1
|
Cao Y, Li J, Liu L, Du G, Liu Y. Harnessing microbial heterogeneity for improved biosynthesis fueled by synthetic biology. Synth Syst Biotechnol 2024; 10:281-293. [PMID: 39686977 PMCID: PMC11646789 DOI: 10.1016/j.synbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolic engineering-driven microbial cell factories have made great progress in the efficient bioproduction of biochemical and recombinant proteins. However, the low efficiency and robustness of microbial cell factories limit their industrial applications. Harnessing microbial heterogeneity contributes to solving this. In this review, the origins of microbial heterogeneity and its effects on biosynthesis are first summarized. Synthetic biology-driven tools and strategies that can be used to improve biosynthesis by increasing and reducing microbial heterogeneity are then systematically summarized. Next, novel single-cell technologies available for unraveling microbial heterogeneity and facilitating heterogeneity regulation are discussed. Furthermore, a combined workflow of increasing genetic heterogeneity in the strain-building step to help in screening highly productive strains - reducing heterogeneity in the production process to obtain highly robust strains (IHP-RHR) facilitated by single-cell technologies was proposed to obtain highly productive and robust strains by harnessing microbial heterogeneity. Finally, the prospects and future challenges are discussed.
Collapse
Affiliation(s)
- Yanting Cao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2024:10.1038/s41576-024-00786-y. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Munkler LP, Mohamed ET, Vazquez-Uribe R, Visby Nissen V, Rugbjerg P, Worberg A, Woodley JM, Feist AM, Sommer MOA. Genetic heterogeneity of engineered Escherichia coli Nissle 1917 strains during scale-up simulation. Metab Eng 2024; 85:159-166. [PMID: 39111565 DOI: 10.1016/j.ymben.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Advanced microbiome therapeutics have emerged as a powerful approach for the treatment of numerous diseases. While the genetic instability of genetically engineered microorganisms is a well-known challenge in the scale-up of biomanufacturing processes, it has not yet been investigated for advanced microbiome therapeutics. Here, the evolution of engineered Escherichia coli Nissle 1917 strains producing Interleukin 2 and Aldafermin were investigated in two strain backgrounds with and without the three error-prone DNA polymerases polB, dinB, and umuDC, which contribute to the mutation rate of the host strain. Whole genome short-read sequencing revealed the genetic instability of the pMUT-based production plasmid after serial passaging for approximately 150 generations using an automated platform for high-throughput microbial evolution in five independent lineages for six distinct strains. While a reduction of the number of mutations of 12%-43% could be observed after the deletion of the error-prone DNA polymerases, the interruption of production-relevant genes could not be prevented, highlighting the need for additional strategies to improve the stability of advanced microbiome therapeutics.
Collapse
Affiliation(s)
- Lara P Munkler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Elsayed T Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Vlaams Instituut voor Biotechnologie, Center for Microbiology, Leuven, Belgium
| | - Victoria Visby Nissen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | | - Andreas Worberg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Adam M Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
4
|
Ravagnan G, Schmid J. Promising non-model microbial cell factories obtained by genome reduction. Front Bioeng Biotechnol 2024; 12:1427248. [PMID: 39161352 PMCID: PMC11330790 DOI: 10.3389/fbioe.2024.1427248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 08/21/2024] Open
Abstract
The development of sustainable processes is the most important basis to realize the shift from the fossil-fuel based industry to bio-based production. Non-model microbes represent a great resource due to their advantageous traits and unique repertoire of bioproducts. However, most of these microbes require modifications to improve their growth and production capacities as well as robustness in terms of genetic stability. For this, genome reduction is a valuable and powerful approach to meet industry requirements and to design highly efficient production strains. Here, we provide an overview of various genome reduction approaches in prokaryotic microorganisms, with a focus on non-model organisms, and highlight the example of a successful genome-reduced model organism chassis. Furthermore, we discuss the advances and challenges of promising non-model microbial chassis.
Collapse
Affiliation(s)
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Radde N, Mortensen GA, Bhat D, Shah S, Clements JJ, Leonard SP, McGuffie MJ, Mishler DM, Barrick JE. Measuring the burden of hundreds of BioBricks defines an evolutionary limit on constructability in synthetic biology. Nat Commun 2024; 15:6242. [PMID: 39048554 PMCID: PMC11269670 DOI: 10.1038/s41467-024-50639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise interferes with homeostasis. Escape mutants that alleviate this burden can rapidly evolve and take over cell populations, making genetic engineering less reliable and predictable. Synthetic biologists often use genetic parts encoded on plasmids, but their burden is rarely characterized. We measured how 301 BioBrick plasmids affected Escherichia coli growth and found that 59 (19.6%) were burdensome, primarily because they depleted the limited gene expression resources of host cells. Overall, no BioBricks reduced the growth rate of E. coli by >45%, which agreed with a population genetic model that predicts such plasmids should be unclonable. We made this model available online for education ( https://barricklab.org/burden-model ) and added our burden measurements to the iGEM Registry. Our results establish a fundamental limit on what DNA constructs and genetic modifications can be successfully engineered into cells.
