1
|
Azman ANSS, Tan JJ, Abdullah MNH, Bahari H, Lim V, Yong YK. Medicinal activities of Tualang honey: a systematic review. BMC Complement Med Ther 2024; 24:358. [PMID: 39367403 PMCID: PMC11453070 DOI: 10.1186/s12906-024-04664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Natural products derived from various sources, including plants, have garnered significant interest as alternative therapeutic options. Among these, Tualang honey, extracted from the nectar of Tualang trees (Koompassia excelsa (Becc.) Taub.), has a long history of traditional use due to its therapeutic properties. This review aims to examine the pharmacological activities of Tualang honey, encompassing both in vitro and in vivo studies. A systematic search was conducted in multiple databases, including PubMed, Springer, Scopus, Wiley, and Science Direct, up until December 2022 to identify relevant studies on the pharmacological activities of Tualang honey. Two independent reviewers were involved in article selection, followed by data extraction and assessment of methodological quality using Syrcle's risk of bias tool. 123 articles were included, collectively describing the pharmacological activities of Tualang honey, including antimicrobial, anticancer, anti-inflammatory, antioxidant, antinociceptive, neuroprotective effects, and others. Tualang honey has significant promise as an alternative treatment option for treating a wide range of pathological diseases due to its wide range of pharmacological properties. Tualang honey's diverse array of pharmacological actions indicates its potential for multiple medicinal uses.
Collapse
Affiliation(s)
- Ain Nabila Syahira Shamsol Azman
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang, 13200, Malaysia
| | - Muhammad Nazrul Hakim Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang, 13200, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| |
Collapse
|
2
|
Márquez-Garbán DC, Yanes CD, Llarena G, Elashoff D, Hamilton N, Hardy M, Wadehra M, McCloskey SA, Pietras RJ. Manuka Honey Inhibits Human Breast Cancer Progression in Preclinical Models. Nutrients 2024; 16:2369. [PMID: 39064812 PMCID: PMC11279598 DOI: 10.3390/nu16142369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Manuka honey (MH) exhibits potential antitumor activity in preclinical models of a number of human cancers. Treatment in vitro with MH at concentrations ranging from 0.3 to 5.0% (w/v) led to significant dose-dependent inhibition of proliferation of human breast cancer MCF-7 cells, but anti-proliferative effects of MH were less pronounced in MDA-MB-231 breast cancer cells. Effects of MH were also tested on non-malignant human mammary epithelial cells (HMECs) at 2.5% w/v, and it was found that MH reduced the proliferation of MCF-7 cells but not that of HMECs. Notably, the antitumor activity of MH was in the range of that exerted by treatment of MCF-7 cells with the antiestrogen tamoxifen. Further, MH treatment stimulated apoptosis of MCF-7 cells in vitro, with most cells exhibiting acute and significant levels of apoptosis that correlated with PARP activation. Additionally, the effects of MH induced the activation of AMPK and inhibition of AKT/mTOR downstream signaling. Treatment of MCF7 cells with increased concentrations of MH induced AMPK phosphorylation in a dose-dependent manner that was accompanied by inhibition of phosphorylation of AKT and mTOR downstream effector protein S6. In addition, MH reduced phosphorylated STAT3 levels in vitro, which may correlate with MH and AMPK-mediated anti-inflammatory properties. Further, in vivo, MH administered alone significantly inhibited the growth of established MCF-7 tumors in nude mice by 84%, resulting in an observable reduction in tumor volume. Our findings highlight the need for further research into the use of natural compounds, such as MH, for antitumor efficacy and potential chemoprevention and investigation of molecular pathways underlying these actions.
