1
|
Riaz Gondal MU, Atta Mehdi H, Khenhrani RR, Kumari N, Ali MF, Kumar S, Faraz M, Malik J. Role of Machine Learning and Artificial Intelligence in Arrhythmias and Electrophysiology. Cardiol Rev 2024:00045415-990000000-00270. [PMID: 38761137 DOI: 10.1097/crd.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Machine learning (ML), a subset of artificial intelligence (AI) centered on machines learning from extensive datasets, stands at the forefront of a technological revolution shaping various facets of society. Cardiovascular medicine has emerged as a key domain for ML applications, with considerable efforts to integrate these innovations into routine clinical practice. Within cardiac electrophysiology, ML applications, especially in the automated interpretation of electrocardiograms, have garnered substantial attention in existing literature. However, less recognized are the diverse applications of ML in cardiac electrophysiology and arrhythmias, spanning basic science research on arrhythmia mechanisms, both experimental and computational, as well as contributions to enhanced techniques for mapping cardiac electrical function and translational research related to arrhythmia management. This comprehensive review delves into various ML applications within the scope of this journal, organized into 3 parts. The first section provides a fundamental understanding of general ML principles and methodologies, serving as a foundational resource for readers interested in exploring ML applications in arrhythmia research. The second part offers an in-depth review of studies in arrhythmia and electrophysiology that leverage ML methodologies, showcasing the broad potential of ML approaches. Each subject is thoroughly outlined, accompanied by a review of notable ML research advancements. Finally, the review delves into the primary challenges and future perspectives surrounding ML-driven cardiac electrophysiology and arrhythmias research.
Collapse
Affiliation(s)
| | - Hassan Atta Mehdi
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Raja Ram Khenhrani
- Department of Medicine, Internal Medicine Fellow, Shaheed Mohtarma Benazir Bhutto Medical College and Lyari General Hospital, Karachi, Pakistan
| | - Neha Kumari
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Muhammad Faizan Ali
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Sooraj Kumar
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan; and
| | - Maria Faraz
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Rawalpindi, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Rawalpindi, Pakistan
| |
Collapse
|
2
|
Abstract
Machine learning (ML), a branch of artificial intelligence, where machines learn from big data, is at the crest of a technological wave of change sweeping society. Cardiovascular medicine is at the forefront of many ML applications, and there is a significant effort to bring them into mainstream clinical practice. In the field of cardiac electrophysiology, ML applications have also seen a rapid growth and popularity, particularly the use of ML in the automatic interpretation of ECGs, which has been extensively covered in the literature. Much lesser known are the other aspects of ML application in cardiac electrophysiology and arrhythmias, such as those in basic science research on arrhythmia mechanisms, both experimental and computational; in the development of better techniques for mapping of cardiac electrical function; and in translational research related to arrhythmia management. In the current review, we examine comprehensively such ML applications as they match the scope of this journal. The current review is organized in 3 parts. The first provides an overview of general ML principles and methodologies that will afford readers of the necessary information on the subject, serving as the foundation for inviting further ML applications in arrhythmia research. The basic information we provide can serve as a guide on how one might design and conduct an ML study. The second part is a review of arrhythmia and electrophysiology studies in which ML has been utilized, highlighting the broad potential of ML approaches. For each subject, we outline comprehensively the general topics, while reviewing some of the research advances utilizing ML under the subject. Finally, we discuss the main challenges and the perspectives for ML-driven cardiac electrophysiology and arrhythmia research.
Collapse
Affiliation(s)
- Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, USA 21205
| | - Dan M. Popescu
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
| | - Julie K. Shade
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
| |
Collapse
|
3
|
Babcock JJ, Li M. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins. Acta Pharmacol Sin 2014; 35:11-23. [PMID: 24241348 PMCID: PMC3880479 DOI: 10.1038/aps.2013.142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/08/2013] [Indexed: 02/08/2023] Open
Abstract
The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.
Collapse
|
4
|
Gromiha MM, Ou YY. Bioinformatics approaches for functional annotation of membrane proteins. Brief Bioinform 2013; 15:155-68. [DOI: 10.1093/bib/bbt015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Olivera-Nappa A, Andrews BA, Asenjo JA. Mutagenesis Objective Search and Selection Tool (MOSST): an algorithm to predict structure-function related mutations in proteins. BMC Bioinformatics 2011; 12:122. [PMID: 21524307 PMCID: PMC3123232 DOI: 10.1186/1471-2105-12-122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 04/27/2011] [Indexed: 11/10/2022] Open
Abstract
Background Functionally relevant artificial or natural mutations are difficult to assess or predict if no structure-function information is available for a protein. This is especially important to correctly identify functionally significant non-synonymous single nucleotide polymorphisms (nsSNPs) or to design a site-directed mutagenesis strategy for a target protein. A new and powerful methodology is proposed to guide these two decision strategies, based only on conservation rules of physicochemical properties of amino acids extracted from a multiple alignment of a protein family where the target protein belongs, with no need of explicit structure-function relationships. Results A statistical analysis is performed over each amino acid position in the multiple protein alignment, based on different amino acid physical or chemical characteristics, including hydrophobicity, side-chain volume, charge and protein conformational parameters. The variances of each of these properties at each position are combined to obtain a global statistical indicator of the conservation degree of each property. Different types of physicochemical conservation are defined to characterize relevant and irrelevant positions. The differences between statistical variances are taken together as the basis of hypothesis tests at each position to search for functionally significant mutable sites and to identify specific mutagenesis targets. The outcome is used to statistically predict physicochemical consensus sequences based on different properties and to calculate the amino acid propensities at each position in a given protein. Hence, amino acid positions are identified that are putatively responsible for function, specificity, stability or binding interactions in a family of proteins. Once these key functional positions are identified, position-specific statistical distributions are applied to divide the 20 common protein amino acids in each position of the protein's primary sequence into a group of functionally non-disruptive amino acids and a second group of functionally deleterious amino acids. Conclusions With this approach, not only conserved amino acid positions in a protein family can be labeled as functionally relevant, but also non-conserved amino acid positions can be identified to have a physicochemically meaningful functional effect. These results become a discriminative tool in the selection and elaboration of rational mutagenesis strategies for the protein. They can also be used to predict if a given nsSNP, identified, for instance, in a genomic-scale analysis, can have a functional implication for a particular protein and which nsSNPs are most likely to be functionally silent for a protein. This analytical tool could be used to rapidly and automatically discard any irrelevant nsSNP and guide the research focus toward functionally significant mutations. Based on preliminary results and applications, this technique shows promising performance as a valuable bioinformatics tool to aid in the development of new protein variants and in the understanding of function-structure relationships in proteins.