Collapse
Affiliation(s)
- Noor Radde
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Genevieve A Mortensen
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Diya Bhat
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Shireen Shah
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Joseph J Clements
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Matthew J McGuffie
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Dennis M Mishler
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
- The Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Ma S, Su T, Lu X, Qi Q. Bacterial genome reduction for optimal chassis of synthetic biology: a review. Crit Rev Biotechnol 2024; 44:660-673. [PMID: 37380345 DOI: 10.1080/07388551.2023.2208285] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/13/2022] [Accepted: 02/20/2023] [Indexed: 06/30/2023]
Abstract
Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| |
Collapse
|
7
|
Philipp LA, Bühler K, Ulber R, Gescher J. Beneficial applications of biofilms. Nat Rev Microbiol 2024; 22:276-290. [PMID: 37957398 DOI: 10.1038/s41579-023-00985-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/15/2023]
Abstract
Many microorganisms live in the form of a biofilm. Although they are feared in the medical sector, biofilms that are composed of non-pathogenic organisms can be highly beneficial in many applications, including the production of bulk and fine chemicals. Biofilm systems are natural retentostats in which the biocatalysts can adapt and optimize their metabolism to different conditions over time. The adherent nature of biofilms allows them to be used in continuous systems in which the hydraulic retention time is much shorter than the doubling time of the biocatalysts. Moreover, the resilience of organisms growing in biofilms, together with the potential of uncoupling growth from catalytic activity, offers a wide range of opportunities. The ability to work with continuous systems using a potentially self-advancing whole-cell biocatalyst is attracting interest from a range of disciplines, from applied microbiology to materials science and from bioengineering to process engineering. The field of beneficial biofilms is rapidly evolving, with an increasing number of applications being explored, and the surge in demand for sustainable and biobased solutions and processes is accelerating advances in the field. This Review provides an overview of the research topics, challenges, applications and future directions in beneficial and applied biofilm research.
Collapse
Affiliation(s)
- Laura-Alina Philipp
- Hamburg University of Technology, Institute of Technical Microbiology, Hamburg, Germany
| | - Katja Bühler
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Roland Ulber
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Johannes Gescher
- Hamburg University of Technology, Institute of Technical Microbiology, Hamburg, Germany.
| |
Collapse
|
8
|
Hitomi K, Ishii Y, Ying BW. Experimental evolution for the recovery of growth loss due to genome reduction. eLife 2024; 13:RP93520. [PMID: 38690805 PMCID: PMC11062635 DOI: 10.7554/elife.93520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.
Collapse
Affiliation(s)
- Kenya Hitomi
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Yoichiro Ishii
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| |
Collapse
|
9
|
Jerabek T, Weiß L, Fahrion H, Zeh N, Raab N, Lindner B, Fischer S, Otte K. In pursuit of a minimal CHO genome: Establishment of large-scale genome deletions. N Biotechnol 2024; 79:100-110. [PMID: 38154614 DOI: 10.1016/j.nbt.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
Chinese hamster ovary (CHO) cells are the most commonly used mammalian cell line for the production of complex therapeutic glycoproteins. As CHO cells have evolved as part of a multicellular organism, they harbor many cellular functions irrelevant for their application as production hosts in industrial bioprocesses. Consequently, CHO cells have been the target for numerous genetic engineering efforts in the past, but a tailored host cell chassis holistically optimized for its specific task in a bioreactor is still missing. While the concept of genome reduction has already been successfully applied to bacterial production cells, attempts to create higher eukaryotic production hosts exhibiting reduced genomes have not been reported yet. Here, we present the establishment and application of a large-scale genome deletion strategy for targeted excision of large genomic regions in CHO cells. We demonstrate the feasibility of genome reduction in CHO cells using optimized CRISPR/Cas9 based experimental protocols targeting large non-essential genomic regions with high efficiency. Achieved genome deletions of non-essential genetic regions did not introduce negative effects on bioprocess relevant parameters, although we conducted the largest reported genomic excision of 864 kilobase pairs in CHO cells so far. The concept presented serves as a directive to accelerate the development of a significantly genome-reduced CHO host cell chassis paving the way for a next generation of CHO cell factories.
Collapse
Affiliation(s)
- Tobias Jerabek
- University of Applied Sciences Biberach, Institute of Applied Biotechnology, Biberach, Germany.
| | - Linus Weiß
- University of Applied Sciences Biberach, Institute of Applied Biotechnology, Biberach, Germany
| | - Hannah Fahrion
- University of Applied Sciences Biberach, Institute of Applied Biotechnology, Biberach, Germany
| | - Nikolas Zeh
- University of Applied Sciences Biberach, Institute of Applied Biotechnology, Biberach, Germany; Boehringer Ingelheim Pharma GmbH & Co KG, Bioprocess Development Biologicals, Cell Line Development, Biberach, Germany
| | - Nadja Raab
- University of Applied Sciences Biberach, Institute of Applied Biotechnology, Biberach, Germany
| | - Benjamin Lindner
- Boehringer Ingelheim Pharma GmbH & Co KG, Bioprocess Development Biologicals, Cell Line Development, Biberach, Germany
| | - Simon Fischer
- Boehringer Ingelheim Pharma GmbH & Co KG, Bioprocess Development Biologicals, Cell Line Development, Biberach, Germany
| | - Kerstin Otte
- University of Applied Sciences Biberach, Institute of Applied Biotechnology, Biberach, Germany
| |
Collapse
|
10
|
Hamed MB, Busche T, Simoens K, Carpentier S, Kormanec J, Van Mellaert L, Anné J, Kalinowski J, Bernaerts K, Karamanou S, Economou A. Enhanced protein secretion in reduced genome strains of Streptomyces lividans. Microb Cell Fact 2024; 23:13. [PMID: 38183102 PMCID: PMC10768272 DOI: 10.1186/s12934-023-02269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND S. lividans TK24 is a popular host for the production of small molecules and the secretion of heterologous protein. Within its large genome, twenty-nine non-essential clusters direct the biosynthesis of secondary metabolites. We had previously constructed ten chassis strains, carrying deletions in various combinations of specialized metabolites biosynthetic clusters, such as those of the blue actinorhodin (act), the calcium-dependent antibiotic (cda), the undecylprodigiosin (red), the coelimycin A (cpk) and the melanin (mel) clusters, as well as the genes hrdD, encoding a non-essential sigma factor, and matAB, a locus affecting mycelial aggregation. Genome reduction was aimed at reducing carbon flow toward specialized metabolite biosynthesis to optimize the production of secreted heterologous protein. RESULTS Two of these S. lividans TK24 derived chassis strains showed ~ 15% reduction in biomass yield, 2-fold increase of their total native secretome mass yield and enhanced abundance of several secreted proteins compared to the parental strain. RNAseq and proteomic analysis of the secretome suggested that genome reduction led to cell wall and oxidative stresses and was accompanied by the up-regulation of secretory chaperones and of secDF, a Sec-pathway component. Interestingly, the amount of the secreted heterologous proteins mRFP and mTNFα, by one of these strains, was 12 and 70% higher, respectively, than that secreted by the parental strain. CONCLUSION The current study described a strategy to construct chassis strains with enhanced secretory abilities and proposed a model linking the deletion of specialized metabolite biosynthetic clusters to improved production of secreted heterologous proteins.
