1
|
Al-Qahtani Z, Al-Kuraishy HM, Ali NH, Elewa YHA, Batiha GES. Kynurenine pathway in type 2 diabetes: Role of metformin. Drug Dev Res 2024; 85:e22243. [PMID: 39129450 DOI: 10.1002/ddr.22243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The Kynurenine pathway (KP) which is involved in the synthesis of nicotinamide adenine dinucleotide (NAD) from tryptophan (Trp) is intricate in the development of insulin resistance (IR) and type 2 diabetes (T2D). Inflammatory reactions in response to cardiometabolic disorders can induce the development of IR through the augmentation of KP. However, kynurenine (KYN), a precursor of kynurenic acid (KA) is increased following physical exercise and involved in the reduction of IR. Consequently, KP metabolites KA and KYN have anti-diabetogenic effects while other metabolites have diabetogenic effects. KP modulators, either inhibitors or activators, affect glucose homeostasis and insulin sensitivity in T2D in a bidirectional way, either protective or detrimental, that is not related to the KP effect. However, metformin through inhibition of inflammatory signaling pathways can reduce the activation of KP in T2D. These findings indicated a strong controversy regarding the role of KP in T2D. Therefore, the objectives of this mini review were to clarify how KP induces the development of IR and T2D. In addition, this review aimed to find the mechanistic role of antidiabetic drug metformin on the KP, and how KP modulators affect the pathogenesis of T2D.
Collapse
Affiliation(s)
- Zainah Al-Qahtani
- Internal Medicine Department, Neurology Section, College of Medicine, King Khaled university, Abha, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Naif H Ali
- Department of internal medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| |
Collapse
|
2
|
Ge C, Luo X, Lv Y, Wu L, Hu Z, Huang W, Zhan S, Shen X, Hui C, Yu D, Liu B. Essential oils ameliorate the intestinal damages induced by nonylphenol exposure by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. CHEMOSPHERE 2024; 362:142571. [PMID: 38876325 DOI: 10.1016/j.chemosphere.2024.142571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Nonylphenol (NP) is a ubiquitous endocrine disruptor that persists in the environment and can significantly contribute to serious health hazards, particularly intestinal barrier injury. Plant essential oils (EOs) have recently gained widespread interest due to their potential for improving intestinal health. However, the precise mechanism and protective effects of EOs ameliorating the intestinal damages induced by NP exposure remain unclear. To clarify the potential mechanism and protective impact of EOs against intestinal injury induced by NP, a total of 144 one-day-old male ducks were randomly allocated to four groups: CON (basal diet), EO (basal diet + 200 mg/kg EOs), NP (basal diet + 40 mg/kg NP), and NPEO (basal diet + 200 mg/kg EOs + 40 mg/kg NP). The data revealed that NP exposure significantly damaged intestinal barrier, as evidenced by a reduction in the levels of tight junction gene expression and an increase in intestinal permeability. Additionally, it disturbed gut microbiota, as well as interfered with tryptophan (Trp) metabolism. The NP-induced disorder of Trp metabolism restrained the activation of aryl hydrocarbon receptor (AhR) and resulted in decreased the expression levels of CYP1A1, IL-22, and STAT3 genes, which were alleviated after treatment with EOs. Taken together, NP exposure resulted in impairment of the intestinal barrier function, disruption of gut microbiota, and disturbances in Trp metabolism. Dietary EOs supplementation alleviated the intestinal barrier injury induced by NP through the Trp/AhR/IL-22 signaling pathway.
Collapse
Affiliation(s)
- Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cai Hui
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Vieira Melo AK, da Nóbrega Alves D, Queiroga Gomes da Costa PC, Pereira Lopes S, Pergentino de Sousa D, Queiroga Sarmento Guerra F, Vieira Sobral M, Gomes Moura AP, Scotti L, Dias de Castro R. Antifungal Activity, Mode of Action, and Cytotoxicity of 4-Chlorobenzyl p-Coumarate: A Promising New Molecule. Chem Biodivers 2024; 21:e202400330. [PMID: 38701178 DOI: 10.1002/cbdv.202400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Fungal infections represent a serious health problem worldwide. The study evaluated the antifungal activity of 4-chlorobenzyl p-coumarate, an unprecedented semi-synthetic molecule. Docking molecular and assay experiments were conducted to determine the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC), mode of action, effect on growth, fungal death kinetics, drug association, effects on biofilm, micromorphology, and against human keratinocytes. The investigation included 16 strains of Candida spp, including C. albicans, C. krusei, C. glabrata, C. tropicalis, C. dubliniensis, C. lusitaniae, C. utilis, C. rugosa, C. guilhermondi, and C. parapsilosis. Docking analysis predicted affinity between the molecule and all tested targets. MIC and MFC values ranged from 3.9 μg/mL (13.54 μM) to 62.5 μg/mL (217.01 μM), indicating a probable effect on the plasma membrane. The molecule inhibited growth from the first hour of testing. Association with nystatin proved to be indifferent. All concentrations of the molecule reduced fungal biofilm. The compound altered fungal micromorphology. The tested compound exhibited an IC50 of 7.90±0.40 μg/mL (27.45±1.42 μM) for keratinocytes. 4-chlorobenzyl p-coumarate showed strong fungicidal effects, likely through its action on the plasma membrane and alteration of fungal micromorphology, and mildly cytotoxic to human keratinocytes.
