1
|
Jing J, Fang S, Li Y, Liu W, Wang C, Lan Y, Wang Y, Yang C. An enhanced cardio-protective effect of nanoparticles loaded with active components from Polygonum orientale L. against isoproterenol-induced myocardial ischemia in rats. Int J Pharm 2024; 655:124047. [PMID: 38531434 DOI: 10.1016/j.ijpharm.2024.124047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
In this study, nanoparticles loaded with active components from Polygonum orientale L. (PO), a traditional Chinese herb known for its anti-myocardial ischemic properties, were investigated for cardio-protective properties. Specifically, OVQ-Nanoparticles (OVQ-NPs) with Orientin (Ori), Vitexin (Vit), and Quercetin (Que) was obtained by double emulsion-solvent evaporation method. The OVQ-NPs exhibited a spherical shape, with a uniform size distribution of 136.77 ± 3.88 nm and a stable ζ-potential of -13.40 ± 2.24 mV. Notably, these nanoparticles exhibited a favorable sustained-release characteristic, resulting in an extended circulation time within the living organism. Consequently, the administration of these nanoparticles resulted in significant improvements in electrocardiograms and heart mass index of myocardial ischemic rats induced by isoproterenol, as well as decreased serum levels of CK, LDH, and AST. Furthermore, the results of histopathological examination, such as H&E staining and TUNEL staining, confirmed a reduced level of cardiac tissue pathology and apoptosis. Moreover, the quantification of biochemical indicators (SOD, MDA, GSH, NO, TNF-α, and IL-6) demonstrated that OVQ-NPs effectively mitigated myocardial ischemia by regulating oxidative stress and inflammatory pathways. In conclusion, OVQ-NPs demonstrate promising therapeutic potential as an intervention for myocardial ischemia, providing a new perspective on traditional Chinese medicine treatment in this area.
Collapse
Affiliation(s)
- Jincheng Jing
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shumei Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Cong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yanyu Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
2
|
Wang L, Xiong F, Yang L, Xiao Y, Zhou G. A Seasonal Change of Active Ingredients and Mineral Elements in Root of Astragalus membranaceus in the Qinghai-Tibet Plateau. Biol Trace Elem Res 2021; 199:3950-3959. [PMID: 33241436 DOI: 10.1007/s12011-020-02486-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Astragalus membranaceus is an important traditional Chinese herb whose roots have been used for medicinal purposes for more than 2000 years. Because of excessive exploitation, the wild resources are currently almost exhausted, and therefore, artificial planting of Astragalus membranaceus has been increasingly important. But to date, few studies have focused on the active ingredients and mineral element of Astragalus membranaceus in the Qinghai-Tibet Plateau.In this study, five density gradients (M1: 10 cm × 25 cm, M2: 15 cm × 25 cm, M3: 20 cm × 25 cm, M4: 25 cm × 25 cm and M5: 30 cm × 25 cm) were assessed to evaluate the effects of various planting densities on the mineral element and secondary metabolite content of Astragalus membranaceus roots in different months. It was found that the content of calycosin-7-O-β-D-glucoside and astragaloside IV reached its highest in October. Ononin content increased month by month, while formononetin content decreased during months. Calycosin content did not show significant changes during seasons. Taken together, these results suggest that the optimal planting density is 15 cm × 25 cm (D2) and the optimal harvest period is October. According to the results, the Cu content in all samples did not exceed the limit (20 mg/kg). Principal component analysis (PCA) revealed that Na, P, K Al, Ba, Ca, Fe, Li, and Mn were selected as characteristic elements of Astragalus membranaceus. The results also showed a high correlation between elements and active ingredients. Ba and Co had extremely significant associations with astragaloside IV.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Xiong
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lucun Yang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, 810008, China
| | - Yuanming Xiao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoying Zhou
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, 810008, China.
