1
|
Zhou J, Li N, Li X, Ye J, Wang M, Sun G. Review on recent advancements in understanding acetylsalicylic acid-induced gastrointestinal injury: mechanisms, medication, and dosage refinement. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03521-w. [PMID: 39545984 DOI: 10.1007/s00210-024-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Acetylsalicylic acid (ASA) is a clinical drug with multiple effects, including prevention of cardiovascular adverse events and anti-cancer effects. However, gastrointestinal side effects, such as gastrointestinal ulcers and bleeding, limit the use of ASA and reduce patient compliance. Various studies have investigated the mechanisms of ASA-induced gastrointestinal injury, and many medicines have been reported to be effective in preventing and treating the adverse gastrointestinal effects of ASA. New formulations of ASA have demonstrated milder gastrointestinal injury than ASA alone. In this article, we summarized the mechanisms of ASA-induced gastrointestinal injury, drugs that resist gastrointestinal side effects of ASA, and progress in research on formulation improvement of ASA to help resolve the clinical dilemma of ASA usage.
Collapse
Affiliation(s)
- Jiahui Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Na Li
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinzhong Li
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Xu M, Wu G, You Q, Chen X. The Landscape of Smart Biomaterial-Based Hydrogen Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401310. [PMID: 39166484 PMCID: PMC11497043 DOI: 10.1002/advs.202401310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/19/2024] [Indexed: 08/23/2024]
Abstract
Hydrogen (H2) therapy is an emerging, novel, and safe therapeutic modality that uses molecular hydrogen for effective treatment. However, the impact of H2 therapy is limited because hydrogen molecules predominantly depend on the systemic administration of H2 gas, which cannot accumulate at the lesion site with high concentration, thus leading to limited targeting and utilization. Biomaterials are developed to specifically deliver H2 and control its release. In this review, the development process, stimuli-responsive release strategies, and potential therapeutic mechanisms of biomaterial-based H2 therapy are summarized. H2 therapy. Specifically, the produced H2 from biomaterials not only can scavenge free radicals, such as reactive oxygen species (ROS) and lipid peroxidation (LPO), but also can inhibit the danger factors of initiating diseases, including pro-inflammatory cytokines, adenosine triphosphate (ATP), and heat shock protein (HSP). In addition, the released H2 can further act as signal molecules to regulate key pathways for disease treatment. The current opportunities and challenges of H2-based therapy are discussed, and the future research directions of biomaterial-based H2 therapy for clinical applications are emphasized.
Collapse
Affiliation(s)
- Min Xu
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Gege Wu
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Qing You
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| |
Collapse
|
3
|
Li Y, Bing R, Liu M, Shang Z, Huang Y, Zhou K, Bao D, Zhou J. Can molecular hydrogen supplementation reduce exercise-induced oxidative stress in healthy adults? A systematic review and meta-analysis. Front Nutr 2024; 11:1328705. [PMID: 38590828 PMCID: PMC10999621 DOI: 10.3389/fnut.2024.1328705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Objective Exercise-induced oxidative stress affects multiple neurophysiological processes, diminishing the exercise performance. Hydrogen (H2) can selectively reduce excessive free radicals, but studies observed its "dual effects" on exercise-induced oxidative stress, that is, increasing or decreasing the oxidative stress. Therefore, we here conducted a systematic review and meta-analysis to quantitatively assess the influence of H2 on exercise-induced oxidative stress in healthy adults. Methods We conducted a systematic review of publications across five databases. The following keywords were used for search strategy: ["hydrogen"[Mesh] or "molecular hydrogen" or "hydrogen rich water" or "hydrogen-rich water" or "hydrogen rich saline"] and ["Oxidative Stress"[Mesh] or "Antioxidative Stress" or "Oxidative Damage" or "Oxidative Injury" or "Oxidative Cleavage"] and ["randomized controlled trial"[Mesh] or "randomized" or "RCT"]. We included trials reporting the effects of H2 on exercise-induced oxidative stress and potential antioxidant capacity post-exercise in healthy adults. Additionally, subgroup analyses were conducted to explore how various elements of the intervention design affected those outcomes. Results Six studies, encompassing seven experiments with a total of 76 participants, were included in our analysis. Among these studies, hydrogen-rich water, hydrogen bathing, and hydrogen-rich gas were three forms used in H2 administration. The H2 was applied in different timing, including before, during, or after exercise only, both before and after exercise, and repeatedly over days. Single-dose, multi-dose within 1 day and/or multiple-dose over days were implemented. It was observed that compared to placebo, the effects of H2 on oxidative stress (diacron-reactive oxygen metabolites, d-ROMs) was not significant (SMD = -0.01, 95%CI-0.42 to 0.39, p = 0.94). However, H2 induced greater improvement in antioxidant potential capacity (Biological Antioxidant Potential, BAP) (SMD = 0.29, 95% CI 0.04 to 0.54, p = 0.03) as compared to placebo. Subgroup analyses revealed that H2 supplementation showed greater improvement (SMD = 0.52, 95%CI 0.16 to 0.87, p = 0.02) in the antioxidant potential capacity of intermittent exercises than continuous exercise. Conclusion H2 supplementation can help enhance antioxidant potential capacity in healthy adults, especially in intermittent exercise, but not directly diminish the levels of exercise-induced oxidative stress. Future studies with more rigorous design are needed to examine and confirm these findings. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=364123, Identifier CRD42022364123.