Collapse
Affiliation(s)
- Diana C. Márquez-Garbán
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - Cristian D. Yanes
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - Gabriela Llarena
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - David Elashoff
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Division of General Internal Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Nalo Hamilton
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- School of Nursing, UCLA, Los Angeles, CA 90095, USA
| | - Mary Hardy
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Division of General Internal Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Susan A. McCloskey
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Department of Radiation Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Richard J. Pietras
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| |
Collapse
|
3
|
Al-Kafaween MA, Alwahsh M, Mohd Hilmi AB, Abulebdah DH. Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12020337. [PMID: 36830249 PMCID: PMC9952753 DOI: 10.3390/antibiotics12020337] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Honey is considered to be a functional food with health-promoting properties. However, its potential health benefits can be affected by individual composition that varies between honey types. Although studies describing the health benefits of Tualang honey (TH), Kelulut honey (KH), and Sidr honey (SH) are scarce, these honey types showed a comparable therapeutic efficacy to Manuka honey (MH). The purpose of this review is to characterise the physicochemical, biological, and therapeutic properties of TH, KH, and SH. Findings showed that these honeys have antibacterial, antifungal, antiviral, antioxidant, antidiabetic, antiobesity, anticancer, anti-inflammatory and wound-healing properties and effects on the cardiovascular system, nervous system, and respiratory system. The physicochemical characteristics of TH, KH, and SH were compared with MH and discussed, and results showed that they have high-quality contents and excellent biological activity sources. Flavonoids and polyphenols, which act as antioxidants, are two main bioactive molecules present in honey. The activity of honey depends on the type of bee, sources of nectar, and the geographic region where the bees are established. In conclusion, TH, KH, and SH could be considered as natural therapeutic agents for various medicinal purposes compared with MH. Therefore, TH, KH, and SH have a great potential to be developed for modern medicinal use.
Collapse
Affiliation(s)
- Mohammad A. Al-Kafaween
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- Correspondence: (M.A.A.-K.); (A.B.M.H.); Tel.: +6-099988548 (A.B.M.H.); Fax: +6-096687896 (A.B.M.H.)
| | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Abu Bakar Mohd Hilmi
- Department of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
- Correspondence: (M.A.A.-K.); (A.B.M.H.); Tel.: +6-099988548 (A.B.M.H.); Fax: +6-096687896 (A.B.M.H.)
| | - Dina H. Abulebdah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
4
|
Bagatir G, Kaya M, Suer I, Cefle K, Palanduz A, Palanduz S, Becerir HB, Koçyiğit M, Ozturk S. The effect of Anzer honey on X-ray induced genotoxicity in human lymphocytes: An in vitro study. Microsc Res Tech 2022; 85:2241-2250. [PMID: 35170166 DOI: 10.1002/jemt.24081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/07/2022]
Abstract
Anzer honey is well known in Turkey and used for its medicinal properties, especially for pharyngitis, tonsillitis, ulcers and cancer. In this study, we investigated whether Anzer honey, which is shown to have antioxidant, anti-tumoral, and anti-inflammatory properties, has a protective effect against X-ray induced genotoxic damage by cytogenetic methods. Peripheral blood lymphocytes isolated from 20 healthy volunteers were divided into two groups and cultivated by conventional methods. Study group lymphocytes were treated with 10% diluted honey while those in the control group were not. Both groups were exposed to a high dose (2 Gy) X-ray at the 48th hour of culture. Conventional cytogenetic staining and Giemsa banding methods were applied to evaluate chromosomal breakage and ring formation. Micronucleus frequencies were determined by the cytokinesis-block micronucleus (CBMN) assay. Paired sample t test was used to compare groups. Anzer honey, which was analyzed melissopalynologically, was used. Micronucleus frequency was significantly decreased in the study group (CI = 348.75 ± 31, median 326, min. 98, max. 704) compared to the control group (CI = 489.10 ± 27, median 500, min. 216, max. 645) (p = .001). Chromosomal breakage was also significantly decreased in the study group (CI = 118.70 ± 16, median 109, min. 12, max. 316) compared to the control group (CI = 233.60 ± 25, median 225, min. 65, max. 492) (p < .0001). This is the first study indicating that genotoxic damage in the peripheral blood lymphocytes of healthy volunteers induced by X-radiation may be prevented or alleviated by adding Anzer honey in vitro. These results encourage further research about the protective effects of honey.