Collapse
Affiliation(s)
- Mohamed Belal Hamed
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Molecular Biology Depart, National Research Centre, Dokii, Cairo, Egypt
- Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Kenneth Simoens
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, Leuven, B-3001, Belgium
| | - Sebastien Carpentier
- SYBIOMA, KU Leuven facility for Systems Biology Based Mass Spectrometry, Leuven, B-3000, Belgium
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 84551, Slovakia
| | - Lieve Van Mellaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Jozef Anné
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Joern Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Kristel Bernaerts
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, Leuven, B-3001, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium.
| | - Anastassios Economou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
11
|
Enright AL, Banta AB, Ward RD, Rivera Vazquez J, Felczak MM, Wolfe MB, TerAvest MA, Amador-Noguez D, Peters JM. The genetics of aerotolerant growth in an alphaproteobacterium with a naturally reduced genome. mBio 2023; 14:e0148723. [PMID: 37905909 PMCID: PMC10746277 DOI: 10.1128/mbio.01487-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The inherent complexity of biological systems is a major barrier to our understanding of cellular physiology. Bacteria with markedly fewer genes than their close relatives, or reduced genome bacteria, are promising biological models with less complexity. Reduced genome bacteria can also have superior properties for industrial use, provided the reduction does not overly restrict strain robustness. Naturally reduced genome bacteria, such as the alphaproteobacterium Zymomonas mobilis, have fewer genes but remain environmentally robust. In this study, we show that Z. mobilis is a simplified genetic model for Alphaproteobacteria, a class with important impacts on the environment, human health, and industry. We also identify genes that are only required in the absence of atmospheric oxygen, uncovering players that maintain and utilize the cellular energy state. Our findings have broad implications for the genetics of Alphaproteobacteria and industrial use of Z. mobilis to create biofuels and bioproducts.
Collapse
Affiliation(s)
- Amy L. Enright
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan D. Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julio Rivera Vazquez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Magdalena M. Felczak
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Michael B. Wolfe
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michaela A. TerAvest
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Hamese S, Mugwanda K, Takundwa M, Prinsloo E, Thimiri Govinda Raj DB. Recent advances in genome annotation and synthetic biology for the development of microbial chassis. J Genet Eng Biotechnol 2023; 21:156. [PMID: 38038785 PMCID: PMC10692039 DOI: 10.1186/s43141-023-00598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
This article provides an overview of microbial host selection, synthetic biology, genome annotation, metabolic modeling, and computational methods for predicting gene essentiality for developing a microbial chassis. This article focuses on lactic acid bacteria (LAB) as a microbial chassis and strategies for genome annotation of the LAB genome. As a case study, Lactococcus lactis is chosen based on its well-established therapeutic applications such as probiotics and oral vaccine development. In this article, we have delineated the strategies for genome annotations of lactic acid bacteria. These strategies also provide insights into streamlining genome reduction without compromising the functionality of the chassis and the potential for minimal genome chassis development. These insights underscore the potential for the development of efficient and sustainable synthetic biology systems using streamlined microbial chassis with minimal genomes.
Collapse
Affiliation(s)
- Saltiel Hamese
- Synthetic Nanobiotechnology and Biomachines Group, Centre for Synthetic Biology and Precision Medicine, Next Generation Health Cluster, CSIR Pretoria, South Africa
- Biotechnology Innovation Centre, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Kanganwiro Mugwanda
- Synthetic Nanobiotechnology and Biomachines Group, Centre for Synthetic Biology and Precision Medicine, Next Generation Health Cluster, CSIR Pretoria, South Africa
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Mutsa Takundwa
- Synthetic Nanobiotechnology and Biomachines Group, Centre for Synthetic Biology and Precision Medicine, Next Generation Health Cluster, CSIR Pretoria, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Deepak B Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines Group, Centre for Synthetic Biology and Precision Medicine, Next Generation Health Cluster, CSIR Pretoria, South Africa.
| |
Collapse
|
13
|
Arbel-Groissman M, Menuhin-Gruman I, Naki D, Bergman S, Tuller T. Fighting the battle against evolution: designing genetically modified organisms for evolutionary stability. Trends Biotechnol 2023; 41:1518-1531. [PMID: 37442714 DOI: 10.1016/j.tibtech.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Synthetic biology has made significant progress in many areas, but a major challenge that has received limited attention is the evolutionary stability of synthetic constructs made of heterologous genes. The expression of these constructs in microorganisms, that is, production of proteins that are not necessary for the organism, is a metabolic burden, leading to a decrease in relative fitness and make the synthetic constructs unstable over time. This is a significant concern for the synthetic biology community, particularly when it comes to bringing this technology out of the laboratory. In this review, we discuss the issue of evolutionary stability in synthetic biology and review the available tools to address this challenge.
