1
|
Sait Ertuğrul M, Balpınar Ö, Can Aytar E, Aydın B, Incilay Torunoglu E, Durmaz A, Rossato Viana A. Antioxidant, Antimicrobial, Anticancer, and Molecular Docking Insights into Pancratium maritimum Seeds and Flowers: A Phytochemical Approach. ChemistryOpen 2025; 14:e202400407. [PMID: 39790022 PMCID: PMC11808260 DOI: 10.1002/open.202400407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
This study investigates the antioxidant, antimicrobial, and anticancer properties of Pancratium maritimum L. in Sp. Pl.: 291 (1753) seeds and flowers. Antioxidant activity was assessed using DPPH free radical scavenging and iron chelation assays. Antimicrobial evaluations assessed the efficacy of the extracts against diverse microorganisms. Cell viability assays were conducted on the dukes c colon cancer (SW480), while gas chromatography-mass spectrometry (GC-MS) analysis facilitated the identification of bioactive compounds. The ethanol extract of P. maritimum seeds exhibited a total phenolic content of 296.89±14.53 mg GAE/g extract DW and a total flavonoid content of 361.03±20.18 mg QE/g extract DW. Conversely, the flower extract showed a total phenolic content of 95.03±7.22 mg GAE/g extract DW and a total flavonoid content of 272.12±16.42 mg QE/g extract DW. As a result, the ethanol extract of P. maritimum seeds contains higher phenolic and flavonoid contents than the flower extract. Antimicrobial evaluations demonstrated significant inhibitory effects of both seed and flower extracts, with minimum inhibitory concentration (MIC) values ranging from 25 to >50 mg/mL. Notably, the seed extract showed greater activity against E. coli and C. krusei. GC-MS analysis identified 18 bioactive compounds in the seed extract and 16 in the flower extract, with crucial components including ethyl oleate and 5-hydroxymethylfurfural. Additionally, cell viability assays revealed that ethanol extracts from seeds and flowers significantly reduced SW480 cell viability, particularly at doses of 750 μg/mL and 250 μg/mL, respectively. These findings underscore the therapeutic potential of P. maritimum in terms of its antioxidant, antimicrobial, and anticancer properties, highlighting its value as a natural source of antioxidants and antimicrobial agents. Furthermore, the molecular docking study emphasises strong binding interactions of key compounds, particularly ethyl oleate and hexadecanoic acid ethyl ester, with the human STARD10 protein. The biological interactions and health implications of P. maritimum provide a significant foundation for future research in drug development and therapeutic applications.
Collapse
Affiliation(s)
| | - Özge Balpınar
- Hemp Research InstituteOndokuz Mayıs UniversitySamsun55200Türkiye
| | - Erdi Can Aytar
- Faculty of Agriculture Department of HorticultureUsak UniversityUşak64200Türkiye
| | - Betul Aydın
- Faculty of ScienceDepartment of BiologyGazi UniversityAnkara06500Türkiye
| | - Emine Incilay Torunoglu
- Faculty of MedicineDepartment of Medical BiochemistryNecmettin Erbakan UniversityKonya42090Türkiye
| | - Alper Durmaz
- Ali Nihat Gökyiğit Botanical Garden Application and Research CenterArtvin Çoruh University08000ArtvinTürkiye
| | - Altevir Rossato Viana
- Department of Biochemistry and Molecular BiologyFederal University of Santa MariaSanta MariaBrazil
| |
Collapse
|
2
|
Wang Y, Zheng L, Zhang L, Tai Y, Lin X, Cai Z. Roles of MMP-2 and MMP-9 and their associated molecules in the pathogenesis of keloids: a comprehensive review. Front Pharmacol 2024; 15:1444653. [PMID: 39654616 PMCID: PMC11625567 DOI: 10.3389/fphar.2024.1444653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Keloid scars (keloids), a prototypical form of aberrant scar tissue formation, continue to pose a significant therapeutic challenge within dermatology and plastic surgery due to suboptimal treatment outcomes. Gelatinases are a subgroup of matrix metalloproteinases (MMPs), a family of enzymes that play an important role in the degradation and remodeling of the ECM (a pivotal factor for keloids development). Gelatinases include gelatinase A (MMP-2) and gelatinase B (MMP-9). Since accumulating evidence has shown that gelatinases