and phenylalanine-tryptophan hydroxylase gene TPH, which are selectively involved in neuronal and peripheral 5-HT synthesis in Drosophila, suggested that two 5-HT synthesis pathways co-exist in the cricket neuronal tissues. The four 5-HT receptor genes were expressed in various tissues at differential expression levels, suggesting that the 5-HT system is widely distributed in the cricket.
Collapse
Affiliation(s)
- T Watanabe
- Laboratory of Neuro-Cybernetics, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
14
|
Lahn M, Dosche C, Hille C. Two-photon microscopy and fluorescence lifetime imaging reveal stimulus-induced intracellular Na+ and Cl− changes in cockroach salivary acinar cells. Am J Physiol Cell Physiol 2011; 300:C1323-36. [DOI: 10.1152/ajpcell.00320.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular ion homeostasis in cockroach salivary acinar cells during salivation is not satisfactorily understood. This is mainly due to technical problems regarding strong tissue autofluorescence and ineffective ion concentration quantification. For minimizing these problems, we describe the successful application of two-photon (2P) microscopy partly in combination with fluorescence lifetime imaging microscopy (FLIM) to record intracellular Na+ and Cl− concentrations ([Na+]i, [Cl−]i) in cockroach salivary acinar cells. Quantitative 2P-FLIM Cl− measurements with the dye N-(ethoxycarbonylmethyl)-6-methoxy-quinolinium bromide indicate that the resting [Cl−]i is 1.6 times above the Cl− electrochemical equilibrium but is not influenced by pharmacological inhibition of the Na+-K+-2Cl− cotransporter (NKCC) and anion exchanger using bumetanide and 4,4′-diisothiocyanatodihydrostilbene-2,2′-disulfonic acid disodium salt. In contrast, rapid Cl− reuptake after extracellular Cl− removal is almost totally NKCC mediated both in the absence and presence of dopamine. However, in physiological saline [Cl−]i does not change during dopamine stimulation although dopamine stimulates fluid secretion in these glands. On the other hand, dopamine causes a decrease in the sodium-binding benzofuran isophthalate tetra-ammonium salt (SBFI) fluorescence and an increase in the Sodium Green fluorescence after 2P excitation. This opposite behavior of both dyes suggests a dopamine-induced [Na+]i rise in the acinar cells, which is supported by the determined 2P-action cross sections of SBFI. The [Na+]i rise is Cl− dependent and inhibited by bumetanide. The Ca2+-ionophore ionomycin also causes a bumetanide-sensitive [Na+]i rise. We propose that a Ca2+-mediated NKCC activity in acinar peripheral cells attributable to dopamine stimulation serves for basolateral Na+ uptake during saliva secretion and that the concomitantly transported Cl− is recycled back to the bath.
Collapse
Affiliation(s)
- Mattes Lahn
- Physical Chemistry, Applied Laser Sensing, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Carsten Dosche
- Physical Chemistry, Applied Laser Sensing, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Carsten Hille
- Physical Chemistry, Applied Laser Sensing, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
15
|
Hills TT, Todd PM, Goldstone RL. The central executive as a search process: priming exploration and exploitation across domains. J Exp Psychol Gen 2011; 139:590-609. [PMID: 21038983 DOI: 10.1037/a0020666] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The trade-off between exploration and exploitation is common to a wide variety of problems involving search in space and mind. The prevalence of this trade-off and its neurological underpinnings led us to propose domain-general cognitive search processes (Hills, Todd, & Goldstone, 2008). We propose further that these are consistent with the idea of a central executive search process that combines goal-handling across subgoal hierarchies. In the present study, we investigate 3 aspects of this proposal. First, the existence of a unitary central executive search process should allow priming from 1 search task to another and at multiple hierarchical levels. We confirm this by showing cross-domain priming from a spatial search task to 2 different cognitive levels within a lexical search task. Second, given the neural basis of the proposed generalized cognitive search process and the evidence that the central executive is primarily engaged during complex tasks, we hypothesize that priming should require search in the sense of a self-regulated making and testing of sequential predictions about the world. This was confirmed by showing that when participants were allowed to collect spatial resources without searching for them, no priming occurred. Finally, we provide a mechanism for the underlying search process and investigate 3 alternative hypotheses for subgoal hierarchies using the central executive as a search process model (CESP). CESP envisions the central executive as having both emergent and unitary processes, with one of its roles being a generalized cognitive search process that navigates goal hierarchies by mediating persistence on and switching between subgoals.