Collapse
Affiliation(s)
- Matan Arbel-Groissman
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
14
|
Cordell WT, Avolio G, Takors R, Pfleger BF. Milligrams to kilograms: making microbes work at scale. Trends Biotechnol 2023; 41:1442-1457. [PMID: 37271589 DOI: 10.1016/j.tibtech.2023.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
If biomanufacturing can become a sustainable route for producing chemicals, it will provide a critical step in reducing greenhouse gas emissions to fight climate change. However, efforts to industrialize microbial synthesis of chemicals have met with varied success, due, in part, to challenges in translating laboratory successes to industrial scale. With a particular focus on Escherichia coli, this review examines the lessons learned when studying microbial physiology and metabolism under conditions that simulate large-scale bioreactors and methods to minimize cellular waste through reduction of maintenance energy, optimizing the stress response and minimizing culture heterogeneity. With general strategies to overcome these challenges, biomanufacturing process scale-up could be de-risked and the time and cost of bringing promising syntheses to market could be reduced.
Collapse
Affiliation(s)
- William T Cordell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gennaro Avolio
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Center Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Arboleda-García A, Alarcon-Ruiz I, Boada-Acosta L, Boada Y, Vignoni A, Jantus-Lewintre E. Advancements in synthetic biology-based bacterial cancer therapy: A modular design approach. Crit Rev Oncol Hematol 2023; 190:104088. [PMID: 37541537 DOI: 10.1016/j.critrevonc.2023.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Synthetic biology aims to program living bacteria cells with artificial genetic circuits for user-defined functions, transforming them into powerful tools with numerous applications in various fields, including oncology. Cancer treatments have serious side effects on patients due to the systemic action of the drugs involved. To address this, new systems that provide localized antitumoral action while minimizing damage to healthy tissues are required. Bacteria, often considered pathogenic agents, have been used as cancer treatments since the early 20th century. Advances in genetic engineering, synthetic biology, microbiology, and oncology have improved bacterial therapies, making them safer and more effective. Here we propose six modules for a successful synthetic biology-based bacterial cancer therapy, the modules include Payload, Release, Tumor-targeting, Biocontainment, Memory, and Genetic Circuit Stability Module. These will ensure antitumor activity, safety for the environment and patient, prevent bacterial colonization, maintain cell stability, and prevent loss or defunctionalization of the genetic circuit.
Collapse
Affiliation(s)
- Andrés Arboleda-García
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Ivan Alarcon-Ruiz
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lissette Boada-Acosta
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Yadira Boada
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Alejandro Vignoni
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain.
| | - Eloisa Jantus-Lewintre
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
16
|
Aida H, Ying BW. Efforts to Minimise the Bacterial Genome as a Free-Living Growing System. BIOLOGY 2023; 12:1170. [PMID: 37759570 PMCID: PMC10525146 DOI: 10.3390/biology12091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Exploring the minimal genetic requirements for cells to maintain free living is an exciting topic in biology. Multiple approaches are employed to address the question of the minimal genome. In addition to constructing the synthetic genome in the test tube, reducing the size of the wild-type genome is a practical approach for obtaining the essential genomic sequence for living cells. The well-studied Escherichia coli has been used as a model organism for genome reduction owing to its fast growth and easy manipulation. Extensive studies have reported how to reduce the bacterial genome and the collections of genomic disturbed strains acquired, which were sufficiently reviewed previously. However, the common issue of growth decrease caused by genetic disturbance remains largely unaddressed. This mini-review discusses the considerable efforts made to improve growth fitness, which was decreased due to genome reduction. The proposal and perspective are clarified for further accumulated genetic deletion to minimise the Escherichia coli genome in terms of genome reduction, experimental evolution, medium optimization, and machine learning.
Collapse
Affiliation(s)
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| |
Collapse
|
17
|
Chlebek JL, Leonard SP, Kang-Yun C, Yung MC, Ricci DP, Jiao Y, Park DM. Prolonging genetic circuit stability through adaptive evolution of overlapping genes. Nucleic Acids Res 2023; 51:7094-7108. [PMID: 37260076 PMCID: PMC10359631 DOI: 10.1093/nar/gkad484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
The development of synthetic biological circuits that maintain functionality over application-relevant time scales remains a significant challenge. Here, we employed synthetic overlapping sequences in which one gene is encoded or 'entangled' entirely within an alternative reading frame of another gene. In this design, the toxin-encoding relE was entangled within ilvA, which encodes threonine deaminase, an enzyme essential for isoleucine biosynthesis. A functional entanglement construct was obtained upon modification of the ribosome-binding site of the internal relE gene. Using this optimized design, we found that the selection pressure to maintain functional IlvA stabilized the production of burdensome RelE for >130 generations, which compares favorably with the most stable kill-switch circuits developed to date. This stabilizing effect was achieved through a complete alteration of the allowable landscape of mutations such that mutations inactivating the entangled genes were disfavored. Instead, the majority of lineages accumulated mutations within the regulatory region of ilvA. By reducing baseline relE expression, these more 'benign' mutations lowered circuit burden, which suppressed the accumulation of relE-inactivating mutations, thereby prolonging kill-switch function. Overall, this work demonstrates the utility of sequence entanglement paired with an adaptive laboratory evolution campaign to increase the evolutionary stability of burdensome synthetic circuits.