Collapse
Affiliation(s)
- Gulcin Bagatir
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kaya
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ilknur Suer
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Kıvanc Cefle
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ayse Palanduz
- Department of Family Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sukru Palanduz
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Mine Koçyiğit
- Department of Pharmaceutical Botany, Istanbul Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sukru Ozturk
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Yusoff YM, Abbott G, Young L, Edrada-Ebel R. Metabolomic Profiling of Malaysian and New Zealand Honey Using Concatenated NMR and HRMS Datasets. Metabolites 2022; 12:metabo12010085. [PMID: 35050207 PMCID: PMC8781004 DOI: 10.3390/metabo12010085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to compare the metabolomic profiles of Malaysian and New Zealand honey while determining their anti-oncogenic activity for potential prophylactic functions. Metabolomics tools including multivariate analysis were applied on concatenated LC-HRMS and NMR datasets to afford an intensive chemical profile of honey samples and have a snapshot of the bioactive metabolites in the respective collections. Malaysian samples were found to have higher sugar and polyphenolic content, while New Zealand samples afforded higher concentration of low molecular weight (MW) lipids. However, New Zealand honey collected from the northern islands had higher concentration of acetylated saccharides, while those from the southern islands yielded higher low MW phenolic metabolites that were comparable to Malaysian honey. Mild anti-oncogenic compounds against breast cancer cell line ZR75 were putatively identified in Malaysian honey that included earlier described antioxidants such as gingerdiol, 2-hexylphenol-O-β-D-xylopyranoside, plastoquinone, tropine isovalerate, plumerinine, and 3,5-(12-phenyl-8-dodecenyl)resorcinol, along with several phenolic esters and lignans.
Collapse
Affiliation(s)
- Yusnaini M. Yusoff
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK; (G.A.); (L.Y.)
- CADS, Level 8, Vertical Corporate Tower B, Avenue 10, The Vertical, No. 8 Jalan Kerinchi, Bangsar South City, Kuala Lumpur 59200, Malaysia
- Correspondence: or (Y.M.Y.); (R.E.-E.)
| | - Grainne Abbott
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK; (G.A.); (L.Y.)
| | - Louise Young
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK; (G.A.); (L.Y.)
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK; (G.A.); (L.Y.)
- Correspondence: or (Y.M.Y.); (R.E.-E.)
| |
Collapse
|
6
|
Becerril-Sánchez AL, Quintero-Salazar B, Dublán-García O, Escalona-Buendía HB. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants (Basel) 2021; 10:1700. [PMID: 34829570 PMCID: PMC8614671 DOI: 10.3390/antiox10111700] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 02/02/2023] Open
Abstract
Honey has been employed since antiquity due to its sensory, nutritional, and therapeutic properties. These characteristics are related to its physical and chemical composition. For example, phenolic compounds are substances that can determine antioxidant activity, as well as sensory characteristics, and can be employed as biomarkers of floral and geographical origin. This has generated a growing interest in the study of phenolic compounds and their influence in the intrinsic properties of this beekeeping product. This review aims to summarize, analyze, and update the status of the research that demonstrates the role of phenolic compounds in antioxidant activity, botanical-geographical origin, and the sensory characteristics of honey. These phenolic compounds, according to various results reported, have great relevance in honey's biological and functional activity. This leads to research that will link phenolic compounds to their floral, geographical, productive, and territorial origin, as well as some sensory and functional characteristics.
