1
|
Differential and Synergistic Effects of Low Birth Weight and Western Diet on Skeletal Muscle Vasculature, Mitochondrial Lipid Metabolism and Insulin Signaling in Male Guinea Pigs. Nutrients 2021; 13:nu13124315. [PMID: 34959870 PMCID: PMC8704817 DOI: 10.3390/nu13124315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Low birth weight (LBW) offspring are at increased risk for developing insulin resistance, a key precursor in metabolic syndrome and type 2 diabetes mellitus. Altered skeletal muscle vasculature, extracellular matrix, amino acid and mitochondrial lipid metabolism, and insulin signaling are implicated in this pathogenesis. Using uteroplacental insufficiency (UPI) to induce intrauterine growth restriction (IUGR) and LBW in the guinea pig, we investigated the relationship between UPI-induced IUGR/LBW and later life skeletal muscle arteriole density, fibrosis, amino acid and mitochondrial lipid metabolism, markers of insulin signaling and glucose uptake, and how a postnatal high-fat, high-sugar “Western” diet (WD) modulates these changes. Muscle of 145-day-old male LBW glucose-tolerant offspring displayed diminished vessel density and altered acylcarnitine levels. Disrupted muscle insulin signaling despite maintained whole-body glucose homeostasis also occurred in both LBW and WD-fed male “lean” offspring. Additionally, postnatal WD unmasked LBW-induced impairment of mitochondrial lipid metabolism, as reflected by increased acylcarnitine accumulation. This study provides evidence that early markers of skeletal muscle metabolic dysfunction appear to be influenced by the in utero environment and interact with a high-fat/high-sugar postnatal environment to exacerbate altered mitochondrial lipid metabolism, promoting mitochondrial overload.
Collapse
|
2
|
Pendleton AL, Wesolowski SR, Regnault TRH, Lynch RM, Limesand SW. Dimming the Powerhouse: Mitochondrial Dysfunction in the Liver and Skeletal Muscle of Intrauterine Growth Restricted Fetuses. Front Endocrinol (Lausanne) 2021; 12:612888. [PMID: 34079518 PMCID: PMC8165279 DOI: 10.3389/fendo.2021.612888] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/22/2021] [Indexed: 11/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) of the fetus, resulting from placental insufficiency (PI), is characterized by low fetal oxygen and nutrient concentrations that stunt growth rates of metabolic organs. Numerous animal models of IUGR recapitulate pathophysiological conditions found in human fetuses with IUGR. These models provide insight into metabolic dysfunction in skeletal muscle and liver. For example, cellular energy production and metabolic rate are decreased in the skeletal muscle and liver of IUGR fetuses. These metabolic adaptations demonstrate that fundamental processes in mitochondria, such as substrate utilization and oxidative phosphorylation, are tempered in response to low oxygen and nutrient availability. As a central metabolic organelle, mitochondria coordinate cellular metabolism by coupling oxygen consumption to substrate utilization in concert with tissue energy demand and accretion. In IUGR fetuses, reducing mitochondrial metabolic capacity in response to nutrient restriction is advantageous to ensure fetal survival. If permanent, however, these adaptations may predispose IUGR fetuses toward metabolic diseases throughout life. Furthermore, these mitochondrial defects may underscore developmental programming that results in the sequela of metabolic pathologies. In this review, we examine how reduced nutrient availability in IUGR fetuses impacts skeletal muscle and liver substrate catabolism, and discuss how enzymatic processes governing mitochondrial function, such as the tricarboxylic acid cycle and electron transport chain, are regulated. Understanding how deficiencies in oxygen and substrate metabolism in response to placental restriction regulate skeletal muscle and liver metabolism is essential given the importance of these tissues in the development of later lifer metabolic dysfunction.