Collapse
Affiliation(s)
- Ana Karoline Vieira Melo
- Department of Clinical and Social Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Danielle da Nóbrega Alves
- Department of Clinical and Social Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil, Lauro Wanderley University Hospital, 58050-585, João Pessoa, PB, Brazil
| | | | - Susiany Pereira Lopes
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Felipe Queiroga Sarmento Guerra
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Marianna Vieira Sobral
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Ana Paula Gomes Moura
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Ricardo Dias de Castro
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| |
Collapse
|
4
|
Vollmar AM, Moser S. The advent of phyllobilins as bioactive phytochemicals – natural compounds derived from chlorophyll in medicinal plants and food with immunomodulatory activities. Pteridines 2023. [DOI: 10.1515/pteridines-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Abstract
The degradation of the green plant pigment chlorophyll has fascinated chemists and biologists alike over the last few decades. Bioactivities of the compounds formed in this biochemical degradation pathway, however, have only come to light recently. These natural compounds that are formed from chlorophyll during plant senescence are now called phyllobilins. In this review, we shortly discuss chlorophyll degradation and outline the so-far known bioactivities of selected phyllobilins (phylloleucobilin, dioxobilin-type phylloleucobilin, and phylloxanthobilin), and we also highlight the recently discovered immunomodulatory effects of a yellow phylloxanthobilin.
Collapse
Affiliation(s)
- Angelika M. Vollmar
- Department of Pharmacy, Ludwig-Maximilian University of Munich , Munich , Germany
| | - Simone Moser
- Department of Pharmacy, Ludwig-Maximilian University of Munich , Munich , Germany
| |
Collapse
|
5
|
Abd El-Fattah EE. IDO/kynurenine pathway in cancer: possible therapeutic approaches. Lab Invest 2022; 20:347. [PMID: 35918736 PMCID: PMC9344609 DOI: 10.1186/s12967-022-03554-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
Cancer is one of the leading causes of death in both men and women worldwide. One of the main changes associated with cancer progression, metastasis, recurrence, and chemoresistance is the change in the tumor immune microenvironment, especially immunosuppression. Cancer immunosuppression appears in multiple forms, such as inhibition of immuno-stimulant cells with downregulation of immuno-stimulant mediators or through stimulation of immuno-suppressive cells with upregulation of immunosuppressive mediators. One of the most immunosuppressive mediators that approved potency in lung cancer progression is indoleamine 2,3-dioxygenase (IDO) and its metabolite kynurenine (Kyn). The current review tries to elucidate the role of IDO/Kyn on cancer proliferation, apoptosis, angiogenesis, oxidative stress, and cancer stemness. Besides, our review investigates the new therapeutic modalities that target IDO/Kyn pathway and thus as drug candidates for targeting lung cancer and drugs that potentiate IDO/Kyn pathway and thus can be cancer-promoting agents.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| |
Collapse
|
6
|
Hata A, Komiyama M, Yasoda A, Wada H, Yamakage H, Satoh-Asahara N, Morimoto T, Takahashi Y, Hasegawa K. Psychological Effects of Aromatherapy on Smokers With Depressive Tendencies During Smoking Cessation Treatment: Protocol for a Pre-Post Single-Arm Clinical Trial. JMIR Res Protoc 2022; 11:e38626. [PMID: 35797095 PMCID: PMC9305445 DOI: 10.2196/38626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background Cessation of smoking can markedly reduce the incidence of cardiovascular disease, improve health economics, and benefit society. Aromatherapy has the potential to be a novel option as an adjuvant therapy for smoking cessation that may alleviate depressive symptoms. However, research on the efficacy of aromatherapy as an adjuvant therapy for smoking cessation is scarce. Objective The aim of this study was to examine the potential effects of aromatherapy on psychological states in smokers with depressive tendencies and to determine if it is reasonable to proceed to the next step (ie, a phase III trial). Methods This is a pre-post single-arm clinical trial. Smokers with depression will be subjected to aromatherapy during smoking cessation treatment for 12 weeks. We will evaluate changes in scores on the Zung Self-Rating Depression Scale and the Profile of Mood States from pretreatment screening to 4 weeks and 12 weeks after the start of aromatherapy. Moreover, we will compare the group treated with aromatherapy with the group that received standard treatment in our previous randomized controlled trial (ie, the control group in that study). Furthermore, we will compare successful smoking cessation rates after 12 weeks. In addition, we will conduct an exploratory analysis of the efficacy of aromatherapy. The target sample size is 100, which is the number of subjects expected to be enrolled in this study during the 2-year study period. Results This study was approved by the Kyoto Medical Center Institutional Review Board (IRB approval No. 19-016). Enrollment started on July 1, 2019. As of May 2022, 76 patients have been recruited. In the original plan, recruitment should have been finished on June 30, 2021. However, the number of subjects decreased due to the COVID-19 pandemic, and the study inclusion period was extended by 1 year (ie, until the end of June 2022) with the approval of the IRB on May 17, 2021. Analyses of the results will be completed subsequently. Conclusions This study has some limitations. This is not a rigorous validation study because it compares the same subjects who received standard treatment in a previous study. Moreover, the sample size and methods of statistical analysis were not fully set with prior consideration of statistical rigor. To address these limitations, we plan to conduct a phase III trial that will reflect the exploratory findings of this study. This is the first study to evaluate the psychological effects of aromatherapy during a smoking cessation program, and it may help improve the quality of treatment for smoking cessation in the future. Trial Registration UMIN Clinical Trials Registry UMIN000043102; https://tinyurl.com/tn3hvt9w International Registered Report Identifier (IRRID) DERR1-10.2196/38626