Collapse
Affiliation(s)
- Thomas T Hills
- Department of Psychology, University of Basel, Missionstrasse 60/62, 4055 Basel, Switzerland.
| | | | | |
Collapse
|
16
|
Abdelsadik A, Roeder T. Chronic activation of the epithelial immune system of the fruit fly's salivary glands has a negative effect on organismal growth and induces a peculiar set of target genes. BMC Genomics 2010; 11:265. [PMID: 20420686 PMCID: PMC2874812 DOI: 10.1186/1471-2164-11-265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 04/26/2010] [Indexed: 01/22/2023] Open
Abstract
Background Epithelial and especially mucosal immunity represents the first line of defence against the plethora of potential pathogens trying to invade via the gastrointestinal tract. The salivary glands of the fruit fly are an indispensable part of the gastrointestinal tract, but their contribution to the mucosal immunity has almost completely been neglected. Our major goal was to elucidate if the fly's salivary glands are able to mount an immune response and what the major characteristics of this immune response are. Results Ectopic activation of the IMD-pathway within the salivary gland cells is able to induce an immune response, indicating that the salivary glands are indeed immune competent. This reaction is characterized by the concurrent expression of numerous antimicrobial peptide genes. In addition, ectopic activation of the salivary gland's immune response induces morphological changes such as dwarfism throughout all developmental stages and a significantly decreased length of the salivary glands themselves. DNA-microarray analyses of the reaction revealed a complex pattern of up- and downregulated genes. Gene ontology analyses of regulated genes revealed a significant increase in genes associated with ribosomal and proteasomal function. On the other hand, genes coding for peptide receptors and some potassium channels are downregulated. In addition, the comparison of the transcriptional events induced following IMD-activation in the trachea and the salivary glands shows also only a small overlap, indicating that the general IMD-activated core transcriptome is rather small and that the tissue specific component of this response is dominating. Among the regulated genes, those that code for signaling associated protease activity are significantly modulated. Conclusions The salivary glands are immune-competent and they contribute to the overall intestinal immune system. Although they produce antimicrobial peptides, their overall response is highly tissue-specific. Our analysis indicates that chronic activation of the salivary gland's immune system is costly, as it induces severe reduction in growth throughout development. The IMD-regulated increase in expression levels of the fly's presenilin representatives opens the opportunity to use the salivary glands for studying the physiological and pathophysiological role of these genes in a simple but functional environment.
Collapse
Affiliation(s)
- Ahmed Abdelsadik
- Christian-Albrechts-University of Kiel, Zoophysiology, Kiel, Germany
| | | |
Collapse
|
17
|
Rotte C, Krach C, Balfanz S, Baumann A, Walz B, Blenau W. Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana). Neuroscience 2009; 162:1120-33. [DOI: 10.1016/j.neuroscience.2009.05.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 05/06/2009] [Accepted: 05/27/2009] [Indexed: 11/28/2022]
|
18
|
Hille C, Lahn M, Löhmannsröben HG, Dosche C. Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands. Photochem Photobiol Sci 2009; 8:319-27. [DOI: 10.1039/b813797h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Hille C, Walz B. Characterisation of neurotransmitter-induced electrolyte transport in cockroach salivary glands by intracellular Ca2+, Na+ and pH measurements in duct cells. J Exp Biol 2008; 211:568-76. [DOI: 10.1242/jeb.010207] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARYIon-transporting acinar peripheral cells in cockroach salivary glands are innervated by dopaminergic and serotonergic fibres, but saliva-modifying duct cells are innervated only by dopaminergic fibres. We used microfluorometry to record intracellular Na+, Ca2+ and H+concentrations ([Na+]i, [Ca2+]iand pHi) in duct cells of two types of preparation, viz`lobes' consisting of acini with their duct system and `isolated ducts'without acini, in order to obtain information about the transporters involved in saliva secretion and/or modification. Our results indicate that (1)stimulation of lobes by dopamine (DA) causes a strong drop of pHiand increases in [Na+]i and[Ca2+]i in duct cells; (2) in contrast, DA stimulation of isolated ducts produces only a small pHi drop and no changes in[Na+]i and [Ca2+]i; (3)pHi and [Ca2+]i changes are also induced in duct cells by serotonin (5-HT) stimulation of lobes, but not isolated ducts;(4) in the absence of CO2/HCO3–, the DA-induced pHi drop is strongly reduced by removal of extracellular Cl– or inhibition of the Na+–K+–2Cl– cotransporter(NKCC); (5) in the presence of CO2/HCO3–, the DA-induced pHi drop is not reduced by NKCC inhibition, but rather by inhibition of the Cl–/HCO3–exchanger (AE), Na+/H+ exchanger (NHE) or carbonic anhydrase. We suggest that DA and 5-HT act predominantly on acinar peripheral cells. Their activity (secretion of primary saliva) seems to cause changes in ion concentrations in duct cells. NKCC and/or AE/NHE activities are necessary for pHi changes in duct cells; we consider that these transporters are involved in the secretion of the NaCl-rich primary saliva.