Collapse
Affiliation(s)
- Yiting Li
- College of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Renjie Bing
- College of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Meng Liu
- College of Sports Coaching, Beijing Sport University, Beijing, China
| | - Zhangyuting Shang
- College of Physical Education and Health Management, Chongqing University of Education, Chongqing, China
| | - Yan Huang
- Shichahai Sports School, Beijing, China
| | - Kaixiang Zhou
- College of Physical Education and Health Science, Chongqing Normal University, Chongqing, China
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Chou CW, Chia WT, Mac CH, Wu CY, Chen CC, Song HL, Lin YH, Lin YJ, Sung HW. Selective accumulation of ionic nanocrystal H2 storage system as an in situ H2/boric acid nanogenerator fights against ethanol-induced gastric ulcers. CHEMICAL ENGINEERING JOURNAL 2023; 463:142373. [DOI: 10.1016/j.cej.2023.142373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Bajgai J, Lee M, Jang YG, Lee K, Sharma S, Jeong YJ, Park HJ, Goh SH, Kim CS, Kim HI, Lee KJ. Effects of Drinking Electrolyzed Alkaline-Reduced Water on Functional Dyspepsia: A Randomized, Double-Blind, Controlled Prospective Trial. Processes (Basel) 2023; 11:968. [DOI: 10.3390/pr11030968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
A well-known functional gastrointestinal disorder called functional dyspepsia (FD) is defined by dyspeptic symptoms without any structural abnormalities. In alternative intervention, electrolyzed alkaline-reduced water (EARW) consumption is regarded as a treatment modality for gastrointestinal symptoms despite its mechanism not yet fully understood. The present clinical study aimed to investigate the effects of EARW on gastrointestinal symptoms of patients with FD. Forty-eight participants with FD were screened, and 42 were enrolled. Participants were randomly allocated to the EARW (n = 21) and purified water (PW) (n = 21) groups. The EARW group ingested EARW (10 mL/kg body weight/day) for 6 weeks. The gastrointestinal symptom rating scale (GSRS), functional dyspepsia-related quality of life (FD-QoL), the Korean version of the Nepean Dyspepsia Index (NDI-K) were used as primary outcome measures at baseline and at 6 weeks, and inflammatory markers were measured as the secondary outcome. Two participants dropped out, and 40 participants (EARW = 20 and PW = 20) completed the trial. Total GSRS score was significantly lower in the EARW group (34.27%, p < 0.01) than in the PW (18.16%) group. In the five subcategories of GSRS, the decreased score between baseline and post-intervention for the EARW and PW groups were 43.59% and 21.33% in abdominal pain score, respectively; 38.98% and 18.92% in reflux syndrome, respectively; 25.42% and 20.90% in diarrhea, respectively; 35.87% and 21.48% in indigestion, respectively; and 32.81% and 10.71% in constipation, respectively, and all the parameters were significantly different in the EARW group compared with those in the PW group. The NDI-K score was also lower in the EARW group (p < 0.01) than in the PW group. FD-QoL score decreased significantly more in the EARW group after intervention than in the PW group (p < 0.05). Additionally, inflammatory cytokines (TNF-α and IFN-γ) levels significantly suppressed in the EARW group after 6 weeks of drinking compared with the levels at the baseline. Our clinical study suggests that long-term drinking of EARW (pH 9.5) may improve FD-related symptoms and the quality of life of FD patients through home-based administration.