Collapse
Affiliation(s)
- Akiko Hata
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Maki Komiyama
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akihiro Yasoda
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hiromichi Wada
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hajime Yamakage
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Noriko Satoh-Asahara
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuko Takahashi
- Health Informatics, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Hasegawa
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
7
|
Palabiyik-Yucelik SS, Moser S, Becker K, Halici Z, Bayir Y, Stonig M, Schennach H, Fuchs D, Gostner JM, Kurz K. Oxyresveratrol modulates the immune response in vitro. Pteridines 2021. [DOI: 10.1515/pteridines-2020-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The naturally occurring stilbenoid oxyresveratrol was shown to influence inflammatory and metabolic processes. During cellular immune activation, tryptophan breakdown and neopterin formation via the enzymes indoleamine 2,3-dioxygenase-1 (IDO-1) and GTP-cyclohydrolase, respectively, are induced. Neopterin and the kynurenine to tryptophan ratio are reliable and pertinent biomarkers of Th1-type immune response and are also used in vitro to monitor effects of active plant ingredients on peripheral blood mononuclear cells (PBMCs). We investigated the effects of oxyresveratrol on the activity of the above-mentioned pathways in mitogen-stimulated human PBMC and in the myelomonocytic cell line THP-1. Oxyresveratrol exerted suppressive effects on tryptophan breakdown in both stimulated cell models. Of note, in PBMC, tryptophan breakdown was induced at lower concentrations (5–20 µM) and suppressed at higher treatment concentrations only. Neopterin formation was decreased dose-dependently in stimulated PBMC. In unstimulated PBMC similar, albeit lesser effects were observed. Data indicate that oxyresveratrol exerts distinct and concentration-dependent effects on different immune cell types. IDO-1 is targeted by oxyresveratrol and its activity can be modulated in both directions. Detailed investigations of the interactions would be interesting to fully explore the activity of this phytocompound.
Collapse
Affiliation(s)
- Saziye Sezin Palabiyik-Yucelik
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Atatürk University , Erzurum , Turkey
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
- Clinical Research, Development and Design Application and Research Center, Atatürk University , Erzurum , Turkey
| | - Simone Moser
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians University of Munich , Munich , Germany
| | - Kathrin Becker
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Zekai Halici
- Clinical Research, Development and Design Application and Research Center, Atatürk University , Erzurum , Turkey
- Department of Pharmacology, Faculty of Medicine, Atatürk University , Erzurum , Turkey
| | - Yasin Bayir
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University , Erzurum , Turkey
| | - Marlies Stonig
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital of Innsbruck , Innsbruck , Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Katharina Kurz
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck , Anichstrasse 35 , 6020 Innsbruck , Austria
| |
Collapse
|
8
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
9
|
Moragrega I, Ríos JL. Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies. PLANTA MEDICA 2021; 87:656-685. [PMID: 33434941 DOI: 10.1055/a-1338-1011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Medicinal plants and their extracts are natural remedies with enormous potential for treating various diseases, including depression and anxiety. In the case of depression, hundreds of plants have traditionally been used in folk medicine for generations. Different plant extracts and natural products have been analyzed as potential antidepressant agents with validated models to test for antidepressant-like effects in animals, although other complementary studies have also been employed. Most of these studies focus on the possible mediators implicated in these potential effects, with dopamine, serotonin, and noradrenaline being the principal neurotransmitters implicated, both through interference with receptors and with their metabolism by monoamino oxidases, as well as through neuro-endocrine and neuroprotective effects. There are approximately 650 reports of antidepressant-like medicinal plants in PubMed; 155 of them have been compiled in this review, with a relevant group yielding positive results. Saffron and turmeric are the most relevant species studied in both preclinical and clinical studies; St. John's wort or kava have also been tested extensively. To the best of our knowledge, no review to date has provided a comprehensive understanding of the biomolecular mechanisms of action of these herbs or of whether their potential effects could have real benefits. The purpose of this narrative review is to provide an update regarding medicinal plants from the year 2000 to the present to examine the therapeutic potential of these antidepressant-like plants in order to contribute to the development of new therapeutic methods to alleviate the tremendous burden that depression causes worldwide.