Collapse
Affiliation(s)
- Alexander L. Pendleton
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Stephanie R. Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Ronald M. Lynch
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
Christoforou ER, Sferruzzi-Perri AN. Molecular mechanisms governing offspring metabolic programming in rodent models of in utero stress. Cell Mol Life Sci 2020; 77:4861-4898. [PMID: 32494846 PMCID: PMC7658077 DOI: 10.1007/s00018-020-03566-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
The results of different human epidemiological datasets provided the impetus to introduce the now commonly accepted theory coined as 'developmental programming', whereby the presence of a stressor during gestation predisposes the growing fetus to develop diseases, such as metabolic dysfunction in later postnatal life. However, in a clinical setting, human lifespan and inaccessibility to tissue for analysis are major limitations to study the molecular mechanisms governing developmental programming. Subsequently, studies using animal models have proved indispensable to the identification of key molecular pathways and epigenetic mechanisms that are dysregulated in metabolic organs of the fetus and adult programmed due to an adverse gestational environment. Rodents such as mice and rats are the most used experimental animals in the study of developmental programming. This review summarises the molecular pathways and epigenetic mechanisms influencing alterations in metabolic tissues of rodent offspring exposed to in utero stress and subsequently programmed for metabolic dysfunction. By comparing molecular mechanisms in a variety of rodent models of in utero stress, we hope to summarise common themes and pathways governing later metabolic dysfunction in the offspring whilst identifying reasons for incongruencies between models so to inform future work. With the continued use and refinement of such models of developmental programming, the scientific community may gain the knowledge required for the targeted treatment of metabolic diseases that have intrauterine origins.
Collapse
Affiliation(s)
- Efthimia R Christoforou
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK.
| |
Collapse
|
4
|
Deodati A, Inzaghi E, Cianfarani S. Epigenetics and In Utero Acquired Predisposition to Metabolic Disease. Front Genet 2020; 10:1270. [PMID: 32082357 PMCID: PMC7000755 DOI: 10.3389/fgene.2019.01270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/18/2019] [Indexed: 01/21/2023] Open
Abstract
Epidemiological evidence has shown an association between prenatal malnutrition and a higher risk of developing metabolic disease in adult life. An inadequate intrauterine milieu affects both growth and development, leading to a permanent programming of endocrine and metabolic functions. Programming may be due to the epigenetic modification of genes implicated in the regulation of key metabolic mechanisms, including DNA methylation, histone modifications, and microRNAs (miRNAs). The expression of miRNAs in organs that play a key role in metabolism is influenced by in utero programming, as demonstrated by both experimental and human studies. miRNAs modulate multiple pathways such as insulin signaling, immune responses, adipokine function, lipid metabolism, and food intake. Liver is one of the main target organs of programming, undergoing structural, functional, and epigenetic changes following the exposure to a suboptimal intrauterine environment. The focus of this review is to provide an overview of the effects of exposure to an adverse in utero milieu on epigenome with a focus on the molecular mechanisms involved in liver programming.
Collapse
Affiliation(s)
- Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy
| | - Elena Inzaghi
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally and there is evidence to suggest that the ageing process may actually begin before birth. It has been well-established that the status of both the maternal and early postnatal environments into which an individual is exposed can have huge implications for the risk of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity in later life. Therefore, the dissection of underlying molecular mechanisms to explain this phenomenon, known as 'developmental programming' is a highly investigated area of research. This book chapter will examine the epidemiological evidence and the animal models of suboptimal maternal and early postnatal environments and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
6
|
Li B, Li W, Ahmad H, Zhang L, Wang C, Wang T. Effects of Choline on Meat Quality and Intramuscular Fat in Intrauterine Growth Retardation Pigs. PLoS One 2015; 10:e0129109. [PMID: 26046629 PMCID: PMC4457733 DOI: 10.1371/journal.pone.0129109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/06/2015] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to investigate the effects of choline supplementation on intramuscular fat (IMF) and lipid oxidation in IUGR pigs. Twelve normal body weight (NBW) and twelve intrauterine growth retardation (IUGR) newborn piglets were collected and distributed into 4 treatments (Normal: N, Normal+Choline: N+C, IUGR: I, and IUGR+Choline: I+C) with 6 piglets in each treatment. At 23 d of age, NBW and IUGR pigs were fed basal or choline supplemented diets. The results showed that the IUGR pigs had significantly lower (P<0.05) BW as compared with the NBW pigs at 23 d, 73 d, and 120 d of age, however, there was a slight decreased (P>0.05) in BW of IUGR pigs than the NBW pigs at 200 d. Compared with the NBW pigs, pH of meat longissimus dorsi muscle was significantly lower (P<0.05), and the meat color was improved in IUGR pigs. The malondialdehyde (MDA) levels were significantly decreased (P<0.05), while triglyceride (TG) and IMF contents were significantly higher (P<0.05) in the IUGR pigs than the NBW pigs. IUGR up-regulated the mRNA gene expression of fatty acid synthetase (FAS) and acetyl-CoA carboxylase (ACC). Dietary choline significantly increased (P<0.05) the BW at 120d of age, however, significantly decreased (P<0.05) the TG and IMF contents in both IUGR and NBW pigs. FAS and sterol regulatory element-binding proteins 1 (SREBP1) mRNA gene expressions were increased (P<0.05) while the muscle-carnitine palmityl transferase (M-CPT) and peroxisome proliferators-activated receptorγ (PPARγ) mRNA (P<0.05) gene expressions were decreased in the muscles of the IUGR pigs by choline supplementation. Furthermore, choline supplementation significantly increased (P<0.05) the MDA content as well as the O2•¯ scavenging activity in meat of IUGR pigs. The results suggested that IUGR pigs showed a permanent stunting effect on the growth performance, increased fat deposition and oxidative stress in muscles. However, dietary supplementation of choline improved the fat deposition via enhancing the lipogenesis and reducing the lipolysis.