| |
Collapse
|
3
|
Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba A, Babalola CP. Therapeutic Potentials of Antiviral Plants Used in Traditional African Medicine With COVID-19 in Focus: A Nigerian Perspective. Front Pharmacol 2021; 12:596855. [PMID: 33981214 PMCID: PMC8108136 DOI: 10.3389/fphar.2021.596855] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by an infectious novel strain of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which was earlier referred to as 2019-nCoV. The respiratory disease is the most consequential global public health crisis of the 21st century whose level of negative impact increasingly experienced globally has not been recorded since World War II. Up till now, there has been no specific globally authorized antiviral drug, vaccines, supplement or herbal remedy available for the treatment of this lethal disease except preventive measures, supportive care and non-specific treatment options adopted in different countries via divergent approaches to halt the pandemic. However, many of these interventions have been documented to show some level of success particularly the Traditional Chinese Medicine while there is paucity of well reported studies on the impact of the widely embraced Traditional African Medicines (TAM) adopted so far for the prevention, management and treatment of COVID-19. We carried out a detailed review of publicly available data, information and claims on the potentials of indigenous plants used in Sub-Saharan Africa as antiviral remedies with potentials for the prevention and management of COVID-19. In this review, we have provided a holistic report on evidence-based antiviral and promising anti-SARS-CoV-2 properties of African medicinal plants based on in silico evidence, in vitro assays and in vivo experiments alongside the available data on their mechanistic pharmacology. In addition, we have unveiled knowledge gaps, provided an update on the effort of African Scientific community toward demystifying the dreadful SARS-CoV-2 micro-enemy of man and have documented popular anti-COVID-19 herbal claims emanating from the continent for the management of COVID-19 while the risk potentials of herb-drug interaction of antiviral phytomedicines when used in combination with orthodox drugs have also been highlighted. This review exercise may lend enough credence to the potential value of African medicinal plants as possible leads in anti-COVID-19 drug discovery through research and development.
Collapse
Affiliation(s)
- Alfred Francis Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adeshola Adebayo Fagbemi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Olujide Olubiyi
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Anthony Elujoba
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Chinedum Peace Babalola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Centre for Drug Discovery, Development and Production, University of Ibadan, Ibadan, Nigeria
- College of Basic Medical Sciences, Chrisland University, Abeokuta, Nigeria
| |
Collapse
|
4
|
McClements DJ. Nano-enabled personalized nutrition: Developing multicomponent-bioactive colloidal delivery systems. Adv Colloid Interface Sci 2020; 282:102211. [PMID: 32721626 DOI: 10.1016/j.cis.2020.102211] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
There is growing interest in the production of foods and beverages with nutrient and nutraceutical profiles tailored to an individual's specific nutritional requirements. In principle, these personalized nutrition products are formulated based on the genetics, epigenetics, metabolism, microbiome, phenotype, lifestyle, age, gender, and health status of a person. A challenge in this area is to create customized functional food and beverage products that contain the required combination of bioactive agents, such as lipids, proteins, carbohydrates, vitamins, minerals, nutraceuticals, prebiotics and probiotics. Nanotechnology may facilitate the development of these kind of products since it can be used to encapsulate one or more bioactive agent in a single colloidal delivery system. This delivery system may contain one or more different kinds of colloidal particle, specifically designed to protect each nutrient in the food, but then deliver it in a bioavailable form after ingestion. This review article provides an overview of the different kinds of bioactives that need to be delivered, as well as some of the challenges associated with incorporating them into functional foods and beverages. It then highlights how nanotech-enabled colloidal delivery systems can be developed to encapsulate multiple bioactive agents in a form suitable for functional food applications, particularly in the personalized nutrition field.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Zhejiang, Hangzhou 310018, China.