Collapse
Affiliation(s)
- Carsten Hille
- University of Potsdam, Institute of Biochemistry and Biology, Department of Animal Physiology, 14476 Potsdam-Golm, Germany
| | - Bernd Walz
- University of Potsdam, Institute of Biochemistry and Biology, Department of Animal Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
20
|
Troppmann B, Walz B, Blenau W. Pharmacology of serotonin-induced salivary secretion in Periplaneta americana. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:774-81. [PMID: 17475273 DOI: 10.1016/j.jinsphys.2007.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/01/2007] [Accepted: 02/02/2007] [Indexed: 05/15/2023]
Abstract
The acinar salivary gland of the cockroach, Periplaneta americana, is innervated by dopaminergic and serotonergic nerve fibers. Stimulation of the glands by serotonin (5-hydroxytryptamine, 5-HT) results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, dopamine acts selectively on ion-transporting peripheral cells within the acini, and 5-HT acts on protein-producing central cells. We have investigated the pharmacology of the 5-HT-induced secretory activity of isolated salivary glands of P. americana by testing several 5-HT receptor agonists and antagonists. The effects of 5-HT can be mimicked by the non-selective 5-HT receptor agonist 5-methoxytryptamine. All tested agonists that display at least some receptor subtype specificity in mammals, i.e., 5-carboxamidotryptamine, (+/-)-8-OH-DPAT, (+/-)-DOI, and AS 19, were ineffective in stimulating salivary secretion. 5-HT-induced secretion can be blocked by the vertebrate 5-HT receptor antagonists methiothepin, cyproheptadine, and mianserin. Our pharmacological data indicate that the pharmacology of arthropod 5-HT receptors is remarkably different from that of their vertebrate counterparts.
Collapse
Affiliation(s)
- Britta Troppmann
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
21
|
Hille C, Walz B. A vacuolar-type H+-ATPase and a Na+/H+exchanger contribute to intracellular pH regulation in cockroach salivary ducts. J Exp Biol 2007; 210:1463-71. [PMID: 17401129 DOI: 10.1242/jeb.001529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYCells of the dopaminergically innervated salivary ducts in the cockroach Periplaneta americana have a vacuolar-type H+-ATPase(V-ATPase) of unknown function in their apical membrane. We have studied whether dopamine affects intracellular pH (pHi) in duct cells and whether and to what extent the apical V-ATPase contributes to pHiregulation. pHi measurements with double-barrelled pH-sensitive microelectrodes and the fluorescent dye BCECF have revealed: (1) the steady-state pHi is 7.3±0.1; (2) dopamine induces a dose-dependent acidification up to pH 6.9±0.1 at 1 μmol l–1 dopamine, EC50 at 30 nmol l–1dopamine; (3) V-ATPase inhibition with concanamycin A or Na+-free physiological saline (PS) does not affect the steady-state pHi; (4)concanamycin A, Na+ -free PS and Na+/H+exchange inhibition with 5-(N-ethyl-N-isopropyl)-amiloride(EIPA) each reduce the rate of pHi recovery from a dopamine-induced acidification or an acidification induced by an NH4Cl pulse; (5)pHi recovery after NH4Cl-induced acidification is almost completely blocked by concanamycin A in Na+-free PS or by concanamycin A applied together with EIPA; (6) pHi recovery after dopamine-induced acidification is also completely blocked by concanamycin A in Na+-free PS but only partially blocked by concanamycin A applied together with EIPA. We therefore conclude that the apical V-ATPase and a basolateral Na+/H+ exchange play a minor role in steady-state pHi regulation but contribute both to H+extrusion after an acute dopamine- or NH4Cl-induced acid load.