Collapse
Affiliation(s)
- Ana L. Becerril-Sánchez
- Food and Environmental Toxicology Laboratory, Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Mexico;
| | | | - Octavio Dublán-García
- Food and Environmental Toxicology Laboratory, Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Mexico;
| | - Héctor B. Escalona-Buendía
- Sensory Evaluation and Consumer Studies Laboratory, Biotechnology Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico;
| |
Collapse
|
7
|
Zaid SSM, Ruslee SS, Mokhtar MH. Protective Roles of Honey in Reproductive Health: A Review. Molecules 2021; 26:molecules26113322. [PMID: 34205972 PMCID: PMC8197897 DOI: 10.3390/molecules26113322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nowadays, most people who lead healthy lifestyles tend to use natural products as supplements, complementary medicine or alternative treatments. Honey is God's precious gift to mankind. Honey has been highly appreciated and extensively used since ancient history due to its high nutritional and therapeutic values. It is also known to enhance fertility. In the last few decades, the important role of honey in modern medicine has been acknowledged due to the large body of convincing evidence derived from extensive laboratory studies and clinical investigations. Honey has a highly complex chemical and biological composition that consists of various essential bioactive compounds, enzymes, amino and organic acids, acid phosphorylase, phytochemicals, carotenoid-like substances, vitamins and minerals. Reproductive health and fertility rates have declined in the last 30 years. Therefore, this review aimed to highlight the protective role of honey as a potential therapeutic in maintaining reproductive health. The main role of honey is to enhance fertility and treat infertility problems by acting as an alternative to hormone replacement therapy for protecting the vagina and uterus from atrophy, protecting against the toxic effects of xeno-oestrogenic agents on female reproductive functions and helping in the treatment of gynaecological disorders, such as vulvovaginal candidiasis infection, that affect women's lives.
Collapse
Affiliation(s)
- Siti Sarah Mohamad Zaid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: ; Tel.: +60-3-9769-6742
| | - Siti Suraya Ruslee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
8
|
Mohd Kamal DA, Ibrahim SF, Kamal H, Kashim MIAM, Mokhtar MH. Physicochemical and Medicinal Properties of Tualang, Gelam and Kelulut Honeys: A Comprehensive Review. Nutrients 2021; 13:nu13010197. [PMID: 33435215 PMCID: PMC7827892 DOI: 10.3390/nu13010197] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Tualang, Gelam and Kelulut honeys are tropical rainforest honeys reported to have various medicinal properties. Studies related to the medicinal properties and physicochemical characteristics of these honeys are growing extensively and receiving increased attention. This review incorporated and analysed the findings on the biological and physicochemical properties of these honeys. Tualang, Gelam and Kelulut honeys were found to possess a wide variety of biological effects attributed to their physicochemical characteristics. Findings revealed that these honeys have anti-diabetic, anti-obesity, anti-cancer, anti-oxidative, anti-microbial, anti-inflammatory and wound-healing properties and effects on the cardiovascular system, nervous system and reproductive system. The physicochemical properties of these honeys were compared and discussed and results showed that they have high-quality contents and excellent antioxidant sources.
Collapse
Affiliation(s)
- Datu Agasi Mohd Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (D.A.M.K.); (S.F.I.); (H.K.)
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (D.A.M.K.); (S.F.I.); (H.K.)
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (D.A.M.K.); (S.F.I.); (H.K.)
| | - Mohd Izhar Ariff Mohd Kashim
- Centre for Contemporary Fiqh and Sharia Compliance, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (D.A.M.K.); (S.F.I.); (H.K.)
- Correspondence: ; Tel.: +60-3-9145-8619
| |
Collapse
|
9
|
Schoeman R, Beukes N, Frost C. Cannabinoid Combination Induces Cytoplasmic Vacuolation in MCF-7 Breast Cancer Cells. Molecules 2020; 25:molecules25204682. [PMID: 33066359 PMCID: PMC7587381 DOI: 10.3390/molecules25204682] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
This study evaluated the synergistic anti-cancer potential of cannabinoid combinations across the MDA-MB-231 and MCF-7 human breast cancer cell lines. Cannabinoids were combined and their synergistic interactions were evaluated using median effect analysis. The most promising cannabinoid combination (C6) consisted of tetrahydrocannabinol, cannabigerol (CBG), cannabinol (CBN), and cannabidiol (CBD), and displayed favorable dose reduction indices and limited cytotoxicity against the non-cancerous breast cell line, MCF-10A. C6 exerted its effects in the MCF-7 cell line by inducing cell cycle arrest in the G2 phase, followed by the induction of apoptosis. Morphological observations indicated the induction of cytoplasmic vacuolation, with further investigation suggesting that the vacuole membrane was derived from the endoplasmic reticulum. In addition, lipid accumulation, increased lysosome size, and significant increases in the endoplasmic reticulum chaperone protein glucose-regulated protein 78 (GRP78) expression were also observed. The selectivity and ability of cannabinoids to halt cancer cell proliferation via pathways resembling apoptosis, autophagy, and paraptosis shows promise for cannabinoid use in standardized breast cancer treatment.