| |
Collapse
|
5
|
ABDUL HANNAN MD, MAHBUBUR RAHMAN MD, NURUNNABI MONDAL MD, SUZAN CHANDRA DEB, CHOWDHURY GAZLIMA, TOFAZZAL ISLAM MD. Molecular Identification of Vibrio alginolyticus Causing Vibriosis in Shrimp and Its Herbal Remedy. Pol J Microbiol 2019; 68:429-438. [PMID: 31880887 PMCID: PMC7260635 DOI: 10.33073/pjm-2019-042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/04/2022] Open
Abstract
Penaeus monodon is highly susceptible to vibriosis disease. Aims of the study were to identify the pathogen causing vibriosis in P. monodon through molecular techniques and develop a biocontrol method of the disease by application of herbal extracts. Shrimp samples were collected aseptically from the infected farm and the bacteria were isolated from the infected region of those samples. Based on phenotypic identification, several isolates were identified as Vibrio sp. 16S rRNA gene sequences of the selected isolates exhibited 100% homology with V. alginolyticus strain ATCC 17749. An in vivo infection challenge test was performed by immersion method with V. alginolyticus where these isolates caused high mortality in juvenile shrimp with prominent symptoms of hepatopancreatic necrosis. Antibiogram profile of the isolates was determined against eleven commercial antibiotic discs whereas the isolates were found resistant to multiple antibiotics. A total of twenty-one herbal extracts were screened where Emblica officinalis, Allium sativum, and Syzygium aromaticum strongly inhibited the growth of V. alginolyticus in in vitro conditions. In in vivo conditions, the ethyl acetate extracts of E. officinalis and A. sativum successfully controlled the vibriosis disease in shrimp at a dose of 10 mg/g feed. This is the first report on molecular identification and biocontrol of V. alginolyticus in shrimp in Bangladesh. Penaeus monodon is highly susceptible to vibriosis disease. Aims of the study were to identify the pathogen causing vibriosis in P. monodon through molecular techniques and develop a biocontrol method of the disease by application of herbal extracts. Shrimp samples were collected aseptically from the infected farm and the bacteria were isolated from the infected region of those samples. Based on phenotypic identification, several isolates were identified as Vibrio sp. 16S rRNA gene sequences of the selected isolates exhibited 100% homology with V. alginolyticus strain ATCC 17749. An in vivo infection challenge test was performed by immersion method with V. alginolyticus where these isolates caused high mortality in juvenile shrimp with prominent symptoms of hepatopancreatic necrosis. Antibiogram profile of the isolates was determined against eleven commercial antibiotic discs whereas the isolates were found resistant to multiple antibiotics. A total of twenty-one herbal extracts were screened where Emblica officinalis, Allium sativum, and Syzygium aromaticum strongly inhibited the growth of V. alginolyticus in in vitro conditions. In in vivo conditions, the ethyl acetate extracts of E. officinalis and A. sativum successfully controlled the vibriosis disease in shrimp at a dose of 10 mg/g feed. This is the first report on molecular identification and biocontrol of V. alginolyticus in shrimp in Bangladesh.
Collapse
Affiliation(s)
- MD. ABDUL HANNAN
- Department of Aquatic Animal Health Management, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - MD. MAHBUBUR RAHMAN
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - MD. NURUNNABI MONDAL
- Department of Fisheries Management, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - DEB SUZAN CHANDRA
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - GAZLIMA CHOWDHURY
- Department of Aquatic Environment and Resource Management, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - MD. TOFAZZAL ISLAM
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
6
|
Obbo CJD, Kariuki ST, Gathirwa JW, Olaho-Mukani W, Cheplogoi PK, Mwangi EM. In vitro antiplasmodial, antitrypanosomal and antileishmanial activities of selected medicinal plants from Ugandan flora: Refocusing into multi-component potentials. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:127-136. [PMID: 30273736 DOI: 10.1016/j.jep.2018.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Seven medicinal plants from Ugandan flora, namely Entada abyssinica, Khaya anthotheca, Vernonia amygdalina, Baccharoides adoensis, Schkuhria pinnata, Entandropragma utile and Momordica foetida, were selected in this study. They are used to treat conditions and infections ranging from inflammations, pains and fevers to viruses, bacteria, protozoans and parasites. Two of the plants, V. amygdalina and M. foetida, are also used as human food or relish, while others are important in ethnoveterinary practices and in zoopharmacognosy in the wild. The aim of this study was to evaluate the in vitro antiplasmodial, antitrypanosomal and antileishmanial activities, along with cytotoxicity of the multi-component extracts of these plants. MATERIALS AND METHODS Different