Collapse
Affiliation(s)
- Carsten Hille
- University of Potsdam, Institute of Biochemistry and Biology, Department of Animal Physiology, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
22
|
Swart CC, Deaton LE, Felgenhauer BE. The salivary gland and salivary enzymes of the giant waterbugs (Heteroptera; Belostomatidae). Comp Biochem Physiol A Mol Integr Physiol 2006; 145:114-22. [PMID: 16844394 DOI: 10.1016/j.cbpa.2006.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 05/02/2006] [Accepted: 05/20/2006] [Indexed: 11/27/2022]
Abstract
The giant waterbugs are predators that utilize extra-oral digestion and are known to capture a wide variety of prey. Herein we describe the differences in salivary enzyme composition between large and small species of giant waterbug (Lethocerus uhleri, Lethocerinae and Belostoma lutarium, Belostomatinae, respectively). The saliva of L. uhleri contains 3 proteolytic enzymes and no amylase, while the salivary gland of B. lutarium produces 2 proteolytic enzymes and amylase. This fundamental difference in salivary enzyme composition correlates with the difference in diet preference between the Lethocerinae and Belostomatinae. Furthermore, we describe the ultrastructure of the salivary gland complex of B. lutarium and present data on the division of labor with respect to compartmentalization of enzyme production. Proteolytic enzymes are produced in the accessory salivary gland and amylase is produced in the main salivary gland lobe. This is the first reported evidence of protease production in the accessory salivary gland in the Heteroptera.
Collapse
Affiliation(s)
- C C Swart
- Biology/Neuroscience, Trinity College, Hartford, CT 06106, USA.
| | | | | |
Collapse
|
23
|
Walz B, Baumann O, Krach C, Baumann A, Blenau W. The aminergic control of cockroach salivary glands. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 62:141-52. [PMID: 16783825 DOI: 10.1002/arch.20128] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The acinar salivary glands of cockroaches receive a dual innervation from the subesophageal ganglion and the stomatogastric nervous system. Acinar cells are surrounded by a plexus of dopaminergic and serotonergic varicose fibers. In addition, serotonergic terminals lie deep in the extracellular spaces between acinar cells. Excitation-secretion coupling in cockroach salivary glands is stimulated by both dopamine and serotonin. These monoamines cause increases in the intracellular concentrations of cAMP and Ca(2+). Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, two elementary secretory processes, namely electrolyte/water secretion and protein secretion, are triggered by different aminergic transmitters. Because of its simplicity and experimental accessibility, cockroach salivary glands have been used extensively as a model system to study the cellular actions of biogenic amines and to examine the pharmacological properties of biogenic amine receptors. In this review, we summarize current knowledge concerning the aminergic control of cockroach salivary glands and discuss our efforts to characterize Periplaneta biogenic amine receptors molecularly.
Collapse
Affiliation(s)
- Bernd Walz
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | | | | | | |
Collapse
|
24
|
Hille C, Walz B. Dopamine-induced graded intracellular Ca2+ elevation via the Na+Ca2+ exchanger operating in the Ca2+-entry mode in cockroach salivary ducts. Cell Calcium 2006; 39:305-11. [PMID: 16423391 DOI: 10.1016/j.ceca.2005.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 11/22/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Stimulation with the neurotransmitter dopamine causes an amplitude-modulated increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in epithelial cells of the ducts of cockroach salivary glands. This is completely attributable to a Ca(2+) influx from the extracellular space. Additionally, dopamine induces a massive [Na(+)](i) elevation via the Na(+)K(+)2Cl(-) cotransporter (NKCC). We have reasoned that Ca(2+)-entry is mediated by the Na(+)Ca(2+) exchanger (NCE) operating in the Ca(2+)-entry mode. To test this hypothesis, [Ca(2+)](i) and [Na(+)](i) were measured by using the fluorescent dyes Fura-2, Fluo-3, and SBFI. Inhibition of Na(+)-entry from the extracellular space by removal of extracellular Na(+) or inhibition of the NKCC by 10 microM bumetanide did not influence resting [Ca(2+)](i) but completely abolished the dopamine-induced [Ca(2+)](i) elevation. Simultaneous recordings of [Ca(2+)](i) and [Na(+)](i) revealed that the dopamine-induced [Na(+)](i) elevation preceded the [Ca(2+)](i) elevation. During dopamine stimulation, the generation of an outward Na(+) concentration gradient by removal of extracellular Na(+) boosted the [Ca(2+)](i) elevation. Furthermore, prolonging the dopamine-induced [Na(+)](i) rise by blocking the Na(+)/K(+)-ATPase reduced the recovery from [Ca(2+)](i) elevation. These results indicate that dopamine induces a massive NKCC-mediated elevation in [Na(+)](i), which reverses the NCE activity into the reverse mode causing a graded [Ca(2+)](i) elevation in the duct cells.