played a crucial role in the process of keloid formation, we summarized the current knowledge on the association between MMP-2 and MMP-9 expression and the pathological process of keloids through a comprehensive review. This review demonstrated that the interplay between MMP-2, MMP-9, and their regulators, such as TGF-β1/Smad, PI3K/AKT, and LncRNA-ZNF252P-AS1/miR-15b-5p/BTF3 signaling cascades, involved in the intricate balance governing ECM homeostasis, collectively driving the excessive collagen deposition and altered tissue architecture observed in keloids. In summary, this review consolidates the current understanding of MMP-2 and MMP-9 in keloid pathogenesis, shedding light on their intricate involvement in the dysregulated keloids processes. The potential for targeted therapeutic interventions presents promising opportunities for advancing keloid management strategies.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Lai Zhang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Yuncheng Tai
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xuesong Lin
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Zhencheng Cai
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Silva LC, Correia AF, Gomes JVD, Romão W, Motta LC, Fagg CW, Magalhães PO, Silveira D, Fonseca-Bazzo YM. Lycorine Alkaloid and Crinum americanum L. (Amaryllidaceae) Extracts Display Antifungal Activity on Clinically Relevant Candida Species. Molecules 2022; 27:molecules27092976. [PMID: 35566325 PMCID: PMC9100883 DOI: 10.3390/molecules27092976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Candida species are the main fungal agents causing infectious conditions in hospital patients. The development of new drugs with antifungal potential, increased efficacy, and reduced toxicity is essential to face the challenge of fungal resistance to standard treatments. The aim of this study is to evaluate the in vitro antifungal effects of two crude extracts of Crinum americanum L., a rich alkaloid fraction and lycorine alkaloid, on the Candida species. As such, we used a disk diffusion susceptibility test, determined the minimum inhibitory concentration (MIC), and characterized the components of the extracts using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI FT-ICR MS). The extracts were found to have antifungal activity against various Candida species. The chemical characterization of the extracts indicated the presence of alkaloids such as lycorine and crinine. The Amaryllidaceae family has a promising antifungal potential. Furthermore, it was found that the alkaloid lycorine directly contributes to the effects that were observed for the extracts and fraction of C. americanum.
Collapse
Affiliation(s)
- Lorene Coelho Silva
- Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil; (L.C.S.); (J.V.D.G.); (P.O.M.); (D.S.)
- Central Laboratory of the Federal District (LACEN-DF), Lotes O e P, Sgan 601, Asa Norte, Brasília 70830-010, Brazil;
| | - Amabel Fernandes Correia
- Central Laboratory of the Federal District (LACEN-DF), Lotes O e P, Sgan 601, Asa Norte, Brasília 70830-010, Brazil;
| | - João Victor Dutra Gomes
- Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil; (L.C.S.); (J.V.D.G.); (P.O.M.); (D.S.)
| | - Wanderson Romão
- Federal Institute of Espíırito Santo, Vila Velha 29106-010, Brazil;
- Petroleomic and Forensic Laboratory, Department of Chemistry, Federal University of Espírito Santo, Vitória 29075-910, Brazil;
| | - Larissa Campos Motta
- Petroleomic and Forensic Laboratory, Department of Chemistry, Federal University of Espírito Santo, Vitória 29075-910, Brazil;
| | - Christopher William Fagg
- Department of Botany, Institute of Biological Science, School of Pharmacy, Faculty of Ceilândia, University of Brasília, Brasilia 70910-900, Brazil;
| | - Pérola Oliveira Magalhães
- Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil; (L.C.S.); (J.V.D.G.); (P.O.M.); (D.S.)
| | - Dâmaris Silveira
- Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil; (L.C.S.); (J.V.D.G.); (P.O.M.); (D.S.)
| | - Yris Maria Fonseca-Bazzo
- Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil; (L.C.S.); (J.V.D.G.); (P.O.M.); (D.S.)