Collapse
Affiliation(s)
- Jennifer L Chlebek
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Sean P Leonard
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Christina Kang-Yun
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Mimi C Yung
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Dante P Ricci
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yongqin Jiao
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Dan M Park
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
18
|
Mu X, Zhang F. Diverse mechanisms of bioproduction heterogeneity in fermentation and their control strategies. J Ind Microbiol Biotechnol 2023; 50:kuad033. [PMID: 37791393 PMCID: PMC10583207 DOI: 10.1093/jimb/kuad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Microbial bioproduction often faces challenges related to populational heterogeneity, where cells exhibit varying biosynthesis capabilities. Bioproduction heterogeneity can stem from genetic and non-genetic factors, resulting in decreased titer, yield, stability, and reproducibility. Consequently, understanding and controlling bioproduction heterogeneity are crucial for enhancing the economic competitiveness of large-scale biomanufacturing. In this review, we provide a comprehensive overview of current understandings of the various mechanisms underlying bioproduction heterogeneity. Additionally, we examine common strategies for controlling bioproduction heterogeneity based on these mechanisms. By implementing more robust measures to mitigate heterogeneity, we anticipate substantial enhancements in the scalability and stability of bioproduction processes. ONE-SENTENCE SUMMARY This review summarizes current understandings of different mechanisms of bioproduction heterogeneity and common control strategies based on these mechanisms.
Collapse
Affiliation(s)
- Xinyue Mu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
19
|
Heieck K, Arnold ND, Brück TB. Metabolic stress constrains microbial L-cysteine production in Escherichia coli by accelerating transposition through mobile genetic elements. Microb Cell Fact 2023; 22:10. [PMID: 36642733 PMCID: PMC9841684 DOI: 10.1186/s12934-023-02021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND L-cysteine is an essential chemical building block in the pharmaceutical-, cosmetic-, food and agricultural sector. Conventionally, L-cysteine production relies on the conversion of keratinous biomass mediated by hydrochloric acid. Today, fermentative production based on recombinant E. coli, where L-cysteine production is streamlined and facilitated by synthetic plasmid constructs, is an alternative process at industrial scale. However, metabolic stress and the resulting production escape mechanisms in evolving populations are severely limiting factors during industrial biomanufacturing. We emulate high generation numbers typically reached in industrial fermentation processes with Escherichia coli harbouring L-cysteine production plasmid constructs. So far no genotypic and phenotypic alterations in early and late L-cysteine producing E. coli populations have been studied. RESULTS In a comparative experimental design, the E. coli K12 production strain W3110 and the reduced genome strain MDS42, almost free of insertion sequences, were used as hosts. Data indicates that W3110 populations acquire growth fitness at the expense of L-cysteine productivity within 60 generations, while production in MDS42 populations remains stable. For the first time, the negative impact of predominantly insertion sequence family 3 and 5 transposases on L-cysteine production is reported, by combining differential transcriptome analysis with NGS based deep plasmid sequencing. Furthermore, metabolic clustering of differentially expressed genes supports the hypothesis, that metabolic stress induces rapid propagation of plasmid rearrangements, leading to reduced L-cysteine yields in evolving populations over industrial fermentation time scales. CONCLUSION The results of this study implicate how selective deletion of insertion sequence families could be a new route for improving industrial L-cysteine or even general amino acid production using recombinant E. coli hosts. Instead of using minimal genome strains, a selective deletion of certain IS families could offer the benefits of adaptive laboratory evolution (ALE) while maintaining enhanced L-cysteine production stability.
Collapse
Affiliation(s)
- Kevin Heieck
- grid.6936.a0000000123222966Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Nathanael David Arnold
- grid.6936.a0000000123222966Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Thomas Bartholomäus Brück
- grid.6936.a0000000123222966Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
20
|
Halvorsen TM, Ricci DP, Park DM, Jiao Y, Yung MC. Comparison of Kill Switch Toxins in Plant-Beneficial Pseudomonas fluorescens Reveals Drivers of Lethality, Stability, and Escape. ACS Synth Biol 2022; 11:3785-3796. [PMID: 36346907 DOI: 10.1021/acssynbio.2c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kill switches provide a biocontainment strategy in which unwanted growth of an engineered microorganism is prevented by expression of a toxin gene. A major challenge in kill switch engineering is balancing evolutionary stability with robust cell killing activity in application relevant host strains. Understanding host-specific containment dynamics and modes of failure helps to develop potent yet stable kill switches. To guide the design of robust kill switches in the agriculturally relevant strain Pseudomonas fluorescens SBW25, we present a comparison of lethality, stability, and genetic escape of eight different toxic effectors in the presence of their cognate inactivators (i.e., toxin-antitoxin modules, polymorphic exotoxin-immunity systems, restriction endonuclease-methyltransferase pair). We find that cell killing capacity and evolutionary stability are inversely correlated and dependent on the level of protection provided by the inactivator gene. Decreasing the proteolytic stability of the inactivator protein can increase cell killing capacity, but at the cost of long-term circuit stability. By comparing toxins within the same genetic context, we determine that modes of genetic escape increase with circuit complexity and are driven by toxin activity, the protective capacity of the inactivator, and the presence of mutation-prone sequences within the circuit. Collectively, the results of our study reveal that circuit complexity, toxin choice, inactivator stability, and DNA sequence design are powerful drivers of kill switch stability and valuable targets for optimization of biocontainment systems.