parts of the plants were prepared and serially extracted with hexane, petroleum ether, dichloromethane, ethyl acetate, methanol and double distilled water. Solvent free extracts were assayed for in vitro inhibition against four reference parasite strains, Plasmodium falciparum (K1), Trypanosoma brucei rhodesiense (STIB 900), Trypanosoma cruzi (Talahuen C2C4) and Leishmania donovani (MHOM-ET-67/L82) using standard methods. Toxicity was assessed against L6 skeletal fibroblast and mouse peritoneal macrophage (J774) cells and selectivity indices (SIs) calculated for the most active extracts. RESULTS The strongest activities, demonstrating median inhibitory concentration (IC50) values ≤ 2 μg/ml, were observed for the dichloromethane and petroleum ether extracts of K. anthotheca, B. adoensis and S. pinnata. Overall, IC50 values ranged from < 1 μg/ml to > 90 μg/ml. Out of 22 extracts demonstrating IC50s < 20 μg/ml, seven were against T. b. rhodesiense (IC50: 1.6-16.2 μg/ml), six against T. cruzi (IC50: 2.1-18.57 μg/ml), none against L. donovani (IC50: falling > 3.3 and >10 μg/ml), and nine against P. falciparum (IC50: 0.96 μg/ml to 4.69 μg/ml). Selectivity indices (SI) calculated for the most active extracts ranged from <1.00 to 94.24. However, the B. adoensis leaf dichloromethane extract (a) was equipotent (IC50 = 3.3 μg/ml) against L. donovani and L6 cells respectively, indicating non-specific selection. Trypanosome and Plasmodium parasites were comparatively more sensitive to the test extracts. CONCLUSIONS The benefits achieved from the seven tested plant species as traditional ethnomedicinal and ethnoveterinary therapies or in zoopharmacognosy against infections and conditions of animals in the wild are strongly supported by results of this study. The synergy of plant extracts, so achieved by concerted actions of the ligands, produces adequate perturbation of targets in the four parasite genera, resulting in the strong potencies exhibited by low IC50 values. The total inhibitory effect, achieved as a sum of perturbations contributed by each participating compound in the extract, minimises toxic effects of the compounds as seen in the high SI's obtained with some extracts. Those extracts demonstrating SI ≥ 4 form promising candidates for further cell-based and system pharmacology studies.
Collapse
Affiliation(s)
- C J D Obbo
- Department of Biological Sciences, Egerton University, P.O. Box 536-20115, Egerton, Njoro, Kenya; Department of Biological Sciences, Kyambogo University, Post Box 1, Kyambogo, Kampala, Uganda.
| | - S T Kariuki
- Department of Biological Sciences, Egerton University, P.O. Box 536-20115, Egerton, Njoro, Kenya
| | - J W Gathirwa
- Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi 00200, Kenya
| | - W Olaho-Mukani
- African Union-Interafrican Bureau for Animal Resources, P.O. Box 30786, Nairobi, Kenya
| | - P K Cheplogoi
- Department of Chemistry, Egerton University, P.O. Box 536-20115, Egerton, Njoro, Kenya.
| | - E M Mwangi
- Department of Chemistry, Egerton University, P.O. Box 536-20115, Egerton, Njoro, Kenya
| |
Collapse
|
7
|
Immunomodulatory Effects of Diterpene Quinone Derivatives from the Roots of Horminum pyrenaicum in Human PBMC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2980295. [PMID: 29576845 PMCID: PMC5821946 DOI: 10.1155/2018/2980295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/19/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022]
Abstract
Several phytochemicals were shown to interfere with redox biology in the human system. Moreover, redox biochemistry is crucially involved in the orchestration of immunological cascades. When screening for immunomodulatory compounds, the two interferon gamma- (IFN-γ-) dependent immunometabolic pathways of tryptophan breakdown via indoleamine 2,3-dioxygenase-1 (IDO-1) and neopterin formation by GTP-cyclohydrolase 1 (GTP-CH-I) represent prominent targets, as IFN-γ-related signaling is strongly sensitive to oxidative triggers. Herein, the analysis of these pathway activities in human peripheral mononuclear cells was successfully applied in a bioactivity-guided fractionation strategy to screen for anti-inflammatory substances contained in the root of Horminum (H.) pyrenaicum L. (syn. Dragon's mouth), the only representative of the monophyletic genus Horminum. Four abietane diterpene quinone derivatives (horminone, 7-O-acetylhorminone, inuroyleanol and its 15,16-dehydro-derivative, a novel natural product), two nor-abietane diterpene quinones (agastaquinone and 3-deoxyagastaquinone) and two abeo 18 (4 → 3) abietane diterpene quinones (agastol and its 15,16-dehydro-derivative) could be identified. These compounds were able to dose-dependently suppress the above mentioned pathways with different potency. Beside the description of new active compounds, this study demonstrates the feasibility of integrating IDO-1 and GTP-CH-I activity in the search for novel anti-inflammatory compounds, which can then be directed towards a more detailed mode of action analysis.