Collapse
Affiliation(s)
- Johny Bajgai
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Mihyun Lee
- Clinical Research Institute, Ceragem Clinical Inc. Asia Media Center Bldg, 27 Eonju-ro 93-gil, Gangnam-gu, Seoul 06142, Republic of Korea
| | - Yeon-Gyu Jang
- Department of Neurosurgery, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Kiwon Lee
- Clinical Research Institute, Ceragem Clinical Inc. Asia Media Center Bldg, 27 Eonju-ro 93-gil, Gangnam-gu, Seoul 06142, Republic of Korea
| | - Subham Sharma
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Yun Ju Jeong
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Hong Jun Park
- Department of Gastroenterology, Yonsei University, Wonju 26426, Republic of Korea
| | - Seong Hoon Goh
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Cheol-Su Kim
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Hyun Il Kim
- Department of Gastroenterology, Yonsei University, Wonju 26426, Republic of Korea
| | - Kyu-Jae Lee
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| |
Collapse
|
6
|
Electrolyzed-Reduced Water: Review I. Molecular Hydrogen Is the Exclusive Agent Responsible for the Therapeutic Effects. Int J Mol Sci 2022; 23:ijms232314750. [PMID: 36499079 PMCID: PMC9738607 DOI: 10.3390/ijms232314750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Numerous benefits have been attributed to alkaline-electrolyzed-reduced water (ERW). Sometimes these claims are associated with easily debunked concepts. The observed benefits have been conjectured to be due to the intrinsic properties of ERW (e.g., negative oxidation-reduction potential (ORP), alkaline pH, H2 gas), as well enigmatic characteristics (e.g., altered water structure, microclusters, free electrons, active hydrogen, mineral hydrides). The associated pseudoscientific marketing has contributed to the reluctance of mainstream science to accept ERW as having biological effects. Finally, through many in vitro and in vivo studies, each one of these propositions was examined and refuted one-by-one until it was conclusively demonstrated that H2 was the exclusive agent responsible for both the negative ORP and the observed therapeutic effects of ERW. This article briefly apprised the history of ERW and comprehensively reviewed the sequential research demonstrating the importance of H2. We illustrated that the effects of ERW could be readily explained by the known biological effects of H2 and by utilizing conventional chemistry without requiring any metaphysical conjecture (e.g., microclustering, free electrons, etc.) or reliance on implausible notions (e.g., alkaline water neutralizes acidic waste). The H2 concentration of ERW should be measured to ensure it is comparable to those used in clinical studies.
Collapse
|
7
|
Electrolyzed Hydrogen Water Alleviates Abdominal Pain through Suppression of Colonic Tissue Inflammation in a Rat Model of Inflammatory Bowel Disease. Nutrients 2022; 14:nu14214451. [PMID: 36364715 PMCID: PMC9655279 DOI: 10.3390/nu14214451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the digestive tract and is typically accompanied by characteristic symptoms, such as abdominal pain, diarrhea, and bloody stool, severely deteriorating the quality of the patient's life. Electrolyzed hydrogen water (EHW) has been shown to alleviate inflammation in several diseases, such as renal disease and polymyositis/dermatomyositis. To investigate whether and how daily EHW consumption alleviates abdominal pain, the most common symptom of IBD, we examined the antioxidative and anti-inflammatory effects of EHW in an IBD rat model, wherein colonic inflammation was induced by colorectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS). We found that EHW significantly alleviated TNBS-induced abdominal pain and tissue inflammation. Moreover, the production of proinflammatory cytokines in inflamed colon tissue was also decreased significantly. Meanwhile, the overproduction of reactive oxygen species (ROS), which is intricately involved in intestinal inflammation, was significantly suppressed by EHW. Additionally, expression of S100A9, an inflammatory biomarker of IBD, was significantly suppressed by EHW. These results suggest that the EHW prevented the overproduction of ROS due to its powerful free-radical scavenging ability and blocked the crosstalk between oxidative stress and inflammation, thereby suppressing colonic inflammation and alleviating abdominal pain.