Collapse
Affiliation(s)
- Inés Moragrega
- Departament de Psicobiologia, Facultat de Psicologia, Universitat de València
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València
| |
Collapse
|
10
|
Jiang X, Li X, Zheng S, Du G, Ma J, Zhang L, Wang H, Tian J. Comparison study of different indoleamine-2,3 dioxygenase inhibitors from the perspective of pharmacodynamic effects. Int J Immunopathol Pharmacol 2021; 34:2058738420950584. [PMID: 32962460 PMCID: PMC7517983 DOI: 10.1177/2058738420950584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: Indoleamine 2,3-dioxygenase (IDO) was a potential tumor immunotherapy target. IDO inhibitors showed inconsistent results in clinical trials, but no preclinical comparative study was reported. The purpose of this study was to evaluate the differences of representative IDO inhibitors (PCC0208009, INCB024360, NLG919) from the pharmacological perspective. Methods: In vitro experiments included: inhibition effects on IDO activity in cell and enzyme-based assay, effects on IDO expression in HeLa cells, and enhancement of proliferation and activation of peripheral blood mononuclear cell (PBMC). In vivo experiments included: pharmacokinetics and tumor distribution in CT26-bearing mice, effects on Kyn/Trp and anti-tumor effect and immunological mechanism in CT26 and B16F10 tumor-bearing mice. Results: Compared with INCB024360 and NLG919, PCC0208009 effectively inhibited IDO activity at lower dose 2 nM and longer duration more than 72 h, had higher enhancements on PBMC proliferation and activation, and could inhibit the IDO expression in Hela cells. The pharmacokinetics characteristics of three IDO inhibitors were similar in CT26-bearing mice. In CT26 and B16F10 tumor-bearing mice, PCC0208009 and INCB024360 had similar effects in Kyn/Trp reduction, and more potent than NLG919; three IDO inhibitors had similar effects in tumor suppression, changes of the percentages of CD3+CD8+ and CD3+CD4+ T cells, and activation of tumor infiltrating lymphocytes, while PCC0208009 had a better tendency than INCB024360 and NLG919. Conclusion: PCC0208009, INCB024360, and NLG919 were all effective IDO inhibitors, but the comprehensive pharmacological activity of PCC0208009 was better than INCB024360 and NLG919, which was basically consistent with the results or progresses of clinical trials.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
- Enzyme Inhibitors/pharmacokinetics
- Enzyme Inhibitors/pharmacology
- HeLa Cells
- Humans
- Imidazoles/pharmacokinetics
- Imidazoles/pharmacology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Isoindoles/pharmacokinetics
- Isoindoles/pharmacology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/immunology
- Lymphocyte Activation/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/enzymology
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms/drug therapy
- Neoplasms/enzymology
- Neoplasms/immunology
- Neoplasms/pathology
- Oximes/pharmacokinetics
- Oximes/pharmacology
- Sulfonamides/pharmacokinetics
- Sulfonamides/pharmacology
- Tetrazoles/pharmacokinetics
- Tetrazoles/pharmacology
- Tissue Distribution
- Tumor Burden/drug effects
Collapse
Affiliation(s)
| | | | | | - Guangying Du
- Guangying Du and Jingwei Tian, School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, North Campus of Yantai University, Yantai 264005, P.R. China. Emails: ;
| | | | | | | | | |
Collapse
|
11
|
Babikian HY, Jha RK, Truong QL, Nguyen LT, Babikyan Y, Nguyen HT, To TL, Agus A. Novel formulation with essential oils as a potential agent to minimize African swine fever virus transmission in an in vivo trial in swine. Vet World 2021; 14:1853-1866. [PMID: 34475709 PMCID: PMC8404136 DOI: 10.14202/vetworld.2021.1853-1866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND AIM African swine fever (ASF) is currently the most prevalent disease in swine. The disease is spreading throughout primary swine-producing countries with heavy losses in population and revenue. To date, no successful vaccines or medications have been reported. This study aimed to design and develop a blend of natural essential oils and test its efficacy against the ASF virus (ASFV) in swine. MATERIALS AND METHODS We attempted to develop a natural oil blend formulation (NOBF) and determine its efficacy against the ASFV. This study follows on from a previously published in vitro study that reported that the NOBF has anti-ASFV properties. A study was designed using 21 healthy piglets of triple-cross (Landrace + Yorkshire + Durok) crossbred pathogen-free pigs with an average weight of 15 kg. The study consisted of NOBF-incubated, NOBF, positive control, and negative control groups. The NOBF groups were administered NOBF (80 mL/ton mixed in drinking water) beginning 10 days before the challenge and continuing throughout the experiment. The positive and negative control pigs consumed regular drinking water. The pigs were challenged by a sublethal dose of pure isolate ASFV strain Vietnam National University of Agriculture-ASFV-L01/HN/04/19 inoculation with 103.5 HAD50/dose through the intramuscular route. There were sic pigs in each group, three pigs directly IM challenged, and three pigs were considered cohoused pigs. RESULTS Both challenged (three) and cohoused (three) pigs in the positive control showed clinical signs of ASFV infection, as detected by real-time polymerase chain reaction (RT-PCR) in blood samples, oral swabs, and feces. There was 100% cumulative mortality, that is, both challenged and contact pigs died in the positive control group on day 20 of infection. No signs of infection or mortality were observed in the NOBF-incubated group. The challenged pigs in the NOBF-direct challenge group showed clinical signs and mortality, whereas no clinical signs or symptoms occurred in the cohoused pigs. The immunoglobulin G (IgG) level of the contact pigs was the highest in the treatment group and the lowest in the positive control group. The IgM level of the contact pigs in the treatment groups was the lowest, whereas that of the positive control was the highest. The RT-PCR test showed that the ASFV was deactivated in the NOBF-incubated group. The challenged and contact pigs of the positive control group had high Ct values. The challenged pigs of the NOBF group had high Ct values, whereas the contact pigs from the same group and those of the negative control were negative for the ASFV, determined by PCR, in all samples. The comparison of the challenged groups showed that the appearance of the virus was delayed by at least 2 days in the NOBF group compared to the positive control group. CONCLUSION The results showed that NOBF can prevent the spread of the ASFV in a population. Moreover, NOBF can enhance the pig humoral immune system by enhancing IgG levels and reducing IgM levels. This study successfully demonstrated that NOBF is an anti-ASFV agent, which prevents horizontal transmission and enhances pig humoral immunity.