Collapse
Affiliation(s)
- Carsten Hille
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Germany
| | | |
Collapse
|
25
|
Rietdorf K, Blenau W, Walz B. Protein secretion in cockroach salivary glands requires an increase in intracellular cAMP and Ca2+ concentrations. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:1083-91. [PMID: 16029878 DOI: 10.1016/j.jinsphys.2005.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Accepted: 05/23/2005] [Indexed: 05/03/2023]
Abstract
The salivary glands in the cockroach Periplaneta americana secrete protein-containing saliva when stimulated by serotonin (5-HT) and protein-free saliva upon dopamine stimulation. In order to obtain information concerning the signalling pathways involved in 5-HT-induced protein secretion, we have determined the protein content of saliva secreted after experimental manipulations that potentially elevate intracellular Ca2+ and cyclic nucleotide concentrations in isolated glands. We have found that 5-HT stimulates the rate of protein secretion in a dose-dependent manner (threshold: 3 x 10(-8)M; EC50 1.5 x 10(-6)M). The maximal rate of 5-HT-induced protein secretion was 2.2 +/- 0.2 microg/min. Increasing intracellular Ca2+ or cAMP by bath application of ionomycin (5 microM), db cAMP (10mM), forskolin (100 microM) or IBMX (100 microM), respectively, stimulated protein secretion at significantly lower rates, whereas db cGMP (1mM) did not activate protein secretion. The high rates and the kinetics of 5-HT-induced protein secretion could only be mimicked by either applying forskolin together with IBMX (with or without ionomycin) or by applying IBMX together with ionomycin. Our measurements suggest that 5-HT-induced protein secretion is mediated by an elevation of [cAMP]i and that Ca2+ may function as a co-agonist and augment the rate of protein secretion.
Collapse
Affiliation(s)
- K Rietdorf
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, P.O.B. 60 15 53, 14415 Potsdam, Germany
| | | | | |
Collapse
|
26
|
Blenau W, Baumann A. Molecular characterization of the ebony gene from the American cockroach, Periplaneta americana. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 59:184-95. [PMID: 15986380 DOI: 10.1002/arch.20064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Biogenic amines are an important class of primary messengers in the central (CNS) and peripheral nervous systems and in peripheral organs. These substances regulate and modulate many physiological and behavioral processes. Various inactivation mechanisms for these substances exist to terminate biogenic amine-mediated signal transduction. In vertebrates, the enzymes monoamine oxidase and/or catechol-O-methyl-transferase are involved in these processes. In insects, however, in which both enzymes are low in abundance or absent, biogenic amines are inactivated mainly by N-acetylation or O-sulphation. In Drosophila, beta-alanyl conjugation mediated by the Ebony protein has recently been shown to be a novel and alternative pathway for biogenic amine inactivation. Here, we report the cloning of ebony cDNA (Peaebony) from a brain-specific cDNA library of the cockroach Periplaneta americana. The open reading frame encodes a protein of 860 amino acid residues (PeaEbony). The PeaEbony polypeptide shares homology to Ebony sequences from Anopheles gambiae, Apis mellifera, and Drosophila melanogaster. In addition, PeaEbony exhibits sequence similarity to a family of microbial non-ribosomal peptide synthetases. The mRNA encoding PeaEbony is highly expressed in the cockroach brain and to a lesser extent in the salivary glands. PeaEbony is, therefore, probably involved in the inactivation of various biogenic amines through beta-alanyl conjugation in the cockroach CNS. Since the salivary glands in Periplaneta are innervated by dopaminergic and serotonergic neurons, PeaEbony probably also biochemically modifies dopamine and serotonin in these acinar glands.