Collapse
|
8
|
Abstract
Living a healthy lifestyle is the most important need in the world today. However, oxidative stress (OS) is caused by several stress-inducing factors such as smoking, alcohol consumption, chronic diseases, and inflammatory responses, oxygen-free radicals are produced in excess and can damage major organs in the body. This phenomenon has been implicated in the pathogenesis of several gastrointestinal (GI) diseases, including gastritis, constipation, and inflammatory bowel diseases, which include Crohn’s disease, ulcerative colitis, functional dyspepsia, acid reflux, diverticular disease, and irritable bowel syndrome. In this review article, we provide a brief overview of the role of OS in the pathogenesis of GI disorders. Additionally, we discuss the therapeutic role of alkaline-reduced water (ARW) on GI diseases and existing studies on ARW related to GI diseases. Furthermore, we believe that findings from this review article will enhance the knowledge of the readers on the role of ARW on OS and inflammation-based GI diseases.
Collapse
|
9
|
The Search for the Elixir of Life: On the Therapeutic Potential of Alkaline Reduced Water in Metabolic Syndromes. Processes (Basel) 2021. [DOI: 10.3390/pr9111876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Our body composition is enormously influenced by our lifestyle choices, which affect our health and longevity. Nutrition and physical activities both impact overall metabolic condition, thus, a positive energy balance causes oxidative stress and inflammation, hastening the development of metabolic syndrome. With this knowledge, boosting endogenous and exogenous antioxidants has emerged as a therapeutic strategy for combating metabolic disorders. One of the promising therapeutic inventions is the use of alkaline reduced water (ARW). Aside from its hydrating and non-caloric properties, ARW has demonstrated strong antioxidant and anti-inflammatory properties that can help stabilize physiologic turmoil caused by oxidative stress and inflammation. This review article is a synthesis of studies where we elaborate on the intra- and extracellular effects of drinking ARW, and relate these to the pathophysiology of common metabolic disorders, such as obesity, diabetes mellitus, non-alcoholic fatty liver disease, and some cancers. Highlighting the health-promoting benefits of ARW, we also emphasize the importance of maintaining a healthy lifestyle by incorporating exercise and practicing a balanced diet as forms of habit.
Collapse
|
10
|
Abstract
Electrolyzed oxidizing water (EOW) is one of the promising novel antimicrobial agents that have recently been proposed as the alternative to conventional decontamination methods such as heat and chemical sanitizers. Acidic EOW with pH ranging from 2 to 5 is regarded most applicable in the antimicrobial treatment of vegetables and meats. Neutral and alkaline electrolyzed water have also been explored in few studies for their applications in the food industry. Neutral electrolyzed water is proposed to solve the problems related to the storage and corrosion effect of acidic EOW. Recently, the research focus has been shifted toward the application of slightly acidic EOW as more effective with some supplemental physical and chemical treatment methods such as ultrasound and UV radiations. The different applications of electrolyzed water range from drinking water and wastewater to food, utensil, and hard surfaces. The recent studies also conclude that electrolyzed water is more effective in suspensions as compared with the food surfaces where longer retention times are required. The commercialization of EOW instruments is not adopted frequently in many countries due to the potential corrosion problems associated with acidic electrolyzed water. This review article summarizes the EOW types and possible mechanism of action as well as highlights the most recent research studies in the field of antimicrobial applications and cleaning. Electrolyzed water can replace conventional chemical decontamination methods in the industry and household. However, more research is needed to know its actual mechanism of antimicrobial action along with the primary concerns related to EOW in the processing of different food products.