Collapse
Affiliation(s)
| | - Rajeev Kumar Jha
- Department of Research and Development, PT. Rhea Natural Sciences, Indonesia
| | - Quang Lam Truong
- Key laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Lan Thi Nguyen
- Key laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Yusef Babikyan
- Department of Technical Research and Development, PT. Central Proteina Prima, Jakarta, Indonesia
| | - Hoa Thi Nguyen
- Key laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thanh Long To
- Key laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ali Agus
- Faculty of Animal Science, University of Gajah Mada, Yogyakarta, Indonesia
| |
Collapse
|
12
|
Truong QL, Nguyen LT, Babikian HY, Jha RK, Nguyen HT, To TL. Natural oil blend formulation as an anti-African swine fever virus agent in in vitro primary porcine alveolar macrophage culture. Vet World 2021; 14:794-802. [PMID: 33935430 PMCID: PMC8076445 DOI: 10.14202/vetworld.2021.794-802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIM African swine fever is one of the severe pathogens of swine. It has a significant impact on production and economics. So far, there are no known remedies, such as vaccines or drugs, reported working successfully. In the present study, the natural oil blend formulation's (NOBF) efficacy was evaluated against ASFV in vitro using porcine alveolar macrophages (PAMs) cells of swine. MATERIALS AND METHODS The capacity of NOBF against the ASFV was tested in vitro. The NOBF combines Eucalyptus globulus, Pinus sylvestris, and Lavandula latifolia. We used a 2-fold serial dilution to test the NOBF formulation dose, that is, 105 HAD50/mL, against purified lethal dose of African swine in primary PAMs cells of swine. The PAM cells survival, real-time polymerase chain reaction (PCR) test, and hemadsorption (HAD) observation were performed to check the NOBF efficacy against ASFV. RESULTS The in vitro trial results demonstrated that NOBF up to dilution 13 or 0.000625 mL deactivates the lethal dose 105 HAD50 of ASFV. There was no HAD (Rosetta formation) up to dilution 12 or 0.00125 mL of NOBF. The Ct value obtained by running real-time PCR of the NOBF group at 96 h post-infection was the same as the initial value or lower (25), whereas the Ct value of positive controls increased several folds (17.84). CONCLUSION The in vitro trial demonstrated that NOBF could deactivate the ASFV. The NOBF has the potential to act as anti-ASFV agent in the field. The next step is to conduct in vivo level trial to determine its efficacy.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Haig Yousef Babikian
- Department of Research and Development, PT. Rhea Natural Sciences, Jakarta, Indonesia
| | - Rajeev Kumar Jha
- Department of Research and Development, PT. Rhea Natural Sciences, Jakarta, Indonesia
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thanh Long To
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| |
Collapse
|
13
|
Hofer S, Geisler S, Lisandrelli R, Nguyen Ngoc H, Ganzera M, Schennach H, Fuchs D, Fuchs JE, M. Gostner J, Kurz K. Pharmacological Targets of Kaempferol Within Inflammatory Pathways-A Hint Towards the Central Role of Tryptophan Metabolism. Antioxidants (Basel) 2020; 9:E180. [PMID: 32098277 PMCID: PMC7070836 DOI: 10.3390/antiox9020180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
The flavonoid kaempferol is almost ubiquitously contained in edible and medicinal plants and exerts a broad range of interesting pharmacological activities. Interactions with central inflammatory processes can be exploited to treat or attenuate symptoms of disorders associated with chronic immune activation during infections, malignancies, and neurodegenerative or cardiovascular disorders. Many drugs, phytochemicals, and nutritional components target the catabolism of the essential amino acid tryptophan by indoleamine 2,3-dioxygenase 1 (IDO-1) for immunomodulation. We studied the effects of kaempferol by in vitro models with human peripheral blood mononuclear cells (PBMC) and THP-1 derived human myelomonocytic cell lines. Kaempferol suppressed interferon-γ dependent immunometabolic pathways: Formation of the oxidative stress biomarker neopterin and catabolism of tryptophan were inhibited dose-dependently in stimulated cells. In-silico docking studies revealed a potential interaction of kaempferol with the catalytic domain of IDO-1. Kaempferol stimulated nuclear factor kappa B (NF-κB) signaling in lipopolysaccharide (LPS)-treated THP-1 cells, thereby increasing the mRNA expression of interleukin (IL) 1 beta, tumor necrosis factor, and nuclear factor kappa B subunit 1, while IL6 was downregulated. Data suggest that concerted effects of kaempferol on multiple immunologically relevant targets are responsible for its immunomodulatory activity. However, the immunosuppressive effects may be more relevant in a T-cell dominated context.
Collapse
Affiliation(s)
- Stefanie Hofer
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; (S.H.); (R.L.); (J.M.G.)
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80 - 82/IV, 6020 Innsbruck, Austria; (H.N.N.); (M.G.)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; (S.G.); (D.F.)
| | - Rebecca Lisandrelli
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; (S.H.); (R.L.); (J.M.G.)
| | - Hieu Nguyen Ngoc
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80 - 82/IV, 6020 Innsbruck, Austria; (H.N.N.); (M.G.)
| | - Markus Ganzera
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80 - 82/IV, 6020 Innsbruck, Austria; (H.N.N.); (M.G.)
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital, Anichstrasse 35, 6020 Innsbruck, Austria;
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; (S.G.); (D.F.)
| | - Julian E. Fuchs
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria;
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; (S.H.); (R.L.); (J.M.G.)