- Correspondence:
| |
Collapse
|
4
|
Biological Investigation of Amaryllidaceae Alkaloid Extracts from the Bulbs of Pancratium trianthum Collected in the Senegalese Flora. Molecules 2021; 26:molecules26237382. [PMID: 34885964 PMCID: PMC8659059 DOI: 10.3390/molecules26237382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Amaryllidaceae plants are rich in alkaloids with biological properties. Pancratium trianthum is an Amaryllidaceae species widely used in African folk medicine to treat several diseases such as central nervous system disorders, tumors, and microbial infections, and it is used to heal wounds. The current investigation explored the biological properties of alkaloid extracts from bulbs of P. trianthum collected in the Senegalese flora. Alkaloid extracts were analyzed and identified by chromatography and mass spectrometry. Alkaloid extracts from P. trianthum displayed pleiotropic biological properties. Cytotoxic activity of the extracts was determined on hepatocarcinoma Huh7 cells and on acute monocytic leukemia THP-1 cells, while agar diffusion and microdilution assays were used to evaluate antibacterial activity. Antiviral activity was measured by infection of extract-treated cells with dengue virus (DENVGFP) and human immunodeficiency virus-1 (HIV-1GFP) reporter vectors. Cytotoxicity and viral inhibition were the most striking of P. trianthum’s extract activities. Importantly, non-cytotoxic concentrations were highly effective in completely preventing DENVGFP replication and in reducing pseudotyped HIV-1GFP infection levels. Our results show that P. trianthum is a rich source of molecules for the potential discovery of new treatments against various diseases. Herein, we provide scientific evidence to rationalize the traditional uses of P. trianthum for wound treatment as an anti-dermatosis and antiseptic agent.
Collapse
|
5
|
Sanna C, Maxia A, Fenu G, Loi MC. So Uncommon and so Singular, but Underexplored: An Updated Overview on Ethnobotanical Uses, Biological Properties and Phytoconstituents of Sardinian Endemic Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E958. [PMID: 32751394 PMCID: PMC7465485 DOI: 10.3390/plants9080958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
The last decades have recorded an increase of plant-based drug discovery processes. Indeed, natural products possess a superior chemical diversity as compared to synthetic ones, leading to a renewal in searching for new therapeutic agents from the plant kingdom. In particular, since the structural variety of natural compounds reflects the biodiversity of their source organisms, regions of the world with high biodiversity and endemism deserve particular interest. In this context, Sardinia Island (Italy), with 290 endemic taxa (12% of the total flora), is expected to provide unique and structurally diverse phytochemicals for drug development. Several research groups built up a large program dedicated to the analysis of Sardinian endemic species, highlighting their peculiar features, both in respect of phytochemical and biological profiles. On this basis, the aim of this review is to provide an up-to-date and comprehensive overview on ethnobotanical uses, biological properties and phytoconstituents of Sardinian endemic plants in order to support their beneficial potential and to provide input for future investigations. We documented 152 articles published from 1965 to June 2020 in which a broad range of biological activities and the identification of previously undescribed compounds have been reported, supporting their great value as sources of therapeutic agents.