Collapse
|
10
|
Al-Koshab M, Alabsi AM, Bakri MM, Naicker MS, Seyedan A. Chemopreventive activity of Tualang honey against oral squamous cell carcinoma-in vivo. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129:484-492. [PMID: 32173393 DOI: 10.1016/j.oooo.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/17/2019] [Accepted: 01/26/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the chemopreventive activity of Malaysian jungle Tualang honey (TH) after oral carcinogenesis induced with 4-nitroquinoline 1-oxide (4 NQO). STUDY DESIGN A total of 28 male Sprague-Dawley (SD) rats were distributed into 4 groups as follows: group 1 (nontreated group); group 2 (control), which received 4 NQO during 8 weeks in drinking water only; and groups 3 and 4, which received 4 NQO for 8 weeks in drinking water and treated with TH 1000 mg/kg and 2000 mg/kg by oral gavage for 10 weeks. All rats from all experiments were sacrificed after 22 weeks, and the incidence of oral neoplasms and histopathologic changes were microscopically evaluated. Moreover, immunohistochemical expression was analyzed in tongue specimens by using image analysis software. The expression of particular genes associated with oral cancer were assessed by using RT2 Profiler PCR Array (Qiagen, Germantown, MD). RESULTS TH significantly reduced the incidence of oral squamous cell carcinoma (OSCC) and suppressed cancer cell proliferation via diminishing the expression of CCND1, EGFR, and COX-2. Furthermore, TH preserved cellular adhesion (epithelial polarity) through overexpression of β-catenin and e-cadherin and inhibited the OSCC aggressiveness by downregulating TWIST1 and RAC1. CONCLUSIONS Our data suggest that TH exerts chemopreventive activity in an animal model in which oral cancer was induced by using 4 NQO.
Collapse
Affiliation(s)
- May Al-Koshab
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Aied M Alabsi
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor, Malaysia.
| | - Marina Mohd Bakri
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Atefehalsadat Seyedan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Is Astragalus gossypinus Honey a Natural Antibacterial and Cytotoxic Agent? An Investigation on A. gossypinus Honey Biological Activity and Its Green Synthesized Silver Nanoparticles. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00646-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Postmenopausal osteoporosis and breast cancer: The biochemical links and beneficial effects of functional foods. Biomed Pharmacother 2018; 107:571-582. [DOI: 10.1016/j.biopha.2018.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
|
13
|
Badolato M, Carullo G, Cione E, Aiello F, Caroleo MC. From the hive: Honey, a novel weapon against cancer. Eur J Med Chem 2017; 142:290-299. [DOI: 10.1016/j.ejmech.2017.07.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/28/2022]
|
14
|
Ahmed S, Othman NH. The anti-cancer effects of Tualang honey in modulating breast carcinogenesis: an experimental animal study. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:208. [PMID: 28399853 PMCID: PMC5387200 DOI: 10.1186/s12906-017-1721-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
Background Honey has been shown to have anti-cancer effects, but the mechanism behind these effects is not fully understood. We investigated the role of Malaysian jungle Tualang honey (TH) in modulating the hematological parameters, estrogen, estrogen receptors (ER1) and pro and anti-apoptotic proteins expression in induced breast cancer in rats. Methods Fifty nulliparous female Sprague–Dawley rats were used and grouped as follows: Group 0 (healthy normal rats control), Group 1 (negative control; untreated rats), Groups 2, 3 and 4 received daily doses of 0.2, 1.0 and 2.0 g/kg body weight of TH, respectively. The rats in groups 1, 2, 3, 4 were induced with 80 mg/kg of 1-methyl-1-nitrosourea (MNU). TH treatment in groups 2, 3 and 4 was started one week prior to tumor induction and continued for 120 days. Results The TH-treated rats had tumors of different physical attributes compared to untreated negative control rats; the tumor progression (mean 75.3 days versus 51.5 days); the incidence (mean 76.6% versus 100%); the multiplicity (mean 2.5 versus 4 tumor masses per rat); the size of tumor mass (mean 0.41 cm versus 1.47 cm [p < 0.05]) and the weight of the tumor mass (mean 1.22 g versus 3.23 g; [p < 0.05]). Histological examinations revealed that cancers treated with TH were mainly of grades I and II compared with the non-treated control, in which the majority were of grade III (p < 0.05). TH treatment was found to modulate hematological parameters such as Hb, RBCs, PCV, MCV, RDW, MCHC, polymorphs and lymphocytes values. TH treatment groups were found to have a lower anti-apoptotic proteins (E2, ESR1 and Bcl-xL) expression and a higher pro-apoptotic proteins (Apaf-1 and Caspase-9) expression at serum and on cancer tissue level (p < 0.05). Conclusion Tualang Honey alleviates breast carcinogenesis through modulation of hematologic, estrogenic and apoptotic activities in this experimental breast cancer animal model. Tualang Honey may be used as a natural ‘cancer-alleviating’ agent or as a supplement to chemotherapeutic agents.
Collapse
|
15
|
El-Shorbagy HM. Potential anti-genotoxic effect of sodium butyrate to modulate induction of DNA damage by tamoxifen citrate in rat bone marrow cells. Cytotechnology 2017; 69:89-102. [PMID: 27905024 PMCID: PMC5264625 DOI: 10.1007/s10616-016-0039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Sodium butyrate (SB) is one of the histone deacetylase inhibitors (HDACi's) that is recently evidenced to have a prooxidant activity and an ability to reduce hydrogen peroxide-induced DNA damage. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen citrate (TC), which exerts well established oxidative and genotoxic effects, thus the basic objective of this study is to determine whether SB could ameliorate or curate tamoxifen citrate-induced oxidative DNA damage and genotoxic effect in vivo through up-regulation of some antioxidant enzymes. The individual and combined effects of SB and TC have been examined on rat bone marrow cells, using Micronucleus assays (MN), Comet assay, DNA fragmentation, expression of some antioxidant genes using Real time-PCR and finally, oxidative stress analysis. SB significantly increased the mitotic activity (P < 0.05), while TC induced marked micronuclei and oxidative DNA damage, in the SB post-treatment group, the combination of SB (300 mg/kg) and TC (40 mg/kg) was able to decrease the induction of MN and oxidative DNA damage through up-regulation of Cat, Sod and Gpx1 genes significantly at (P < 0.05) more efficiently than that in the SB pre-treatment one. Therefore, we postulate that SB can be used therapeutically in combination with TC treatment to modulate TC genotoxic effect by reducing its oxidative stress, and thus being an appropriate agonist agent to combine with TC than each compound alone.
Collapse
|
16
|
Porcza LM, Simms C, Chopra M. Honey and Cancer: Current Status and Future Directions. Diseases 2016; 4:diseases4040030. [PMID: 28933410 PMCID: PMC5456322 DOI: 10.3390/diseases4040030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death worldwide and poses a challenge to treatment. With overwhelming evidence of the role played by diet and lifestyle in cancer risk and prevention, there is a growing interest into the search for chemopreventative or chemotherapeutic agents derived from natural products. Honey is an important source of bioactive compounds derived from plants and recent years have seen an increased interest in its anticancer properties. This review examines the role of honey in targeting key hallmarks of carcinogenesis, including uncontrolled proliferation, apoptosis evasion, angiogenesis, growth factor signalling, invasion, and inflammation. The evidence for honey as an adjunct to conventional cancer therapy is also presented. The review also highlights gaps in the current understanding and concludes that, before translation of evidence from cell culture and animal studies into the clinical setting, further studies are warranted to examine the effects of honey at a molecular level, as well as on cells in the tumour environment.