| | - Katharina Kurz
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Polymorphism eNOS Glu298Asp modulates the inflammatory response of human peripheral blood mononuclear cells. Cytokine 2019; 125:154812. [PMID: 31442681 DOI: 10.1016/j.cyto.2019.154812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/20/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Nitric oxide is a gaseous radical produced by the nitric oxide endothelial synthase (eNOS) whose most studied physiological action is the vasodilation. However, it also acts in the defense of the organism through the formation of cytotoxic radicals, which can potentiate the inflammatory lesion of the cells. The Glu298Asp is a single nucleotide polymorphism (SNP) in the eNOS gene related to the risk of cardiovascular disease. Blacks present a higher prevalence of hypertension and cardiovascular mortality. Then, we aimed to evaluate the influence of Glu298Asp polymorphism on inflammatory response in vitro and gene expression in blacks. MATERIAL AND METHODS Peripheral blood mononuclear cells (PBMC) from blacks with different Glu298Asp genotypes were treated with phytohemagglutinin (PHA), a mitogen and activator of T cells. Oxidative, inflammatory markers, and expression of inflammation genes were evaluated. RESULTS The genotype frequencies were TT 6.7%; TG 29.3% and GG 64.0%. Activation of PBMCs with 125 μg of PHA modulated the expression of inflammatory genes and increased levels of inflammatory cytokines. The T allele showed increased susceptibility to inflammation (higher levels of interleukin 1, interleukin 6 and tumor necrosis factor alpha; p < 0.001). The G allele exhibited protection through higher levels of nitric oxide (p < 0.001) and fewer inflammatory cytokines. CONCLUSION Despite methodological limitations related to in vitro assays, the whole of results suggested that Glu298Asp modulates inflammatory genes, the T allele is more susceptible to inflammation and the G allele is protective.
Collapse
|
15
|
Salehi B, Mnayer D, Özçelik B, Altin G, Kasapoğlu KN, Daskaya-Dikmen C, Sharifi-Rad M, Selamoglu Z, Acharya K, Sen S, Matthews KR, Fokou PVT, Sharopov F, Setzer WN, Martorell M, Sharifi-Rad J. Plants of the Genus Lavandula: From Farm to Pharmacy. Nat Prod Commun 2018; 13:1934578X1801301. [DOI: 10.1177/1934578x1801301037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2024] Open
Abstract
The Lavandula genus, belonging to the Lamiaceae, includes 39 species, with nearly 400 registered cultivars. Lavandula are worldwide plants that occur over the Mediterranean, Europe, North Africa, southwest Asia to southeast India. Lavandula plants have been used since ancient time to flavor and preserved food, to treat diseases including wound healing, sedative, antispasmodic, microbial and viral infections. Numerous researches have described the chemical composition and the primary components of lavender oils are the monoterpenoids (linalool, linalyl acetate, 1,8-cineole, β-ocimene, terpinen-4-ol, and camphor), sesquiterpenoids (β-caryophyllene and nerolidol) and other terpenoid compounds (e.g., perillyl alcohol). The high concentrations of linalyl acetate make them attractive in perfumery, flavoring, cosmetics and soap industries. Currently, data on the antimicrobial activity of lavender plants have been scientifically confirmed. Indeed, lavender essential oils possess wide spectra of biological activities such as antispasmodic, carminative, analgesic, sedative, hypotensive, antiseptic, antimicrobial, antifungal, antidiuretic and general tonic action. In addition, clinical studies support their uses as treatment of health conditions. However, further clinical studies are necessary to define the magnitude of the efficacy, mechanisms of action, optimal doses, long-term safety, and, potential side effects of lavender plants.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Fanar, Beirut, Lebanon
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
- BIOACTIVE Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer, 34467, Istanbul, Turkey
| | - Gokce Altin
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Kadriye Nur Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ceren Daskaya-Dikmen
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, 51240, Nigde, Turkey
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal – 743331, India
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, 734003, Dushanbe, Tajikistan
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Aromatic Plant Research Center, 615 St. George Square Court, Suite 300, Winston-Salem, NC 27103, USA
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
16
|
Anushiravani M, Bakhshaee M, Taghipour A, Mehri MR. Comparison of the therapeutic effect of the Persian Medicine Protocol with the common treatment of chronic rhinosinusitis: a randomized clinical trial. Electron Physician 2018; 10:7017-7027. [PMID: 30128092 PMCID: PMC6092137 DOI: 10.19082/7017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023] Open
Abstract
Background Chronic rhinosinusitis is one of the most common diseases affecting the quality of life of patients. Patients suffer from high costs in the diagnosis and treatment of the disease. Frequent recurrence and failure of therapeutic protocols are among the most important issues in the management of this disease. In view of this, the use of traditional and complementary therapies to promote the treatment of this disease has been increasingly taken into account. Objective Comparison of the effectiveness of the Persian Medicine Protocol with the conventional therapy in the treatment of chronic rhinosinusitis. Methods A randomized clinical trial was conducted at Imam Reza Hospital in Mashhad, Iran from July 2016 to March 2017. For patients with chronic rhinosinusitis symptoms, endoscopy of the sinuses was performed by an ENT specialist and in the case of negative endoscopy, paranasal sinus CT scan was requested. A total of 42 patients with chronic rhinosinusitis were randomly assigned to two groups. The first group (classical) received systemic and intranasal cortisone, and the second group (traditional) received a therapeutic Persian medicine protocol including intranasal lavender oil, and Liquorice Marjoram Tea (L. M. tea) for six weeks. The symptoms of the patients were evaluated using the SNOT-22 questionnaire at the beginning of the study and at the sixth week. If no improvement occurs, treatment continued for 12 weeks. Data were analyzed by SPSS version 16, using ANOVA, independent-samples and paired-samples t-test, Wilcoxon signed-rank test, and simple linear regression. Results In 20 patients in the traditional group, the decrease in SNOT score was observed as 56% after 6 weeks treatment (p=0.001), which is similar to the effect of the first group (classical). Although there was no statically significant difference between the two groups, in clinical terms, the difference in mean systemic symptoms such as confusion with 1.05 (p=0.5) and fatigue with 1.63 (p=0.01) had more improvement in the traditional group, and the difference in mean local symptoms such as nasal congestion with 2.37 (p=0.78) and runny nose with 1.95 (p=0.14) had a more decrease in the classical group. Conclusion The results of this trial indicate the effectiveness of the Persian Medicine Protocol (including Lavender oil and L.M tea) in the treatment of chronic rhinosinusitis, especially on improving systemic symptoms. Nevertheless more clinical studies are necessary to support the acquired results. Trial registration This trial was registered at the Iranian Center for Clinical Trials (ID: IRCT2015112425217N1). Funding This research is part of a PhD thesis and is funded by the Vice-Chancellor for Research at Mashhad University of Medical Sciences, Grant No. 931673.