Collapse
Affiliation(s)
- Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
- Co.S.Me.Se—Consorzio per lo Studio dei Metaboliti Secondari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Andrea Maxia
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
- Co.S.Me.Se—Consorzio per lo Studio dei Metaboliti Secondari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Giuseppe Fenu
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
| | - Maria Cecilia Loi
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
| |
Collapse
|
6
|
Patil DN, Yadav SR, Patil S, Bapat VA, Jadhav JP. Multidimensional Studies of Pancratium parvum Dalzell Against Acetylcholinesterase: A Potential Enzyme for Alzheimer's Management. J Am Coll Nutr 2020; 39:601-618. [PMID: 31951787 DOI: 10.1080/07315724.2019.1709914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Pancratium L. (Amaryllidaceae J.St. Hil.) is a monocot genus with bulbous habitat and about 20 species worldwide have significant medicinal properties. The present envision aims to investigate the potential ability of Pancratium species for acetylcholinesterase (AChE) inhibition as a remedy for Alzheimer disease (AD). Different Pancratium species were screened for the inhibition of AChE enzyme from various localities across India. Prominent species was further studied for anti-inflammatory, antioxidant, metal chelating and UHPLC-QTOF-MS analysis.Methods: Nine different species collected across India were examined for AChE inhibition and for binding affinity studies using Surface Plasmon Resonance (SPR). Highest inhibition species was subjected to Response Surface Methodology (RSM) to accomplish the effective conditions for maximum extraction of phytomolecules in accordance with the inhibition of the AChE. Further, extract under optimized conditions were used to study anti-inflammatory, antioxidant, metal chelating and UHPLC-QTOF-MS analysis for tentative identification of phytomolecules.Results: Amongst different species collected, P. parvum Dalzell exhibited maximum inhibition 93.30 ± 1.71% with promising IC50 20 ± 0.22 µg/ml value. In addition, binding affinity toward AChE and β plaques using SPR technique showed a higher binding response toward the enzyme. RSM study resulted that water extracts at 50 °C and 5.46 hours heating executed maximum inhibition. Other studies showed prominent anti-inflammatory and metal chelating ability with low antioxidant property.Conclusion: By using UHPLC-QTOF-MS compounds were tentatively identified for the concerned activities mentioned above. This work reports for accounting the detailed study of P. parvum and which can be further entailed for the treatment of various neurological disorders.
Collapse
Affiliation(s)
| | | | - Sushama Patil
- Department of Biotechnology, Shivaji University, Kolhapur, India
| | - Vishwas A Bapat
- Department of Biotechnology, Shivaji University, Kolhapur, India
| | - Jyoti P Jadhav
- Department of Biotechnology, Shivaji University, Kolhapur, India.,Department of Biochemistry, Shivaji University, Kolhapur, India
| |
Collapse
|
7
|
Yang L, Liu X, Sui Y, Ma Z, Feng X, Wang F, Ma T. Lycorine Hydrochloride Inhibits the Virulence Traits of Candida albicans. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1851740. [PMID: 31275963 PMCID: PMC6582861 DOI: 10.1155/2019/1851740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/05/2019] [Accepted: 05/26/2019] [Indexed: 11/24/2022]
Abstract
The human opportunistic fungal pathogen Candida albicans causes a severe health burden while the biofilms formed by C. albicans present a kind of infections that are hard to cure, highlighting the pressing need for new antifungal drugs against C. albicans. This study was to explore the antifungal activities of lycorine hydrochloride (LH) against C. albicans. The minimal inhibitory concentration (MIC) of LH against C. albicans SC5314 was 64 μM. Below its MIC, LH demonstrated antivirulence property by suppressing adhesion, filamentation, biofilm formation, and development, as well as the production of extracellular phospholipase and exopolymeric substances (EPS). The cytotoxicity of LH against mammalian cells was low, with half maximal inhibitory concentrations (IC50) above 256 μM. Moreover, LH showed a synergistic effect with AmB, although its interaction with fluconazole, as well as caspofungin, was indifferent. Thus, our study reports the potential use of LH, alone or in combination with current antifungal drugs, to fight C. albicans infections.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xuechao Feng
- College of Life Science, Northeast Normal University, Changchun 130024, China
| | - Fang Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Tonghui Ma
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
8
|
Peptides from Cauliflower By-Products, Obtained by an Efficient, Ecosustainable, and Semi-Industrial Method, Exert Protective Effects on Endothelial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1046504. [PMID: 30881586 PMCID: PMC6381550 DOI: 10.1155/2019/1046504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
The large amount of cauliflower industry waste represents an unexplored source of bioactive compounds. In this work, peptide hydrolysates from cauliflower leaves were characterized by combined bioanalytical approaches. Twelve peptide fractions were studied to evaluate unexplored biological activities by effect-based cellular bioassays. A potent inhibition of intracellular xanthine oxidase activity was observed in human vascular endothelial cells treated with one fraction, with an IC50 = 8.3 ± 0.6 μg/ml. A different fraction significantly induced the antioxidant enzyme superoxide dismutase 1 and decreased the tumor necrosis factor α-induced VCAM-1 expression, thus leading to a significant improvement in the viability of human vascular endothelial cells. Shotgun peptidomics and bioinformatics were used to retrieve the most probable bioactive peptide sequences. Our study shows that peptides from cauliflower waste should be recycled for producing valuable products useful for the prevention of endothelial dysfunction linked to atherogenesis progression.