Collapse
Affiliation(s)
- Bo Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hussain Ahmad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
7
|
Dunlop K, Cedrone M, Staples JF, Regnault TRH. Altered fetal skeletal muscle nutrient metabolism following an adverse in utero environment and the modulation of later life insulin sensitivity. Nutrients 2015; 7:1202-16. [PMID: 25685986 PMCID: PMC4344584 DOI: 10.3390/nu7021202] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR) associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW) is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.
Collapse
Affiliation(s)
- Kristyn Dunlop
- Department of Physiology and Pharmacology, Western University, London, ON N6A-5C1, Canada.
| | - Megan Cedrone
- Department of Biology, Western University, London, ON N6A 5B7, Canada.
| | - James F Staples
- Department of Biology, Western University, London, ON N6A 5B7, Canada.
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Western University, London, ON N6A-5C1, Canada.
- Department of Obstetrics and Gynecology, Western University, London, ON N6H-5W9, Canada.
- Lawson Health Research Institute, London, ON N6C-2R5, Canada.
- Children's Health Research Institute, London, ON N6C-2V5, Canada.
| |
Collapse
|
8
|
Kongsted AH, Tygesen MP, Husted SV, Oliver MH, Tolver A, Christensen VG, Nielsen JH, Nielsen MO. Programming of glucose-insulin homoeostasis: long-term consequences of pre-natal versus early post-natal nutrition insults. Evidence from a sheep model. Acta Physiol (Oxf) 2014; 210:84-98. [PMID: 23452307 DOI: 10.1111/apha.12080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/08/2012] [Accepted: 02/05/2013] [Indexed: 11/28/2022]
Abstract
AIM Exposure to adverse intra-uterine conditions can predispose for metabolic disorders later in life. By using a sheep model, we studied (i) how programming of glucose-insulin homoeostasis during late gestation is manifested later in life depending on the early post-natal dietary exposure and (ii) whether dietary alteration in obese individuals can prevent adverse outcomes of early life programming. METHODS During late gestation, twin-pregnant sheep were fed 100% (NORM) or 50% (LOW) of energy and protein requirements. After birth, offspring were exposed to a moderate (CONV) or high-carbohydrate-high-fat (HCHF) diet until around puberty. Offspring remaining thereafter (exclusively females) were fed a moderate diet until young adulthood. RESULTS LOW lambs had increased insulin secretory responses during intravenous glucose tolerance tests indicative of reduced insulin sensitivity. HCHF lambs were hypertriglyceridaemic, 75% had mild pancreatic collagen infiltration, and their acute insulin secretory response and insulin clearance during intravenous glucose and insulin tolerance tests, respectively, were reduced. However, NORM-HCHF in contrast to LOW-HCHF lambs had normal glucose tolerance, indicating that later health outcomes are highly influenced by pre-natal nutrition. Dietary alteration normalized glucose-insulin homoeostasis in adult HCHF females, whereas late-gestation undernutrition (LOW) permanently depressed insulin sensitivity. CONCLUSION Maintenance of glucose tolerance in sheep exposed to pre-natal undernutrition relied on pancreatic hypersecretion of insulin to compensate for reduced insulin sensitivity. A mismatching high-fat diet in early post-natal life interfered with this pancreatic hypersecretion resulting in reduced glucose tolerance. Early post-natal, but not late pre-natal, impacts on glucose-insulin homoeostasis could be reversed by dietary correction later in life.