Collapse
Affiliation(s)
- Majid Anushiravani
- MD. Ph.D. of Persian Medicine, Assistant Professor, Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Bakhshaee
- MD. Associate Professor, Sinus and Surgical Endoscopic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Taghipour
- MD. PhD in Epidemiology, Associate Professor, Department of Epidemiology and Biostatistics, School of Health, Social Determinants of Health Research, Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Mehri
- MD. PhD of Persian Medicine, Student Research Committee, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Immunomodulatory Effects of Diterpene Quinone Derivatives from the Roots of Horminum pyrenaicum in Human PBMC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2980295. [PMID: 29576845 PMCID: PMC5821946 DOI: 10.1155/2018/2980295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/19/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022]
Abstract
Several phytochemicals were shown to interfere with redox biology in the human system. Moreover, redox biochemistry is crucially involved in the orchestration of immunological cascades. When screening for immunomodulatory compounds, the two interferon gamma- (IFN-γ-) dependent immunometabolic pathways of tryptophan breakdown via indoleamine 2,3-dioxygenase-1 (IDO-1) and neopterin formation by GTP-cyclohydrolase 1 (GTP-CH-I) represent prominent targets, as IFN-γ-related signaling is strongly sensitive to oxidative triggers. Herein, the analysis of these pathway activities in human peripheral mononuclear cells was successfully applied in a bioactivity-guided fractionation strategy to screen for anti-inflammatory substances contained in the root of Horminum (H.) pyrenaicum L. (syn. Dragon's mouth), the only representative of the monophyletic genus Horminum. Four abietane diterpene quinone derivatives (horminone, 7-O-acetylhorminone, inuroyleanol and its 15,16-dehydro-derivative, a novel natural product), two nor-abietane diterpene quinones (agastaquinone and 3-deoxyagastaquinone) and two abeo 18 (4 → 3) abietane diterpene quinones (agastol and its 15,16-dehydro-derivative) could be identified. These compounds were able to dose-dependently suppress the above mentioned pathways with different potency. Beside the description of new active compounds, this study demonstrates the feasibility of integrating IDO-1 and GTP-CH-I activity in the search for novel anti-inflammatory compounds, which can then be directed towards a more detailed mode of action analysis.
Collapse
|
18
|
Buyuktiryaki B, Sahiner UM, Girgin G, Birben E, Soyer OU, Cavkaytar O, Cetin C, Arik Yilmaz E, Yavuz ST, Kalayci O, Baydar T, Sackesen C. Low indoleamine 2,3-dioxygenase activity in persistent food allergy in children. Allergy 2016; 71:258-66. [PMID: 26449488 DOI: 10.1111/all.12785] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO), which degrades tryptophan (Trp) to kynurenine (Kyn), has been demonstrated to contribute to modulation of allergic responses. However, the role of IDO in food allergy has not yet been elucidated. METHODS Serum Trp and Kyn concentrations were analyzed by high-pressure liquid chromatography. Expression of IDO gene was measured by real-time PCR. The levels of interleukin (IL)-4, IL-10, and interferon (IFN)-γ in cell culture supernatants were measured by ELISA. RESULTS Kyn/Trp (IDO activity) was significantly lower in subjects with food allergy (n = 100) than in aged-matched healthy controls (n = 112) (P = 0.004). Kyn/Trp was decreased from healthy through completely tolerant, partially tolerant, and reactive ones [LN transformation (mean ± SEM) healthy: 3.9 ± 0.02 μM/mM; completely tolerant: 3.83 ± 0.04; partially tolerant: 3.8 ± 0.06; reactive: 3.7 ± 0.04] (P = 0.008). The frequency of genetic polymorphisms of IDO did not reveal a significant association with Trp, Kyn, and Kyn/Trp in healthy and food-allergic cases. Culture of PBMC experiments yielded that IDO mRNA expression was not different between tolerant and reactive groups. IL-4 synthesis when stimulated with casein increased significantly in subjects who are reactive and tolerant to foods (P = 0.042, P = 0.006, respectively). Increase in IL-10 synthesis was observed only in children tolerant to milk, but not in reactive ones. IFN-γ synthesis, when stimulated with IL-2 and β-lactoglobulin in cell culture, was significantly higher in subjects tolerant to milk than in the reactive ones (P = 0.005 and P = 0.029, respectively). CONCLUSION Our results imply the probability of involvement of IDO in development of tolerance process, and we presume that high IDO activity is associated with nonresponsiveness to food allergens despite allergen sensitization.