Collapse
Affiliation(s)
- Alvaro Olivera-Nappa
- Centre for Biochemical Engineering and Biotechnology, Institute for Cell Dynamics and Biotechnology: a Centre for Systems Biology, University of Chile, Santiago, Chile.
| | | | | |
Collapse
|
6
|
Slot JC, Hallstrom KN, Matheny PB, Hosaka K, Mueller G, Robertson DL, Hibbett DS. Phylogenetic, structural and functional diversification of nitrate transporters in three ecologically diverse clades of mushroom-forming fungi. FUNGAL ECOL 2010. [DOI: 10.1016/j.funeco.2009.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Stead LF, Wood IC, Westhead DR. KvDB; mining and mapping sequence variants in voltage-gated potassium channels. Hum Mutat 2010; 31:908-17. [DOI: 10.1002/humu.21295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Fernández M, Fernández L, Abreu JI, Garriga M. Classification of voltage-gated K(+) ion channels from 3D pseudo-folding graph representation of protein sequences using genetic algorithm-optimized support vector machines. J Mol Graph Model 2008; 26:1306-14. [PMID: 18289899 DOI: 10.1016/j.jmgm.2008.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 01/03/2008] [Accepted: 01/03/2008] [Indexed: 11/26/2022]
Abstract
Voltage-gated K(+) ion channels (VKCs) are membrane proteins that regulate the passage of potassium ions through membranes. This work reports a classification scheme of VKCs according to the signs of three electrophysiological variables: activation threshold voltage (V(t)), half-activation voltage (V(a50)) and half-inactivation voltage (V(h50)). A novel 3D pseudo-folding graph representation of protein sequences encoded the VKC sequences. Amino acid pseudo-folding 3D distances count (AAp3DC) descriptors, calculated from the Euclidean distances matrices (EDMs) were tested for building the classifiers. Genetic algorithm (GA)-optimized support vector machines (SVMs) with a radial basis function (RBF) kernel well discriminated between VKCs having negative and positive/zero V(t), V(a50) and V(h50) values with overall accuracies about 80, 90 and 86%, respectively, in crossvalidation test. We found contributions of the "pseudo-core" and "pseudo-surface" of the 3D pseudo-folded proteins to the discrimination between VKCs according to the three electrophysiological variables.
Collapse
Affiliation(s)
- Michael Fernández
- Molecular Modeling Group, Center for Biotechnological Studies, Faculty of Agronomy, University of Matanzas, 44740 Matanzas, Cuba.
| | | | | | | |
Collapse
|
9
|
Jackson HA, Marshall CR, Accili EA. Evolution and structural diversification of hyperpolarization-activated cyclic nucleotide-gated channel genes. Physiol Genomics 2007; 29:231-45. [PMID: 17227887 DOI: 10.1152/physiolgenomics.00142.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are members of the voltage-gated channel superfamily and play a critical role in cellular pace-making. Overall sequence conservation is high throughout the family, and channel functions are similar but not identical. Phylogenetic analyses are imperative to understand how these genes have evolved and to make informed comparisons of HCN structure and function. These have been previously limited, however, by the small number of available sequences, from a minimal number of species unevenly distributed over evolutionary time. We have now identified and annotated 31 novel genes from invertebrates, urochordates, fish, amphibians, birds, and mammals. With increased sequence numbers and a broader species representation, a more precise sequence comparison was performed and an evolutionary history for these genes was constructed. Our data confirm the existence of at least four vertebrate paralogs and suggest that these arose via three duplication and diversification events from a single ancestral gene. Additional lineage-specific duplications appear to have occurred in urochordate and fish genomes. Based on exon boundary conservation and phylogenetic analyses, we hypothesize that mammalian gene structure was established, and duplication events occurred, after the divergence of urochordates and before the divergence of fish from the tetrapod lineage. In addition, we identified highly conserved sequence regions that are likely important for general HCN functions, as well as regions with differences conserved among each of the individual paralogs. The latter may underlie more subtle isoform-specific properties that are otherwise masked by the high identity among mammalian orthologs and/or inaccurate alignments between paralogs.
Collapse
Affiliation(s)
- Heather A Jackson
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|