Collapse
|
9
|
Bonvicini F, Gentilomi GA, Bressan F, Gobbi S, Rampa A, Bisi A, Belluti F. Functionalization of the Chalcone Scaffold for the Discovery of Novel Lead Compounds Targeting Fungal Infections. Molecules 2019; 24:molecules24020372. [PMID: 30669643 PMCID: PMC6359675 DOI: 10.3390/molecules24020372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/02/2022] Open
Abstract
The occurrence of invasive fungal infections represents a substantial threat to human health that is particularly serious in immunocompromised patients. The limited number of antifungal agents, devoid of unwanted toxic effects, has resulted in an increased demand for new drugs. Herein, the chalcone framework was functionalized to develop new antifungal agents able to interfere with cell growth and with the infection process. Thus, a small library of chalcone-based analogues was evaluated in vitro against C. albicans ATCC 10231 and a number of compounds strongly inhibited yeast growth at non-cytotoxic concentrations. Among these, 5 and 7 interfered with the expression of two key virulence factors in C. albicans pathogenesis, namely, hyphae and biofilm formation, while 28 emerged as a potent and broad spectrum antifungal agent, enabling the inhibition of the tested Candida spp. and non-Candida species. Indeed, these compounds combine two modes of action by selectively interfering with growth and, as an added value, weakening microbial virulence. Overall, these compounds could be regarded as promising antifungal candidates worthy of deeper investigation. They also provide a chemical platform through which to perform an optimization process, addressed at improving potency and correcting liabilities.
Collapse
Affiliation(s)
- Francesca Bonvicini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Giovanna A Gentilomi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- Unit of Microbiology, Alma Mater Studiorum-University of Bologna, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy.
| | - Francesca Bressan
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
10
|
da Silva OS, de Almeida EM, de Melo AHF, Porto TS. Purification and characterization of a novel extracellular serine-protease with collagenolytic activity from Aspergillus tamarii URM4634. Int J Biol Macromol 2018; 117:1081-1088. [PMID: 29870814 DOI: 10.1016/j.ijbiomac.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 11/25/2022]
Abstract
An extracellular serine-protease from Aspergillus tamarii URM4634 was purified and characterized. The possibility of using Aspergillus tamarii URM4634 protease in detergent formulations and collagenolytic activity was investigated. The protease demonstrated excellent stability at pH range 7.0-11.0, the optimum being at pH 9.0. The enzyme was stable at 40 °C for 180 min, enhanced by Mg++ and Ca++, but inhibited by Zn++, and strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), suggested as serine-protease. The azocasein substrate result showed Km = 0.434 mg/mL and Vmax = 7.739 mg/mL/min. SDS-PAGE and azocasein zymography showed that the purified alkaline protease (2983.8 U/mg) had a molecular mass of 49.3 kDa. The enzyme was purified by column chromatography using Sephadex A50 resin. The proteolytic activity was activated by SDS (sodium dodecyl sulfate), Tween-80, Tween 20 and Triton-100. This study demonstrated that A. tamarii URM4634 protease has potent, stable and compatible collagenolytic activity to the desired level in local laundry detergent brands compared with similar enzymes produced by solid-state fermentation. This protease can thus be chosen as an option in both the food industry to tenderization meat and the detergent industry to washing process.