Collapse
|
11
|
Ito H, Kabayma S, Goto K. Effects of electrolyzed hydrogen water ingestion during endurance exercise in a heated environment on body fluid balance and exercise performance. Temperature (Austin) 2020; 7:290-299. [PMID: 33117861 PMCID: PMC7575226 DOI: 10.1080/23328940.2020.1742056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Electrolyzed hydrogen water (EHW) is generated at a cathode. It contains many hydrogen molecules with high alkaline properties. The physiological effects of ingesting EHW during endurance exercise are unclear. The purpose of this study was to determine the effects of ingesting EHW during endurance exercise in a heated environment on body fluid balance and exercise performance. Twelve triathletes (20.0 ± 1.3 years, 171 ± 6 cm, 60.6 ± 3.9 kg, V̇O2max 67.1 ± 3.8 mL/kg/min) performed pedaling exercise for 60 min at 65% of V̇O2max consuming either purified water (CON trial) or EHW (EHW trial) and then conducted an incremental pedaling test. Blood parameters, tissue temperature, and respiratory variables were determined during 60 min of exercise. The time to exhaustion (TTE) during the incremental pedaling test was also determined. Body weights were 1.1 ± 0.4 kg lower after exercise, with no significant differences between trials. Plasma volume and serum osmolality and blood sodium and potassium concentrations significantly changed with exercise, but no significant differences were observed between trials. The pH, blood lactate and bicarbonate concentrations, and changes in skin and muscle temperature did not significantly differ between the two trials. Energy expenditure during exercise was significantly (P = 0.04) lower in the EHW trial (13.2 ± 0.5 kcal/min) than in the CON trial (13.7 ± 0.4 kcal/min). TTE did not significantly differ between the trials. In conclusion, EHW ingestion during endurance exercise in a heated environment decreased energy expenditure but did not affect body fluid balance or exercise performance. Abbreviations: CON: control trial; CV: coefficient of variation; EHW: electrolyzed hydrogen water; HR: heart rate; RPE: rating of perceived exertion; SE: standard error; TP: total protein; TTE: time to exhaustion.
Collapse
Affiliation(s)
- Hiroto Ito
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | | | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
12
|
Zhou G, Goshi E, He Q. Micro/Nanomaterials-Augmented Hydrogen Therapy. Adv Healthc Mater 2019; 8:e1900463. [PMID: 31267691 DOI: 10.1002/adhm.201900463] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Hydrogen therapy is an emerging and promising therapy strategy of using molecular hydrogen as a new type of safe and effective therapeutic agent, exhibiting remarkable therapeutic effects on many oxidative stress-/inflammation-related diseases owing to its bio-reductivity and homeostatic regulation ability. Different from other gaseous transmitters such as NO, CO, and H2 S, hydrogen gas has no blood poisoning risk at high concentration because it does not affect the oxygen-carrying behavior of blood red cells. Hydrogen molecules also have low aqueous solubility and high but aimless diffusibility, causing limited therapy efficacy in many diseases. To realize the site-specific hydrogen delivery, controlled hydrogen release and combined therapy is significant but still challenging. Here, a concept of hydrogen nanomedicine to address the issues of hydrogen medicine by using functional micro/nanomaterials for augmented hydrogen therapy is proposed. In this review, various strategies of micro/nanomaterials-augmented hydrogen therapy, including micro/nanomaterials-mediated targeted hydrogen delivery, controlled hydrogen release, and nanocatalytic and multimodel enhancement of hydrogen therapy efficacy, are summarized, which can open a new window for treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Gaoxin Zhou
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518071 Guangdong China
| | - Ekta Goshi
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518071 Guangdong China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518071 Guangdong China
| |
Collapse
|
13
|
Yamasaki M, Miyazono M, Yoshihara M, Suenaga A, Mizuta M, Fukuda M, Rikitake S, Ikeda Y. Effects of hydrogen-rich water in a rat model of polycystic kidney disease. PLoS One 2019; 14:e0215766. [PMID: 31013316 PMCID: PMC6478309 DOI: 10.1371/journal.pone.0215766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/08/2019] [Indexed: 11/18/2022] Open
Abstract
Various factors are considered to be mechanisms of the increase in the sizes of cysts in patients with polycystic kidney disease. Vasopressin is one of the causes, and drinking large volumes of water shows an effect of suppressing an increase in cysts. On the other hand, it is known that hydrogen-rich water reduces oxidative stress and has a good effect on kidney injury. We examined whether drinking large volumes of hydrogen-rich water affected the increase in the sizes of cysts. Forty 5-week-old PCK rats were randomly assigned to four groups: C(Control), purified water; W(Water), water with sugar; H(Hydrogen), hydrogen-rich water; WH(Water+Hydrogen), hydrogen-rich water with sugar. They consumed water from 5 to 15 weeks of age. The intake of water in the groups in which sugar was added to the water (W, WH) significantly increased in comparison to C, but there was no significant change in the serum Creatinine concentration. The kidney weight per body weight in W was significantly decreased in comparison to C. The kidney weights in H and WH were significantly increased in comparison to W. There were no significant differences in the ratio of the cross-sectional area of the cysts to the whole area among the groups. This experiment showed that the effect of drinking large volumes of hydrogen-rich water was not significantly different from that of normal water, in terms of preventing an increase in the size of cysts in PCK rats. However, some papers acknowledge the influence of hydrogen water. Significant differences might become obvious if we change aspects such as the administration method or administration period.