Collapse
Affiliation(s)
- Wolfgang Blenau
- Universität Potsdam, Institut für Biochemie und Biologie, Lehrstuhl für Zoophysiologie, Golm, Germany.
| | | |
Collapse
|
27
|
Marg S, Walz B, Blenau W. The effects of dopamine receptor agonists and antagonists on the secretory rate of cockroach (Periplaneta americana) salivary glands. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:821-830. [PMID: 15350502 DOI: 10.1016/j.jinsphys.2004.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/16/2004] [Accepted: 06/16/2004] [Indexed: 05/24/2023]
Abstract
The acinar salivary glands of the cockroach, Periplaneta americana, are innervated by dopaminergic and serotonergic nerve fibers. Serotonin stimulates the secretion of protein-rich saliva, whereas dopamine causes the production of protein-free saliva. This suggests that dopamine acts selectively on ion-transporting peripheral cells within the acini and the duct cells, and that serotonin acts on the protein-producing central cells of the acini. We have investigated the pharmacology of the dopamine-induced secretory activity of the salivary gland of Periplaneta americana by testing several dopamine receptor agonists and antagonists. The effects of dopamine can be mimicked by the non-selective dopamine receptor agonist 6,7-ADTN and, less effectively, by the vertebrate D1 receptor-selective agonist chloro-APB. The vertebrate D1 receptor-selective agonist SKF 38393 and vertebrate D2 receptor-selective agonist R(-)-TNPA were ineffective. R(+)-Lisuride induces a secretory response with a slower onset and a lower maximal response compared with dopamine-induced secretion. However, lisuride-stimulated glands continue secreting saliva, even after lisuride-washout. Dopamine-induced secretions can be blocked by the vertebrate dopamine receptor antagonists cis(Z)-flupenthixol, chlorpromazine, and S(+)-butaclamol. Our pharmacological data do not unequivocally indicate whether the dopamine receptors on the Periplaneta salivary glands belong to the D1 or D2 subfamily of dopamine receptors, but we can confirm that the pharmacology of invertebrate dopamine receptors is remarkably different from that of their vertebrate counterparts.
Collapse
Affiliation(s)
- Susanna Marg
- Department of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Haus 26, 14476 Golm, Germany
| | | | | |
Collapse
|
28
|
Rietdorf K, Lang I, Walz B. Saliva secretion and ionic composition of saliva in the cockroach Periplaneta americana after serotonin and dopamine stimulation, and effects of ouabain and bumetamide. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:205-215. [PMID: 12769995 DOI: 10.1016/s0022-1910(02)00266-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Isolated salivary glands of Periplaneta americana were used to measure secretion rates and, by quantitative capillary electrophoresis, Na(+), K(+), and Cl(-) concentrations in saliva collected during dopamine (1 micro M) and serotonin (1 micro M) stimulation in the absence and presence of ouabain (100 micro M) or bumetanide (10 micro M). Dopamine stimulated secretion of a NaCl-rich hyposmotic saliva containing (mM): Na(+) 95 +/- 2; K(+) 38 +/- 1; Cl(-) 145 +/- 3. Saliva collected during serotonin stimulation had a similar composition. Bumetanide decreased secretion rates induced by dopamine and serotonin; secreted saliva had lower Na(+), K(+) and Cl(-) concentrations and osmolarity. Ouabain caused increased secretion rates on a serotonin background. Saliva secreted during dopamine but not serotonin stimulation in the presence of ouabain had lower K(+) and higher Na(+) and Cl(-) concentrations, and was isosmotic. We concluded: The Na(+)-K(+)-2Cl(-) cotransporter is of cardinal importance for electrolyte and fluid secretion. The Na(+)/K(+)-ATPase contributes to apical Na(+) outward transport and Na(+) and K(+) cycling across the basolateral membrane in acinar P-cells. The salivary ducts modify the primary saliva by Na(+) reabsorption and K(+) secretion, whereby Na(+) reabsorption is energized by the basolateral Na(+)/K(+)-ATPase which imports also some of the K(+) needed for apical K(+) extrusion.
Collapse
Affiliation(s)
- K Rietdorf
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, P.O. Box 601553, 14415, Potsdam, Germany
| | | | | |
Collapse
|