Collapse
Affiliation(s)
- Tiffany M Halvorsen
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Dante P Ricci
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Dan M Park
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Yongqin Jiao
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Mimi C Yung
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| |
Collapse
|
21
|
Williams RL, Murray RM. Integrase-mediated differentiation circuits improve evolutionary stability of burdensome and toxic functions in E. coli. Nat Commun 2022; 13:6822. [PMID: 36357387 PMCID: PMC9649629 DOI: 10.1038/s41467-022-34361-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/22/2022] [Indexed: 11/12/2022] Open
Abstract
Advances in synthetic biology, bioengineering, and computation allow us to rapidly and reliably program cells with increasingly complex and useful functions. However, because the functions we engineer cells to perform are typically burdensome to cell growth, they can be rapidly lost due to the processes of mutation and natural selection. Here, we show that a strategy of terminal differentiation improves the evolutionary stability of burdensome functions in a general manner by realizing a reproductive and metabolic division of labor. To implement this strategy, we develop a genetic differentiation circuit in Escherichia coli using unidirectional integrase-recombination. With terminal differentiation, differentiated cells uniquely express burdensome functions driven by the orthogonal T7 RNA polymerase, but their capacity to proliferate is limited to prevent the propagation of advantageous loss-of-function mutations that inevitably occur. We demonstrate computationally and experimentally that terminal differentiation increases duration and yield of high-burden expression and that its evolutionary stability can be improved with strategic redundancy. Further, we show this strategy can even be applied to toxic functions. Overall, this study provides an effective, generalizable approach for protecting burdensome engineered functions from evolutionary degradation.
Collapse
Affiliation(s)
- Rory L Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, US.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, US.
| | - Richard M Murray
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, US
| |
Collapse
|
22
|
Kwak S, Crook N, Yoneda A, Ahn N, Ning J, Cheng J, Dantas G. Functional mining of novel terpene synthases from metagenomes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:104. [PMID: 36209178 PMCID: PMC9548185 DOI: 10.1186/s13068-022-02189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/29/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Terpenes are one of the most diverse and abundant classes of natural biomolecules, collectively enabling a variety of therapeutic, energy, and cosmetic applications. Recent genomics investigations have predicted a large untapped reservoir of bacterial terpene synthases residing in the genomes of uncultivated organisms living in the soil, indicating a vast array of putative terpenoids waiting to be discovered. RESULTS We aimed to develop a high-throughput functional metagenomic screening system for identifying novel terpene synthases from bacterial metagenomes by relieving the toxicity of terpene biosynthesis precursors to the Escherichia coli host. The precursor toxicity was achieved using an inducible operon encoding the prenyl pyrophosphate synthetic pathway and supplementation of the mevalonate precursor. Host strain and screening procedures were finely optimized to minimize false positives arising from spontaneous mutations, which avoid the precursor toxicity. Our functional metagenomic screening of human fecal metagenomes yielded a novel β-farnesene synthase, which does not show amino acid sequence similarity to known β-farnesene synthases. Engineered S. cerevisiae expressing the screened β-farnesene synthase produced 120 mg/L β-farnesene from glucose (2.86 mg/g glucose) with a productivity of 0.721 g/L∙h. CONCLUSIONS A unique functional metagenomic screening procedure was established for screening terpene synthases from metagenomic libraries. This research proves the potential of functional metagenomics as a sequence-independent avenue for isolating targeted enzymes from uncultivated organisms in various environmental habitats.
Collapse
Affiliation(s)
- Suryang Kwak
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
| | - Nathan Crook
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Aki Yoneda
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
| | - Naomi Ahn
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
| | - Jiye Cheng
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
| |
Collapse
|
23
|
LeBlanc N, Charles TC. Bacterial genome reductions: Tools, applications, and challenges. Front Genome Ed 2022; 4:957289. [PMID: 36120530 PMCID: PMC9473318 DOI: 10.3389/fgeed.2022.957289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells are widely used to produce value-added products due to their versatility, ease of manipulation, and the abundance of genome engineering tools. However, the efficiency of producing these desired biomolecules is often hindered by the cells’ own metabolism, genetic instability, and the toxicity of the product. To overcome these challenges, genome reductions have been performed, making strains with the potential of serving as chassis for downstream applications. Here we review the current technologies that enable the design and construction of such reduced-genome bacteria as well as the challenges that limit their assembly and applicability. While genomic reductions have shown improvement of many cellular characteristics, a major challenge still exists in constructing these cells efficiently and rapidly. Computational tools have been created in attempts at minimizing the time needed to design these organisms, but gaps still exist in modelling these reductions in silico. Genomic reductions are a promising avenue for improving the production of value-added products, constructing chassis cells, and for uncovering cellular function but are currently limited by their time-consuming construction methods. With improvements to and the creation of novel genome editing tools and in silico models, these approaches could be combined to expedite this process and create more streamlined and efficient cell factories.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Nicole LeBlanc,
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
24
|
Hartline CJ, Zhang F. The Growth Dependent Design Constraints of Transcription-Factor-Based Metabolite Biosensors. ACS Synth Biol 2022; 11:2247-2258. [PMID: 35700119 PMCID: PMC9994378 DOI: 10.1021/acssynbio.2c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolite biosensors based on metabolite-responsive transcription factors are key synthetic biology components for sensing and precisely controlling cellular metabolism. Biosensors are often designed under laboratory conditions but are deployed in applications where cellular growth rate differs drastically from its initial characterization. Here we asked how growth rate impacts the minimum and maximum biosensor outputs and the dynamic range, which are key metrics of biosensor performance. Using LacI, TetR, and FadR-based biosensors in Escherichia coli as models, we find that the dynamic range of different biosensors have different growth rate dependencies. We developed a kinetic model to explore how tuning biosensor parameters impact the dynamic range growth rate dependence. Our modeling and experimental results revealed that the effects to dynamic range and its growth rate dependence are often coupled, and the metabolite transport mechanisms shape the dynamic range-growth rate response. This work provides a systematic understanding of biosensor performance under different growth rates, which will be useful for predicting biosensor behavior in broad synthetic biology and metabolic engineering applications.