Collapse
Affiliation(s)
- Masatora Yamasaki
- Department of Nephrology, Faculty of Medicine, Saga University, Saga, Japan
- * E-mail:
| | - Motoaki Miyazono
- Department of Nephrology, Faculty of Medicine, Saga University, Saga, Japan
| | - Maki Yoshihara
- Department of Nephrology, Faculty of Medicine, Saga University, Saga, Japan
| | - Atsuhiko Suenaga
- Department of Nephrology, Faculty of Medicine, Saga University, Saga, Japan
| | - Masato Mizuta
- Department of Nephrology, Faculty of Medicine, Saga University, Saga, Japan
| | - Makoto Fukuda
- Department of Nephrology, Faculty of Medicine, Saga University, Saga, Japan
| | - Shuichi Rikitake
- Department of Nephrology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuji Ikeda
- Department of Nephrology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
14
|
Tanaka Y, Saihara Y, Izumotani K, Nakamura H. Daily ingestion of alkaline electrolyzed water containing hydrogen influences human health, including gastrointestinal symptoms. Med Gas Res 2019; 8:160-166. [PMID: 30713669 PMCID: PMC6352572 DOI: 10.4103/2045-9912.248267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
In Japan, alkaline electrolyzed water (AEW) apparatus have been approved as a medical device. And for the patients with gastrointestinal symptoms, drinking AEW has been found to be effective in relieving gastrointestinal symptoms. But some users of AEW apparatus do not have abdominal indefinite complaint. Little attention has been given to the benefit for the users which have no abdominal indefinite complaint. The object of this study is to evaluate the effect on health, including gastrointestinal symptoms, when a person without abdominal indefinite complaint, etc., drinks AEW on a daily basis. A double-blind, randomized controlled trial has been designed. Four-week period of everyday water drinking, PW drinking group: drink purified tap water as a placebo, AEW drinking group: drink alkaline electrolyzed water which made by electrolysis of purified tap water. Before the experiment and after the 4-week period of water drinking, Blood tests, physical fitness evaluations, and questionnaire evaluations is conducted. In this study, we did not specifically select patients with gastrointestinal symptoms. Sufficiently clear effect could not be confirmed. But the stools were more normal, and, as shown in the previous report, that drinking AEW is considered to contribute to intestinal normalization. In addition, when drinking AEW, a high proportion of the respondents said that they felt they were able to sleep soundly, and the proportion of subjects who answered that they felt good when awakening increased. The effect of reducing oxidative stress, thus allowing for improved sleep, was exhibited by drinking AEW containing hydrogen, which is considered to be an antioxidant substance. This research were approved by the Ethics Committee of the Osaka City University Graduate School of Medicine (No. 837) and were registered in the University Hospital Medical Information Network (UMIN) Clinical Trials Registry (UMIN ID: UMIN000031800) on March 22, 2018.