Collapse
Affiliation(s)
- Laura M Porcza
- Institute of Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Hampshire, Portsmouth PO1 2DT, UK.
| | - Claire Simms
- Institute of Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Hampshire, Portsmouth PO1 2DT, UK.
| | - Mridula Chopra
- Institute of Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Hampshire, Portsmouth PO1 2DT, UK.
| |
Collapse
|
17
|
Rao PV, Krishnan KT, Salleh N, Gan SH. Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Tualang Honey Protects against BPA-Induced Morphological Abnormalities and Disruption of ERα, ERβ, and C3 mRNA and Protein Expressions in the Uterus of Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:202874. [PMID: 26788107 PMCID: PMC4691614 DOI: 10.1155/2015/202874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that can disrupt the normal functions of the reproductive system. The objective of the study is to investigate the potential protective effects of Tualang honey against BPA-induced uterine toxicity in pubertal rats. The rats were administered with BPA by oral gavage over a period of six weeks. Uterine toxicity in BPA-exposed rats was determined by the degree of the morphological abnormalities, increased lipid peroxidation, and dysregulated expression and distribution of ERα, ERβ, and C3 as compared to the control rats. Concurrent treatment of rats with BPA and Tualang honey significantly improved the uterine morphological abnormalities, reduced lipid peroxidation, and normalized ERα, ERβ, and C3 expressions and distribution. There were no abnormal changes observed in rats treated with Tualang honey alone, comparable with the control rats. In conclusion, Tualang honey has potential roles in protecting the uterus from BPA-induced toxicity, possibly accounted for by its phytochemical properties.
Collapse
|
19
|
Periayah MH, Halim AS, Mat Saad AZ, Yaacob NS, Hussein AR, Abdul Karim F, Abdul Rashid AH, Ujang Z. Effect of the Novel Biodegradable N, O-Carboxymethylchitosan and Oligo-Chitosan on the Platelet Thrombogenicity Cascade in von Willebrand Disease. Thromb Res 2015; 136:625-33. [PMID: 26254703 DOI: 10.1016/j.thromres.2015.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/01/2015] [Accepted: 07/27/2015] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Von Willebrand disease (vWD) is the second least common hemostatic disorder in Malaysia, and it has a low prevalence. This study examined the underlying platelet thrombogenicity cascades in the presence of different formulations of chitosan-derivatives in vWD patients. This paper aimed to determine the significant influence of chitosan biomaterial in stimulating the platelet thrombogenicity cascades that involve the von Willebrand factor, Factor 8, Thromboxane A2, P2Y12 and Glycoprotein IIb/IIIa in vWD. MATERIALS AND METHODS Variable chitosan formulations of N,O-Carboxymethylchitosan (NO-CMC) and Oligo-Chitosan (O-C) were tested. Fourteen vWD subjects voluntarily participated in this study after signing informed consent forms. The patient's demographic profiles, family history, type of vWD, clinical symptoms and laboratory profiles were recorded and analyzed. Enzyme-linked immunosorbent assay, flow cytometry and Western blot tests were used to determine the level of the chitosan-adhered-platelet-mechanisms. RESULTS The study revealed that most patients were predominantly affected by vWD type I. The O-C group of chitosan's scaffold pores is sufficient to allow for nutrients and cells. The O-C-stimulated-mediators are capable of initiating the platelet actions and were detected to expedite the blood coagulation processes. The oligo-group of chitosans was capable of amplifying and triggering more platelet activator's pathways via the studied mediators. The present findings suggest that the ability of each type of chitosan to coagulate blood varies depending on its chemical composition. CONCLUSION The oligo group of chitosans is potentially capable of triggering platelet thrombogenicity cascades by activating platelets in vWD patients to form a platelet plug for hemostasis process.