Collapse
Affiliation(s)
- A. H. Kongsted
- Department of Veterinary Clinical and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| | | | - S. V. Husted
- Department of Veterinary Clinical and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| | - M. H. Oliver
- Ngapouri Farm Research Laboratory; Liggins Institute; University of Auckland; Auckland New Zealand
| | - A. Tolver
- Department of Basic Sciences and Environment; Faculty of Science; University of Copenhagen; Frederiksberg Denmark
| | - V. G. Christensen
- Department of Veterinary Clinical and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| | - J. H. Nielsen
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; København N Denmark
| | - M. O. Nielsen
- Department of Veterinary Clinical and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| |
Collapse
|
9
|
Developmental programming in response to intrauterine growth restriction impairs myoblast function and skeletal muscle metabolism. J Pregnancy 2012; 2012:631038. [PMID: 22900186 PMCID: PMC3415084 DOI: 10.1155/2012/631038] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 05/25/2012] [Indexed: 02/07/2023] Open
Abstract
Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.
Collapse
|
10
|
Cianfarani S, Agostoni C, Bedogni G, Berni Canani R, Brambilla P, Nobili V, Pietrobelli A. Effect of intrauterine growth retardation on liver and long-term metabolic risk. Int J Obes (Lond) 2012; 36:1270-7. [PMID: 22531091 DOI: 10.1038/ijo.2012.54] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intrauterine growth retardation predisposes toward long-term morbidity from type 2 diabetes and cardiovascular disease. To explain this association, the concept of programming was introduced to indicate a process whereby a stimulus or insult at a critical period of development has lasting or lifelong consequences on key endocrine and metabolic pathways. Subtle changes in cell composition of tissues, induced by suboptimal conditions in utero, can influence postnatal physiological functions. There is increasing evidence, suggesting that liver may represent one of the candidate organs targeted by programming, undergoing structural, functional and epigenetic changes following exposure to an unfavorable intrauterine environment. The aim of this review is to provide insights into the molecular mechanisms underlying liver programming that contribute to increase the cardiometabolic risk in subjects with intrauterine growth restriction.
Collapse
Affiliation(s)
- S Cianfarani
- Molecular Endocrinology Unit-DPUO, Bambino Gesù Children's Hospital - 'Rina Balducci' Center of Pediatric Endocrinology, Tor Vergata University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Tarry-Adkins JL, Ozanne SE. Mechanisms of early life programming: current knowledge and future directions. Am J Clin Nutr 2011; 94:1765S-1771S. [PMID: 21543536 DOI: 10.3945/ajcn.110.000620] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been >20 y since epidemiologic studies showed a relation between patterns of early growth and subsequent risk of diseases, such as type 2 diabetes, cardiovascular disease, and the metabolic syndrome. Studies of identical twins, individuals who were in utero during periods of famine, and animal models have provided strong evidence that the early environment, including early nutrition, plays an important role in mediating these relations. The concept of early life programming is therefore widely accepted. However, the mechanisms by which a phenomenon that occurs in early life can have long-term effects on the function of a cell and therefore on the metabolism of an organism many years later are only starting to emerge. These mechanisms include 1) permanent structural changes in an organ resulting from suboptimal concentrations of an important factor during a critical period of development, eg, the permanent reduction in β cell mass in the endocrine pancreas; 2) persistent alterations in epigenetic modifications (eg, DNA methylation and histone modifications) that lead to changes in gene expression (eg, several transcription factors are susceptible to programmed changes in gene expression through such mechanisms); and 3) permanent effects on the regulation of cellular aging (eg, increases in oxidative stress that lead to macromolecular damage, including that to DNA and specifically to telomeres, can contribute to such effects). Further understanding of such processes will enable the development of preventive and intervention strategies to combat the burden of common diseases such as type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
12
|
Horgan RP, Broadhurst DI, Walsh SK, Dunn WB, Brown M, Roberts CT, North RA, McCowan LM, Kell DB, Baker PN, Kenny LC. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. J Proteome Res 2011; 10:3660-73. [PMID: 21671558 DOI: 10.1021/pr2002897] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Being born small for gestational age (SGA) confers increased risks of perinatal morbidity and mortality and increases the risk of cardiovascular complications and diabetes in later life. Accumulating evidence suggests that the etiology of SGA is usually associated with poor placental vascular development in early pregnancy. We examined metabolomic profiles using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) in three independent studies: (a) venous cord plasma from normal and SGA babies, (b) plasma from a rat model of placental insufficiency and controls, and (c) early pregnancy peripheral plasma samples from women who subsequently delivered a SGA baby and controls. Multivariate analysis by cross-validated Partial Least Squares Discriminant Analysis (PLS-DA) of all 3 studies showed a comprehensive and similar disruption of plasma metabolism. A multivariate predictive model combining 19 metabolites produced by a Genetic Algorithm-based search program gave an Odds Ratio for developing SGA of 44, with an area under the Receiver Operator Characteristic curve of 0.9. Sphingolipids, phospholipids, carnitines, and fatty acids were among this panel of metabolites. The finding of a consistent discriminatory metabolite signature in early pregnancy plasma preceding the onset of SGA offers insight into disease pathogenesis and offers the promise of a robust presymptomatic screening test.