Collapse
|
8
|
Zhou W, Yuan WF, Chen C, Wang SM, Liang SW. Study on material base and action mechanism of compound Danshen dripping pills for treatment of atherosclerosis based on modularity analysis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:36-44. [PMID: 27396350 DOI: 10.1016/j.jep.2016.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/20/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been widely used in China and its surrounding countries in clinical treatments for centuries-long time. However, due to the complexity of TCM constituents, both action mechanism and material base of TCM remain nearly unknown. AIM OF THE STUDY The present study was designed to uncover the action mechanism and material base of TCM in a low-cost manner. MATERIALS AND METHODS Compound Danshen dripping pills (DSP) is a widely used TCM for treatment of atherosclerosis, and was researched here to demonstrate the effectiveness of our method. We constructed a heterogeneous network for DSP, identified the significant network module, and analyzed the primary pharmacological units by performing GO and pathways enrichment analysis. RESULTS Two significant network modules were identified from the heterogeneous network of DSP, and three compounds out of four hub nodes in the network were found to intervene in the process of atherosclerosis. Moreover, 13 out of 20 enriched pathways that were ranked in top 10 corresponding to both the two pharmacological units were found to be involved in the process of atherosclerosis. CONCLUSIONS Quercetin, luteolin and apigenin may be the main active compounds which modulate the signaling pathways, such as metabolism of xenobiotics by cytochrome P450, retinol metabolism, etc. The present method helps reveal the action mechanism and material base of DSP for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; The Key Unit of Chinese Medicine Digitalization Quality Evaluation of SATCM, Guangzhou 510006, PR China; The Research Center for Quality Engineering Technology of Traditional Chinese Medicine in Guangdong Universities, Guangzhou 510006, PR China
| | - Wen-Feng Yuan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; The Key Unit of Chinese Medicine Digitalization Quality Evaluation of SATCM, Guangzhou 510006, PR China; The Research Center for Quality Engineering Technology of Traditional Chinese Medicine in Guangdong Universities, Guangzhou 510006, PR China
| | - Chao Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; The Key Unit of Chinese Medicine Digitalization Quality Evaluation of SATCM, Guangzhou 510006, PR China; The Research Center for Quality Engineering Technology of Traditional Chinese Medicine in Guangdong Universities, Guangzhou 510006, PR China.
| | - Shu-Mei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; The Key Unit of Chinese Medicine Digitalization Quality Evaluation of SATCM, Guangzhou 510006, PR China; The Research Center for Quality Engineering Technology of Traditional Chinese Medicine in Guangdong Universities, Guangzhou 510006, PR China
| | - Sheng-Wang Liang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; The Key Unit of Chinese Medicine Digitalization Quality Evaluation of SATCM, Guangzhou 510006, PR China; The Research Center for Quality Engineering Technology of Traditional Chinese Medicine in Guangdong Universities, Guangzhou 510006, PR China
| |
Collapse
|
9
|
Dudonné S, Dal-Pan A, Dubé P, Varin TV, Calon F, Desjardins Y. Potentiation of the bioavailability of blueberry phenolic compounds by co-ingested grape phenolic compounds in mice, revealed by targeted metabolomic profiling in plasma and feces. Food Funct 2016; 7:3421-30. [PMID: 27443888 DOI: 10.1039/c6fo00902f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The low bioavailability of dietary phenolic compounds, resulting from poor absorption and high rates of metabolism and excretion, is a concern as it can limit their potential beneficial effects on health. Targeted metabolomic profiling in plasma and feces of mice supplemented for 15 days with a blueberry extract, a grape extract or their combination revealed significantly increased plasma concentrations (3-5 fold) of blueberry phenolic metabolites in the presence of a co-ingested grape extract, associated with an equivalent decrease in their appearance in feces. Additionally, the repeated daily administration of the blueberry-grape combination significantly increased plasma phenolic concentrations (2-3-fold) compared to animals receiving only a single acute dose, with no such increase being observed with individual extracts. These findings highlight a positive interaction between blueberry and grape constituents, in which the grape extract enhanced the absorption of blueberry phenolic compounds. This study provides for the first time in vivo evidence of such an interaction occurring between co-ingested phenolic compounds from fruit extracts leading to their improved bioavailability.