Collapse
Affiliation(s)
- Osmar Soares da Silva
- Northeast Biotechnology Network/RENORBIO, Federal Rural University of Pernambuco/UFRPE, Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Elizane Melo de Almeida
- Academic Unit of Garanhuns/UAG, Federal Rural University of Pernambuco/UFRPE, Av. Bom Pastor, s/n, Boa Vista, 55296-901 Garanhuns, PE, Brazil
| | - Allan Henrique Félix de Melo
- Academic Unit of Garanhuns/UAG, Federal Rural University of Pernambuco/UFRPE, Av. Bom Pastor, s/n, Boa Vista, 55296-901 Garanhuns, PE, Brazil
| | - Tatiana Souza Porto
- Academic Unit of Garanhuns/UAG, Federal Rural University of Pernambuco/UFRPE, Av. Bom Pastor, s/n, Boa Vista, 55296-901 Garanhuns, PE, Brazil.
| |
Collapse
|
11
|
Nair JJ, van Staden J. Antifungal constituents of the plant family Amaryllidaceae. Phytother Res 2018; 32:976-984. [PMID: 29484733 DOI: 10.1002/ptr.6049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 11/06/2022]
Abstract
Globalization, the modern lifestyle, immuno-suppressive agents, invasive surgical procedures, the loss of efficacies of existing drugs, and multidrug resistance are some of the factors used to explain the rise in fungal infections in recent years. Significant advances have been made in attempts to replace existing antifungal schedules, especially with synthetic targets. The identification of other platforms for drug discovery is now entrenched in research programs across the globe. Plants offer significant benefits owing to their numerical superiority, exceedingly broad chemical basis and appealing sustainability characteristics. Furthermore, plants have a long and rich historical association with traditional approaches towards fungal diseases. These have in numerous instances served as markers in the bioassay-guided identification of the active constituents. Although the plant family Amaryllidaceae is conventionally associated with cancer and motor-neuron disease chemotherapies, around 30 of its species have been examined for antifungal activities with microgram per millilitre inhibitory activities detected in several instances. This review focuses on the nearly 40 constituents from the family, mainly isoquinoline alkaloids, which have been screened against around 50 fungal pathogens. Encouragingly, microgram per millilitre growth inhibitory activities were applicable for several of the compounds with a minimum inhibitory concentration of 4 μg/ml seen to be the lowest.
Collapse
Affiliation(s)
- Jerald J Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
12
|
Nair JJ, van Staden J. Antifungal Activity Based Studies of Amaryllidaceae Plant Extracts. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The growth in demand for cosmetic, graft and organ transplant surgical procedures, the increased use of antineoplastic and immunosuppressive agents, as well as multidrug resistance are some of the factors responsible for the marked rise in fungal infection rates in recent years. Consequently, there have been renewed calls from both the public and private sectors for new and improved drug targets to replace existing antifungal therapies, many of which have been in clinical circulation for several decades. Plants select themselves in such endeavors owing to their superior numbers and vast chemical diversities. With this as a backdrop, this survey examines the antifungal activities of Amaryllidaceae plant extracts against various fungal pathogens. Good growth inhibitory activities (MICs <1 mg/mL) reported in several instances are noteworthy and could guide efforts targeting the active antifungal principles.