Collapse
Affiliation(s)
- Christopher J Hartline
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States.,Division of Biology & Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missouri 63130, United States.,Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| |
Collapse
|
25
|
Xue Y, Qiu T, Sun Z, Liu F, Yu B. Mercury bioremediation by engineered Pseudomonas putida KT2440 with adaptationally optimized biosecurity circuit. Environ Microbiol 2022; 24:3022-3036. [PMID: 35555952 DOI: 10.1111/1462-2920.16038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 01/15/2023]
Abstract
Hazardous materials, such as heavy metals, are the major sources of health risk. Using genetically modified organisms (GMOs) to dispose heavy metals has the advantages of strong environmental compatibility and high efficiency. However, the biosecurity of GMOs used in the environment is a major concern. In this study, a self-controlled genetic circuit was designed and carefully fine-tuned for programmable expression in Pseudomonas putida KT2440, which is a widely used strain for environmental bioremediation. The cell behaviours were controlled by automatically sensing the variation of Hg2+ concentration without any inducer requirement or manual interventions. More than 98% Hg2+ was adsorbed by the engineered strain with a high cell recovery rate of 96% from waterbody. The remaining cells were killed by the suicide module after the mission was accomplished. The escape frequency of the engineered P. putida strain was lower than 10-9 , which meets the recommendation of US NIH guideline for GMOs release (<10-8 ). The same performance was achieved in a model experiment by using natural lake water with addition of Hg2+ . The microbial diversity analysis further confirmed that the remediation process made little impact on the indigenous ecosystem. Thus, this study provides a practical method for environmental remediation by using GMOs.
Collapse
Affiliation(s)
- Yubin Xue
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhi Sun
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feixia Liu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
26
|
Bhadra S, Paik I, Torres JA, Fadanka S, Gandini C, Akligoh H, Molloy J, Ellington AD. Preparation and Use of Cellular Reagents: A Low-resource Molecular Biology Reagent Platform. Curr Protoc 2022; 2:e387. [PMID: 35263038 PMCID: PMC9094432 DOI: 10.1002/cpz1.387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein reagents are indispensable for most molecular and synthetic biology procedures. Most conventional protocols rely on highly purified protein reagents that require considerable expertise, time, and infrastructure to produce. In consequence, most proteins are acquired from commercial sources, reagent expense is often high, and accessibility may be hampered by shipping delays, customs barriers, geopolitical constraints, and the need for a constant cold chain. Such limitations to the widespread availability of protein reagents, in turn, limit the expansion and adoption of molecular biology methods in research, education, and technology development and application. Here, we describe protocols for producing a low-resource and locally sustainable reagent delivery system, termed "cellular reagents," in which bacteria engineered to overexpress proteins of interest are dried and can then be used directly as reagent packets in numerous molecular biology reactions, without the need for protein purification or a constant cold chain. As an example of their application, we describe the execution of polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) using cellular reagents, detailing how to replace pure protein reagents with optimal amounts of rehydrated cellular reagents. We additionally describe a do-it-yourself fluorescence visualization device for using these cellular reagents in common molecular biology applications. The methods presented in this article can be used for low-cost, on-site production of commonly used molecular biology reagents (including DNA and RNA polymerases, reverse transcriptases, and ligases) with minimal instrumentation and expertise, and without the need for protein purification. Consequently, these methods should generally make molecular biology reagents more affordable and accessible. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cellular reagents Alternate Protocol 1: Preparation of lyophilized cellular reagents Alternate Protocol 2: Evaluation of bacterial culture growth via comparison to McFarland turbidity standards Support Protocol 1: SDS-PAGE for protein expression analysis of cellular reagents Basic Protocol 2: Using Taq DNA polymerase cellular reagents for PCR Basic Protocol 3: Using Br512 DNA polymerase cellular reagents for loop-mediated isothermal amplification (LAMP) Support Protocol 2: Building a fluorescence visualization device.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America,Corresponding authors: ,
| | - Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jose-Angel Torres
- Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at Austin, Austin, Texas, United States of America
| | | | - Chiara Gandini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Harry Akligoh
- Hive Biolab, Hse 49, SE 29056 Drive, 2nd Turn Behind Mizpah School, Kentinkrono, Kumasi, Ghana
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America,Corresponding authors: ,
| |
Collapse
|
27
|
Rottinghaus AG, Ferreiro A, Fishbein SRS, Dantas G, Moon TS. Genetically stable CRISPR-based kill switches for engineered microbes. Nat Commun 2022; 13:672. [PMID: 35115506 PMCID: PMC8813983 DOI: 10.1038/s41467-022-28163-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Microbial biocontainment is an essential goal for engineering safe, next-generation living therapeutics. However, the genetic stability of biocontainment circuits, including kill switches, is a challenge that must be addressed. Kill switches are among the most difficult circuits to maintain due to the strong selection pressure they impart, leading to high potential for evolution of escape mutant populations. Here we engineer two CRISPR-based kill switches in the probiotic Escherichia coli Nissle 1917, a single-input chemical-responsive switch and a 2-input chemical- and temperature-responsive switch. We employ parallel strategies to address kill switch stability, including functional redundancy within the circuit, modulation of the SOS response, antibiotic-independent plasmid maintenance, and provision of intra-niche competition by a closely related strain. We demonstrate that strains harboring either kill switch can be selectively and efficiently killed inside the murine gut, while strains harboring the 2-input switch are additionally killed upon excretion. Leveraging redundant strategies, we demonstrate robust biocontainment of our kill switch strains and provide a template for future kill switch development.