Collapse
Affiliation(s)
| | | | | | - Hajime Nakamura
- Osaka City University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
15
|
Zhou P, Lin B, Wang P, Pan T, Wang S, Chen W, Cheng S, Liu S. The healing effect of hydrogen-rich water on acute radiation-induced skin injury in rats. JOURNAL OF RADIATION RESEARCH 2019; 60:17-22. [PMID: 30260398 PMCID: PMC6373674 DOI: 10.1093/jrr/rry074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Indexed: 05/09/2023]
Abstract
This study aimed to determine the healing effect of hydrogen-rich water (HRW) on radiotherapy-induced skin injury. Rats were irradiated with a 6 MeV electron beam from a Varian linear accelerator. After skin wound formation, rats were individually administrated with distilled water, HRW (1.0 ppm) or HRW (2.0 ppm). We measured the healing time and observed the healing rate of the wounded surface. After irradiation, the malondialdehyde (MDA) content and the superoxide dismutase (SOD) activity in the wounded tissues were evaluated, as determined using an MDA and SOD assay kit. Interleukin-6 (IL-6) and epidermal growth factor (EGF) levels were assessed by enzyme-linked immunosorbent assay (ELISA). Models of skin damage were successfully established using a 44 Gy electronic beam. The healing time was shortened in the two HRW-treated groups (P < 0.05). Furthermore, interventions of HRW resulted in a marked reduction in the MDA (P < 0.05) and IL-6 levels (P < 0.01). Additionally, the SOD activity in the two HRW-treated groups was higher than that in the distilled water group at the end of the 1st, 2nd and 3rd weeks (P < 0.001). The EGF level was also significantly increased at the end of the 1st and 2nd weeks (P < 0.05). Compared with the HRW (1.0 ppm) group, the healing rate was higher and the healing time was reduced in the HRW (2.0 ppm) group. A significant decrease was observed in the IL-6 level at the end of the 1st, 3rd and 4th weeks (P < 0.05) and in the EGF content at the end of the 1 week after the HRW administration (P < 0.01). Collectively, our data indicate that HRW accelerates wound healing of radiation-induced skin lesions through anti-oxidative and anti-inflammatory effects, suggesting that HRW has a healing effect on acute radiation-mediated skin injury, and that this is dependent on the concentration of the hydrogen.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Radiotherapy, The First Affiliated Hospital, Hainan Medical University, #33 Longhua Road, Longhua District, Haikou, Hainan Province, PR China
| | - Bing Lin
- Department of Radiotherapy, The First Affiliated Hospital, Hainan Medical University, #33 Longhua Road, Longhua District, Haikou, Hainan Province, PR China
| | - Peng Wang
- Department of Radiotherapy, The First Affiliated Hospital, Hainan Medical University, #33 Longhua Road, Longhua District, Haikou, Hainan Province, PR China
| | - Tao Pan
- Department of Radiotherapy, The First Affiliated Hospital, Hainan Medical University, #33 Longhua Road, Longhua District, Haikou, Hainan Province, PR China
| | - Shun Wang
- Department of Radiotherapy, The First Affiliated Hospital, Hainan Medical University, #33 Longhua Road, Longhua District, Haikou, Hainan Province, PR China
| | - Weisi Chen
- Department of Radiation Physics Center, The First Affiliated Hospital, Hainan Medical University, #33 Longhua Road, Longhua District, Haikou, Hainan Province, PR China
| | - Shaowen Cheng
- Department of Trauma Center, The First Affiliated Hospital, Hainan Medical University, #33 Longhua Road, Longhua District, Haikou, Hainan Province, PR China
| | - Sha Liu
- Department of Radiotherapy, The First Affiliated Hospital, Hainan Medical University, #33 Longhua Road, Longhua District, Haikou, Hainan Province, PR China
- Corresponding author. Department of Radiotherapy, The First Affiliated Hospital, Hainan Medical University, #33 Longhua Road, Longhua District, Haikou 570000, Hainan Province, PR China. Tel: +86-0898-6652-8040; Fax: +86-0898-6652-8040;
| |
Collapse
|
16
|
Higashimura Y, Baba Y, Inoue R, Takagi T, Uchiyama K, Mizushima K, Hirai Y, Ushiroda C, Tanaka Y, Naito Y. Effects of molecular hydrogen-dissolved alkaline electrolyzed water on intestinal environment in mice. Med Gas Res 2018; 8:6-11. [PMID: 29770190 PMCID: PMC5937304 DOI: 10.4103/2045-9912.229597] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence indicates that molecular hydrogen-dissolved alkaline electrolyzed water (AEW) has various physiological activities such as antioxidative activity. Gut microbiota are deeply associated with our health through a symbiotic relationship. Recent reports have described that most gastrointestinal microbial species encode the genetic capacity to metabolize molecular hydrogen, meaning that molecular hydrogen might affect the gut microbial composition. Nevertheless, AEW effects on gut microbiota remain unknown. This study investigated AEW effects on the intestinal environment in mice, including microbial composition and short-chain fatty acid contents. After mice were administered AEW for 4 weeks, 16S rRNA gene sequencing analyses revealed their fecal microbiota profiles. Organic acid concentrations in cecal contents were measured using an HPLC system. Compared to the control group, AEW administration mice had significantly lower serum low-density lipoprotein cholesterol level and alanine aminotransferase activity. Organic acid concentrations of propionic, isobutyric, and isovaleric acids were higher in AEW-administered mice. Results of 16S rRNA gene sequencing analyses showed that the relative abundances of 20 taxa differed significantly in AEW-administered mice. Although the definitive role of gut microbes of AEW-administered mice remains unknown, our data demonstrate the possibility that AEW administration affects the gut microbial composition and that it has beneficial health effects in terms of cholesterol metabolism and liver protection.