Collapse
Affiliation(s)
- Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 boulevard Hochelaga, Québec (QC) G1V0A6, Canada.
| | | | | | | | | | | |
Collapse
|
10
|
Anuf AR, Ramachandran R, Krishnasamy R, Gandhi PSS, Periyasamy S. Antiproliferative effects of Plumbago rosea and its purified constituent plumbagin on SK-MEL 28 melanoma cell lines. Pharmacognosy Res 2014; 6:312-9. [PMID: 25276069 PMCID: PMC4166820 DOI: 10.4103/0974-8490.138280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/20/2014] [Accepted: 08/06/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Plumbago rosea is used in traditional systems of medicine for the preparation of formulations used for treating inflammations, cough, bronchitis, and gastrointestinal disorders, and also in conjunction with cancer chemotherapy. In the present study, the cytotoxic and anti-proliferative effects of plumbagin, and the ethanolic root extract of P. rosea (ETPR) was evaluated on SK-MEL 28 melanoma cell lines and human lymphocytes. MATERIALS AND METHODS MTT and apoptotic assays were used for the evaluation of cytotoxic and anti-proliferative effects, respectively. In addition, the effect of Plumbagin and ETPR in down regulation of BCL-2 expression is investigated using RT-PCR analysis. RESULTS Both plumbagin and ETPR dose-dependently decreased the cell viability more potently in melanoma cell lines. P. rosea extract demonstrated significant synergy in inhibiting BCL-2 expression than plumbagin. Moreover plumbagin showed more toxicity in human lymphocytes. CONCLUSION Plumbagin has anti-cancer potential, but the side effects limits its use; yet plumbagin, in combination with other ingredients in Plumbago rosea extract, displays significant synergy leading to a stronger anticancer effect with significantly less toxicity.
Collapse
Affiliation(s)
- Alexander Ronaldo Anuf
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Virudhunagar,Tamil Nadu, India
| | | | - Rajaram Krishnasamy
- Department of Biotechnology, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - P S Sudhakar Gandhi
- Department of Biotechnology, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Sureshkumar Periyasamy
- Department of Biotechnology, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
11
|
Liu X, Wu WY, Jiang BH, Yang M, Guo DA. Pharmacological tools for the development of traditional Chinese medicine. Trends Pharmacol Sci 2013; 34:620-8. [PMID: 24139610 DOI: 10.1016/j.tips.2013.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/25/2013] [Accepted: 09/16/2013] [Indexed: 02/08/2023]
Abstract
Pharmacology as a modern science was introduced in China approximately 150 years ago, and has been used since then to study traditional Chinese medicine (TCM). Pharmacology has experienced its own development over this time and continues to provide new tools for the study of TCM. In the present review, three models for the pharmacological study of TCM are considered: (i) chemistry-focused study; (ii) target-directed study; and (iii) systems-biology-based study. These approaches correspond to recent developments in pharmacology, and in particular to new tools available to the field. Representative achievements and the pharmacological tools used to study TCM are reviewed. Pharmacology has played, and will continue to play, an indispensable role in elucidating the chemical basis, biological targets, and mechanisms of action of TCM medicines, and in developing a scientific basis for the theory of TCM.