Collapse
Affiliation(s)
- Mercy Halleluyah Periayah
- Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Ahmad Sukari Halim
- Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Arman Zaharil Mat Saad
- Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Abdul Rahim Hussein
- Regenerative Medicine Cluster, Universiti Sains Malaysia, Advanced Medical & Dental Institute, No. 1-8, Persiaran Seksyen 4/1, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia.
| | - Faraizah Abdul Karim
- Hemophilia Clinic, National Blood Centre, Jalan Tun Razak, 50400, Wilayah Persekutuan, Kuala Lumpur, Malaysia.
| | - Ahmad Hazri Abdul Rashid
- Industrial Biotechnology Research Centre, SIRIM Berhad, No. 1 Persiaran Dato' Menteri, Section 2, P.O. Box 7035, 40700 Shah Alam, Selangor, Malaysia.
| | - Zanariah Ujang
- Industrial Biotechnology Research Centre, SIRIM Berhad, No. 1 Persiaran Dato' Menteri, Section 2, P.O. Box 7035, 40700 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
20
|
Zaid SSM, Othman S, Kassim NM. Potential protective effect of Tualang honey on BPA-induced ovarian toxicity in prepubertal rat. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:509. [PMID: 25519484 PMCID: PMC4301897 DOI: 10.1186/1472-6882-14-509] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 12/09/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND To investigate the potential protective effects of Tualang honey against the toxicity effects induced by Bisphenol A (BPA) on pubertal development of ovaries. METHODS This study was conducted on pre-pubertal female Sprague Dawley rats. Animals were divided into four groups (n = 8 in each group). Group I was administered with vehicle 0.2 ml of corn oil (Sigma-Aldrich, USA) using oral gavage daily for six weeks; these animals served as negative control (CO group), Group II was administered with BPA suspended in corn oil at 10 mg/kg body weight and served as positive control (PC group), Group III was administered with 200 mg/kg body weight of Tualang honey 30 min before the administration of BPA at 10 mg/kg (TH group) while Group IV was administered with 200 mg/kg body weight of Tualang honey 30 min before the administration of corn oil (THC group). Body weight of all animals were monitored weekly. RESULTS The BPA-exposed animals exhibited disruption of their estrus cycle, while those animals treated with BPA together with Tualang honey, exhibited an improvement in percentage of normal estrous cycle. Their ovaries had lower numbers of atretic follicles compared to the PC group but higher than the CO group. CONCLUSIONS Tualang honey has a potential role in reducing BPA-induced ovarian toxicity by reducing the morphological abnormalities of the ovarian follicles and improving the normal estrous cycle.
Collapse
|
21
|
Glycoprotein IIb/IIIa and P2Y12 induction by oligochitosan accelerates platelet aggregation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:653149. [PMID: 25247182 PMCID: PMC4163351 DOI: 10.1155/2014/653149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/21/2014] [Indexed: 11/23/2022]
Abstract
Platelet membrane receptor glycoprotein IIb/IIIa (gpiibiiia) is a receptor detected on platelets. Adenosine diphosphate (ADP) activates gpiibiiia and P2Y12, causing platelet aggregation and thrombus stabilization during blood loss. Chitosan biomaterials were found to promote surface induced hemostasis and were capable of activating blood coagulation cascades by enhancing platelet aggregation. Our current findings show that the activation of the gpiibiiia complex and the major ADP receptor P2Y12 is required for platelet aggregation to reach hemostasis following the adherence of various concentrations of chitosan biomaterials [7% N,O-carboxymethylchitosan (NO-CMC) with 0.45 mL collagen, 8% NO-CMC, oligochitosan (O-C), and oligochitosan 53 (O-C 53)]. We studied gpiibiiia and P2Y12 through flow cytometric analysis and western blotting techniques. The highest expression of gpiibiiia was observed with Lyostypt (74.3 ± 7.82%), followed by O-C (65.5 ± 7.17%). Lyostypt and O-C resulted in gpiibiiia expression increases of 29.2% and 13.9%, respectively, compared with blood alone. Western blot analysis revealed that only O-C 53 upregulated the expression of P2Y12 (1.12 ± 0.03-fold) compared with blood alone. Our findings suggest that the regulation of gpiibiiia and P2Y12 levels could be clinically useful to activate platelets to reach hemostasis. Further, we show that the novel oligochitosan is able to induce the increased expression of gpiibiiia and P2Y12, thus accelerating platelet aggregation in vitro.
Collapse
|