Collapse
Affiliation(s)
- Jerald J. Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | | |
Collapse
|
13
|
Chatatikun M, Chiabchalard A. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity. Altern Ther Health Med 2017; 17:487. [PMID: 29121910 PMCID: PMC5679376 DOI: 10.1186/s12906-017-1994-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022]
Abstract
Background Ultraviolet radiation from sunlight induces overproduction of reactive oxygen species (ROS) resulting in skin photoaging and hyperpigmentation disorders. Novel whitening and anti-wrinkle compounds from natural products have recently become of increasing interest. The purpose of this study was to find products that reduce ROS in 14 Thai plant extracts. Methods To determine total phenolic and flavonoid content, antioxidant activity, anti-tyrosinase activity and anti-collagenase activity, we compared extracts of 14 Thai plants prepared using different solvents (petroleum ether, dichloromethane and ethanol). Antioxidant activities were determined by DPPH and ABTS assays. Results Total phenolic content of the 14 Thai plants extracts was found at the highest levels in ethanol followed by dichloromethane and petroleum ether extracts, respectively, while flavonoid content was normally found in the dichloromethane fraction. Scavenging activity ranged from 7 to 99% scavenging as assessed by DPPH and ABTS assays. The ethanol leaf extract of Ardisia elliptica Thunb. had the highest phenolic content, antioxidant activity and collagenase inhibition, while Cassia alata (L.) Roxb. extract had the richest flavonoid content. Interestingly, three plants extracts, which were the ethanolic fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb., had high antioxidant content and activity, and significantly inhibited both tyrosinase and collagenase. Conclusion Our finding show that the ethanol fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb. show promise as potential ingredients for cosmetic products such as anti-wrinkle agents and skin whitening products.
Collapse
|
14
|
Abstract
The latest progress on the isolation, identification, biological activity and synthetic studies of the structurally diverse alkaloids from plants of family Amaryllidaceae has been summarized in this review.
Collapse
Affiliation(s)
- Zhong Jin
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
15
|
Njeru SN, Obonyo MA, Nyambati SO, Ngari SM. Antimicrobial and cytotoxicity properties of the crude extracts and fractions of Premna resinosa (Hochst.) Schauer (Compositae): Kenyan traditional medicinal plant. Altern Ther Health Med 2015; 15:295. [PMID: 26303771 PMCID: PMC4548455 DOI: 10.1186/s12906-015-0811-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 08/07/2015] [Indexed: 11/22/2022]
Abstract
Background Premna resinosa (Hochst.) Schauer also called “mukarakara” in Mbeere community of Kenya is used in the management of respiratory illness. In this study we investigated antituberculous, antifungal, antibacterial activities including cytotoxicity and phytochemical constituents of this plant. Methods Antibacterial and antifungal activities were investigated by disc diffusion and micro dilution techniques. Antituberculous activity was investigated using BACTEC MGIT 960 system while cytotoxicity was analyzed by MTT assay on Vero cells (Methanolic crude extract) and HEp-2 cells (fractions). Finally, phytochemicals were profiled using standard procedures. Results P. resinosa had high antituberculous activity with a MIC of <6.25 μg/ml in ethyl acetate fraction. The antibacterial activity was high and broad spectrum, inhibiting both Gram positive and Gram negative bacteria. Dichloromethane fraction had the best antibacterial MIC of 31.25 μg/ml against Methicillin-resistant S. aureus while Ethyl acetate fraction had the highest zone of inhibition of 22.3 ± 0.3 against S. aureus. Its effects on tested fungi were moderate with petro ether fraction giving an inhibition of 10.3 ± 0.3 on C. albicans. The crude extract and two fractions (petro ether and methanol) were not within the acceptable toxicity limits, however dichloromethane and ethyl acetate fractions that exhibited higher activity were within the acceptable toxicity limit (CC50 < 90). The activity can to some extent be associated to alkaloids, flavonoids, terpenoids, anthraquinones and phenols detected in this plant extracts. Conclusion Our findings demonstrate that P. resinosa has high selective potential as a source of novel lead for antituberculous, antibacterial and antifungal drugs. Of particular relevance is high activity against MRSA, S. aureus, C. albicans and MTB which are great public health challenge due to drug resistance development and as major sources of community and hospital based infections.
Collapse
|