Collapse
Affiliation(s)
- Richard P Horgan
- The Anu Research Centre, Department of Obstetrics and Gynaecology, University College Cork, Cork University Maternity Hospital, Cork, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med 2011; 9:48. [PMID: 21542944 PMCID: PMC3115896 DOI: 10.1186/1741-7015-9-48] [Citation(s) in RCA: 899] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/05/2011] [Indexed: 01/19/2023] Open
Abstract
Metabolic syndrome (MetS) is a complex disorder defined by a cluster of interconnected factors that increase the risk of cardiovascular atherosclerotic diseases and diabetes mellitus type 2. Currently, several different definitions of MetS exist, causing substantial confusion as to whether they identify the same individuals or represent a surrogate of risk factors. Recently, a number of other factors besides those traditionally used to define MetS that are also linked to the syndrome have been identified. In this review, we critically consider existing definitions and evolving information, and conclude that there is still a need to develop uniform criteria to define MetS, so as to enable comparisons between different studies and to better identify patients at risk. As the application of the MetS model has not been fully validated in children and adolescents as yet, and because of its alarmingly increasing prevalence in this population, we suggest that diagnosis, prevention and treatment in this age group should better focus on established risk factors rather than the diagnosis of MetS.
Collapse
Affiliation(s)
- Eva Kassi
- Department of Biochemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Pervanidou
- First Department of Paediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory Kaltsas
- Department of Pathophysiology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Chrousos
- First Department of Paediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
|
15
|
Gatford KL, Simmons RA, De Blasio MJ, Robinson JS, Owens JA. Review: Placental programming of postnatal diabetes and impaired insulin action after IUGR. Placenta 2010; 31 Suppl:S60-5. [PMID: 20096455 DOI: 10.1016/j.placenta.2009.12.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/12/2009] [Accepted: 12/14/2009] [Indexed: 01/23/2023]
Abstract
Being born small due to poor growth before birth increases the risk of developing metabolic disease, including type 2 diabetes, in later life. Inadequate insulin secretion and decreasing insulin sensitivity contribute to this increased diabetes risk. Impaired placental growth, development and function are major causes of impaired fetal growth and development and therefore of IUGR. Restricted placental growth (PR) and function in non-human animals induces similar changes in insulin secretion and sensitivity as in human IUGR, making these valuable tools to investigate the underlying mechanisms and to test interventions to prevent or ameliorate the risk of disease after IUGR. Epigenetic changes induced by an adverse fetal environment are strongly implicated as causes of later impaired insulin action. These have been well-characterised in the PR rat, where impaired insulin secretion is linked to epigenetic changes at the Pdx-1 promotor and reduced expression of this transcription factor. Present research is particularly focussed on developing intervention strategies to prevent or reverse epigenetic changes, and normalise gene expression and insulin action after PR, in order to translate this to treatments to improve outcomes in human IUGR.
Collapse
Affiliation(s)
- K L Gatford
- Research Centre for Early Origins of Health and Disease, Robinson Institute, and School of Paediatrics and Reproductive Health, University of Adelaide, SA 5005, Australia.
| | | | | | | | | |
Collapse
|
16
|
Aquaporin 9 expression and its localization in normal skeletal myofiber. J Mol Histol 2009; 40:165-70. [PMID: 19629726 DOI: 10.1007/s10735-009-9226-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
Abstract
The examination was performed whether aquaporin (AQP) 9 is expressed in normal skeletal muscle at mRNA and protein levels. Gel electrophoresis of the reverse transcription-polymerase chain reaction (RT-PCR) product of total RNA samples of human normal muscles by oligonucleotide primers for human AQP9 showed a band of 221 basepairs, which corresponded to the basepair length between two primers of AQP9. The nucleotide sequence of RT-PCR product coincided with that of human AQP9. Immunoblot analysis revealed that the rabbit and sheep antibodies against the synthetic peptide of the C-terminal cytoplasmic domain of human AQP9 molecule reacted with a protein of approximately 30 kDa molecular weight in extracts of human normal skeletal muscles. Immunohistochemistry with our anti-AQP9 antibodies showed an immunoreaction at the myofiber surface of both type 1 and type 2 fibers with almost equal staining intensity in human skeletal muscles. The implication of AQP9 expression in skeletal myofibers was discussed.
Collapse
|