Collapse
Affiliation(s)
- Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan.,Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Yasunori Baba
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Yasuko Hirai
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Chihiro Ushiroda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | | | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| |
Collapse
|
17
|
Abstract
Hydrogen is the most abundant chemical element in the universe, and has been used as an inert gas for a long time. More recent studies have shown that molecular hydrogen as a kind of antioxidant, anti-inflammatory, anti-apoptosis, gene expression and signal modulation molecule, can be used for the treatment of many diseases. This review mainly focuses on the research progresses of hydrogen in various medical fields and the possible action mechanisms.
Collapse
Affiliation(s)
- Hong-Mei Li
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Shen
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Wen Ge
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ru-Fang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Ge L, Yang M, Yang NN, Yin XX, Song WG. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017; 8:102653-102673. [PMID: 29254278 PMCID: PMC5731988 DOI: 10.18632/oncotarget.21130] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Since the 2007 discovery that molecular hydrogen (H2) has selective antioxidant properties, multiple studies have shown that H2 has beneficial effects in diverse animal models and human disease. This review discusses H2 biological effects and potential mechanisms of action in various diseases, including metabolic syndrome, organ injury, and cancer; describes effective H2 delivery approaches; and summarizes recent progress toward H2 applications in human medicine. We also discuss remaining questions in H2 therapy, and conclude with an appeal for a greater role for H2 in the prevention and treatment of human ailments that are currently major global health burdens. This review makes a case for supporting hydrogen medicine in human disease prevention and therapy.
Collapse
Affiliation(s)
- Li Ge
- Department of Histology and Embryology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Ming Yang
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Na-Na Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Institute of Atherosclerosis, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Xin-Xin Yin
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Wen-Gang Song
- Department of medical immunology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| |
Collapse
|
19
|
Zhao M, Liu MD, Pu YY, Wang D, Xie Y, Xue GC, Jiang Y, Yang QQ, Sun XJ, Cao L. Hydrogen-rich water improves neurological functional recovery in experimental autoimmune encephalomyelitis mice. J Neuroimmunol 2016; 294:6-13. [PMID: 27138092 DOI: 10.1016/j.jneuroim.2016.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS). The high costs, inconvenient administration, and side effects of current Food and Drug Administration (FDA)-approved drugs often lead to poor adherence to the long-term treatment of MS. Molecular hydrogen (H2) has been reported to exhibit anti-oxidant, anti-apoptotic, anti-inflammatory, anti-allergy, and anti-cancer effects. In the present study, we explored the prophylactic and therapeutic effects of hydrogen-rich water (HRW) on the progress of experimental autoimmune encephalomyelitis (EAE), the animal model for MS. We found that prophylactic administration of both 0.36mM and 0.89mM HRW was able to delay EAE onset and reduce maximum clinical scores. Moreover, 0.89mM HRW also reduced disease severity, CNS infiltration, and demyelination when administered after the onset of disease. Furthermore, HRW treatment prevented infiltration of CD4(+) T lymphocytes into the CNS and inhibited Th17 cell development without affecting Th1 cell populations. Because HRW is non-toxic, inexpensive, easily administered, and can readily cross the blood-brain barrier, our experiments suggest that HRW may have great potential in the treatment of MS.
Collapse
Affiliation(s)
- Ming Zhao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China; Department of Neurology, Chinese PLA 254 Hospital, Tianjin, China
| | - Ming-Dong Liu
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Ying-Yan Pu
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Dan Wang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yu Xie
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Gai-Ci Xue
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yong Jiang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Qian-Qian Yang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Xue-Jun Sun
- Department of Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Li Cao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
20
|
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5:12. [PMID: 26483953 PMCID: PMC4610055 DOI: 10.1186/s13618-015-0035-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023] Open
Abstract
Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4 % is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.
Collapse
Affiliation(s)
- Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Sayaka Sobue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015 Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673 Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| |
Collapse
|