Collapse
Affiliation(s)
- Xuan Liu
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | | | | | | | | |
Collapse
|
12
|
Gostner JM, Gruber P, Becker K, Naschberger M, Uberall F. [New approaches to elucidate the activities of botanical multi-component mixtures]. FORSCHENDE KOMPLEMENTARMEDIZIN (2006) 2013; 20 Suppl 2:41-4. [PMID: 23860114 DOI: 10.1159/000351739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the major activities of traditional remedies have mostly been known since ancient times, their molecular mechanisms of action have usually not been investigated in much detail. The pharmaceutically relevant activities of botanical therapeutics frequently result from additive or synergistic effects of a multitude of components. Several studies have been published that analyze the effects of complex preparations on selected in vitro model cell systems by using gene expression analysis. Herein, the examples referred to include transcriptional studies with extracts from Ginkgo biloba and Echinacea as well as the Tibetan Formula Padma 28. Transcriptional profiles can be used to deduce key molecules and pathways affected upon treatment. Differentially expressed gene sets can further be integrated with information derived from interaction databases, thus giving a more comprehensive view of activated biological processes. Transcriptomics, by using microarray technology, is used as a tool in different fields of natural product research, ranging from activity monitoring to toxicity profiling.
Collapse
Affiliation(s)
- Johanna M Gostner
- Biozentrum, Sektion für Medizinische Biochemie, Medizinische Universität Innsbruck, Österreich
| | | | | | | | | |
Collapse
|
13
|
Klein A, Wrulich OA, Jenny M, Gruber P, Becker K, Fuchs D, Gostner JM, Uberall F. Pathway-focused bioassays and transcriptome analysis contribute to a better activity monitoring of complex herbal remedies. BMC Genomics 2013; 14:133. [PMID: 23445205 PMCID: PMC3598787 DOI: 10.1186/1471-2164-14-133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023] Open
Abstract
Background Transcriptome analysis in combination with pathway-focused bioassays is
suggested to be a helpful approach for gaining deeper insights into the
complex mechanisms of action of herbal multicomponent preparations in living
cells. The polyherbalism based concept of Tibetan and Ayurvedic medicine
considers therapeutic efficacy through multi-target effects. A polyherbal
Indo-Tibetan preparation, Padma 28, approved by the Swiss drug authorities
(Swissmedic Nr. 58436), was applied to a more detailed dissection of
mechanism of action in human hepatoma HepG2 cells. Cell-free and cell-based
assays were employed to evaluate the antioxidant capacity. Genome-wide
expression profiling was done by applying Human Genome U133 Plus 2.0
Affymetrix arrays. Pathway- and network-oriented analysis elucidated the
affected biological processes. The results were validated using reporter
gene assays and quantitative real-time PCR. Results To reveal the direct radical scavenging effects of the ethanolic extract of
the Indo-Tibetan polyherbal remedy Padma 28, an in vitro oxygen
radical absorbance capacity assay (ORAC) was employed, which resulted in a
peroxyl-radical scavenging activity of 2006 ± 235 μmol TE/g.
Furthermore, the antioxidant capacity of Padma 28 was analysed in living
HepG2 cells, by measuring its scavenging potential against radical induced
ROS. This formulation showed a considerable antioxidant capacity by
significantly reducing ROS levels in a dose-dependent manner. Integrated transcriptome analysis revealed a major influence on phase I and
phase II detoxification and the oxidative stress response. Selected target
genes, such as heme oxygenase 1, were validated in qPCR experiments. Network
analysis showed 18 interrelated networks involved in important biological
functions such as drug and bio-molecule metabolism, molecular transport and
cellular communication. Some molecules are part of signaling cascades that
are active during development and morphogenesis or are involved in
pathological conditions and inflammatory response. Conclusions The identified molecular targets and pathways suggest several mechanisms that
underlie the biological activity of the preparation. Although extrapolation
of these findings to the in vivo situation is not possible, the
results obtained might be the basis for further investigations and new
hypotheses to be tested. This study demonstrates the potential of the
combination of focused and unbiased research strategies in the mode of
action analysis of multicomponent herbal mixtures.
Collapse
Affiliation(s)
- Angela Klein
- Division of Medical Biochemistry, Innsbruck Medical University, Center for Chemistry and Biomedicine, Innrain 80-82, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|