Collapse
Affiliation(s)
- B. Buyuktiryaki
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - U. M. Sahiner
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - G. Girgin
- Division of Toxicology; Hacettepe University School of Pharmacy; Ankara Turkey
| | - E. Birben
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - O. U. Soyer
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - O. Cavkaytar
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - C. Cetin
- Department of Nutrition and Dietetics; Hacettepe University Faculty of Health Sciences; Ankara Turkey
| | - E. Arik Yilmaz
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - S. T. Yavuz
- Division of Pediatric Allergy; GATA Military School of Medicine; Ankara Turkey
| | - O. Kalayci
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - T. Baydar
- Division of Toxicology; Hacettepe University School of Pharmacy; Ankara Turkey
| | - C. Sackesen
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
- Division of Pediatric Allergy; Koc University School of Medicine; Istanbul Turkey
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Food is not only necessary as a metabolic fuel for the body, it becomes more and more evident that there exists an association between food and brain functions like mood and cognition. Tryptophan represents a key element for brain functioning, because of its role as a precursor for production of neurotransmitter serotonin (5-hydroxytryptamine). In clinical conditions, which involve chronic immune system activation or under cytokine therapy, lower tryptophan levels because of high catabolism of tryptophan as indicated by the kynurenine to tryptophan ratio are common and often associate with depressive mood. RECENT FINDINGS Studies in the in vitro model of mitogen-stimulated peripheral blood mononuclear cells revealed that several phytocompounds, mainly antioxidants like polyphenols and vitamins, can interfere with inflammatory signaling cascades including tryptophan breakdown. If extrapolated to the in vivo situation, such compounds could increase blood and brain tryptophan availability for serotonin production. Although there is some in vivo evidence for the effect of such compounds, outcomes are hardly predictable and most likely depend on the individual's immunological state. SUMMARY Not only a diet rich in tryptophan but also a diet rich in antioxidants can have a positive impact on mood and cognition. This could be of special relevance for individuals who present with low grade inflammation conditions.
Collapse
Affiliation(s)
- Barbara Strasser
- aDivision of Medical Biochemistry bDivision of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
20
|
Gostner JM, Raggl E, Becker K, Überall F, Schennach H, Pease JE, Fuchs D. Bisphenol A suppresses Th1-type immune response in human peripheral blood mononuclear cells in vitro. Immunol Lett 2015; 168:285-92. [PMID: 26475400 DOI: 10.1016/j.imlet.2015.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022]
Abstract
Bisphenol A (BPA) is a widely used plasticizer, which came into focus because of its genotoxic and sensitizing potential. Besides its toxic properties, BPA is also well-known for its antioxidant chemical properties. This in vitro study investigated the interference of BPA with interferon-γ (IFN-γ)-induced tryptophan breakdown and neopterin production in human peripheral blood mononuclear cells (PBMC). The pro-inflammatory cytokine IFN-γ induces the conversion of the essential amino acid tryptophan into kynurenine via the enzyme indoleamine-2,3-dioxygenase (IDO-1). In parallel, GTP-cyclohydrolase produces neopterin, a marker of immune activation. A model system of phytohaemagglutinin (PHA)-stimulated PBMC was used to assess potential immunomodulatory properties of BPA. Treatment of cells with BPA [12.5-200μM] resulted in a significant and dose-dependent suppression of mitogen-induced tryptophan breakdown and neopterin formation along with a decrease of IFN-γ levels. Similar but less pronounced effects were observed in unstimulated cells. We postulate that the inhibitory effects of BPA on both T-cell activation and IDO-1 activity that we describe here may be critical for immune surveillance and is likely to influence T helper (Th) type 1/Th2 balance. Such immunosuppressive effects likely contribute to counteract inflammation. Further studies are required to address the in vivo relevance our in vitro findings.
Collapse
MESH Headings
- Benzhydryl Compounds/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cells, Cultured
- Cytokines/immunology
- Cytokines/metabolism
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Inflammation Mediators/immunology
- Inflammation Mediators/metabolism
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- NF-kappa B/immunology
- NF-kappa B/metabolism
- Neopterin/immunology
- Neopterin/metabolism
- Phenols/pharmacology
- Phytohemagglutinins/pharmacology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Tryptophan/immunology
- Tryptophan/metabolism
Collapse
Affiliation(s)
- Johanna M Gostner
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; Receptor Biology Group, Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Emanuel Raggl
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Kathrin Becker
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Florian Überall
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital, Anichstrasse 35, 6020 Innsbruck, Austria
| | - James E Pease
- Receptor Biology Group, Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| |
Collapse
|
21
|
Gostner JM, Becker K, Ueberall F, Fuchs D. The good and bad of antioxidant foods: An immunological perspective. Food Chem Toxicol 2015; 80:72-79. [PMID: 25698357 DOI: 10.1016/j.fct.2015.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/18/2023]
Abstract
Maintenance of redox homeostasis plays a central role in health and disease prevention, and antioxidant foods are thought to exert protective effects by counteracting oxidative stress. The term "dietary antioxidant" implies a classical reducing or radical-scavenging capacity, but more data on the in vivo bioactivity of such compounds are needed. Indeed, several dietary antioxidants activate signaling cascades that lead to effects that extend beyond radical scavenging, such as the induction of endogenous cytoprotective mechanisms and detoxification. Currently, the overall uptake of antioxidants with diet exceeds actual needs, as food additives that include vitamins, colorants, flavoring agents, and preservatives are often also relatively strong antioxidants. Chronic antioxidative stress favors adverse effects, such as the suppression of T helper (Th) type 1 immune responses and consequent activation of Th2 reactions that support the development of asthma, allergies, and obesity. In this context, we discuss the immunoregulatory pathway of tryptophan breakdown by enzyme indoleamine 2,3-dioxygenase (IDO), which represents a central regulatory hub for immune, metabolic, and neuroendocrine processes. Activation of IDO-mediated tryptophan metabolism is strongly redox-sensitive and is therefore susceptible to modulation by dietary components, phytochemicals, preservatives, and drugs.
Collapse
Affiliation(s)
- Johanna M Gostner
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Kathrin Becker
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Ueberall
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|