Collapse
Affiliation(s)
- Austin G Rottinghaus
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Aura Ferreiro
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
28
|
Brkljacic J, Wittler B, Lindsey BE, Ganeshan VD, Sovic MG, Niehaus J, Ajibola W, Bachle SM, Fehér T, Somers DE. Frequency, composition and mobility of Escherichia coli-derived transposable elements in holdings of plasmid repositories. Microb Biotechnol 2022; 15:455-468. [PMID: 34875147 PMCID: PMC8867978 DOI: 10.1111/1751-7915.13962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
By providing the scientific community with uniform and standardized resources of consistent quality, plasmid repositories play an important role in enabling scientific reproducibility. Plasmids containing insertion sequence elements (IS elements) represent a challenge from this perspective, as they can change the plasmid structure and function. In this study, we conducted a systematic analysis of a subset of plasmid stocks distributed by plasmid repositories (The Arabidopsis Biological Resource Center and Addgene) which carry unintended integrations of bacterial mobile genetic elements. The integration of insertion sequences was most often found in, but not limited to, pBR322-derived vectors, and did not affect the function of the specific plasmids. In certain cases, the entire stock was affected, but the majority of the stocks tested contained a mixture of the wild-type and the mutated plasmids, suggesting that the acquisition of IS elements likely occurred after the plasmids were acquired by the repositories. However, comparison of the sequencing results of the original samples revealed that some plasmids already carried insertion mutations at the time of donation. While an extensive BLAST analysis of 47 877 plasmids sequenced from the Addgene repository uncovered IS elements in only 1.12%, suggesting that IS contamination is not widespread, further tests showed that plasmid integration of IS elements can propagate in conventional Escherichia coli hosts over a few tens of generations. Use of IS-free E. coli hosts prevented the emergence of IS insertions as well as that of small indels, suggesting that the use of IS-free hosts by donors and repositories could help limit unexpected and unwanted IS integrations into plasmids.
Collapse
Affiliation(s)
| | - Bettina Wittler
- Arabidopsis Biological Resource CenterColumbusOHUSA
- Present address:
Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | - Michael G. Sovic
- Center For Applied Plant SciencesThe Ohio State UniversityColumbusOHUSA
| | | | - Walliyulahi Ajibola
- Systems and Synthetic Biology UnitInstitute of BiochemistryBiological Research Centre of the Eötvös Lóránd Research NetworkSzegedHungary
- Doctoral School in BiologyUniversity of SzegedSzegedHungary
| | | | - Tamás Fehér
- Systems and Synthetic Biology UnitInstitute of BiochemistryBiological Research Centre of the Eötvös Lóránd Research NetworkSzegedHungary
| | - David E. Somers
- Arabidopsis Biological Resource CenterColumbusOHUSA
- Center For Applied Plant SciencesThe Ohio State UniversityColumbusOHUSA
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
29
|
Liu S, Xu JZ, Zhang WG. Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophan production. World J Microbiol Biotechnol 2022; 38:22. [PMID: 34989926 DOI: 10.1007/s11274-021-03212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
As an important raw material for pharmaceutical, food and feed industry, highly efficient production of L-tryptophan by Escherichia coli has attracted a considerable attention. However, there are complicated and multiple layers of regulation networks in L-tryptophan biosynthetic pathway and thus have difficulty to rewrite the biosynthetic pathway for producing L-tryptophan with high efficiency in E. coli. This review summarizes the biosynthetic pathway of L-tryptophan and highlights the main regulatory mechanisms in E. coli. In addition, we discussed the latest metabolic engineering strategies achieved in E. coli to reconstruct the L-tryptophan biosynthetic pathway. Moreover, we also review a few strategies that can be used in E. coli to improve robustness and streamline of L-tryptophan high-producing strains. Lastly, we also propose the potential strategies to further increase L-tryptophan production by systematic metabolic engineering and synthetic biology techniques.
Collapse
Affiliation(s)
- Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| |
Collapse
|
30
|
Schnabel T, Sattely E. Improved Stability of Engineered Ammonia Production in the Plant-Symbiont Azospirillum brasilense. ACS Synth Biol 2021; 10:2982-2996. [PMID: 34591447 PMCID: PMC8604774 DOI: 10.1021/acssynbio.1c00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioavailable nitrogen is the limiting nutrient for most agricultural food production. Associative diazotrophs can colonize crop roots and fix their own bioavailable nitrogen from the atmosphere. Wild-type (WT) associative diazotrophs, however, do not release fixed nitrogen in culture and are not known to directly transfer fixed nitrogen resources to plants. Efforts to engineer diazotrophs for plant nitrogen provision as an alternative to chemical fertilization have yielded several strains that transiently release ammonia. However, these strains suffer from selection pressure for nonproducers, which rapidly deplete ammonia accumulating in culture, likely limiting their potential for plant growth promotion (PGP). Here we report engineered Azospirillum brasilense strains with significantly extend ammonia production lifetimes of up to 32 days in culture. Our approach relies on multicopy genetic redundancy of a unidirectional adenylyltransferase (uAT) as a posttranslational mechanism to induce ammonia release via glutamine synthetase deactivation. Testing our multicopy stable strains with the model monocot Setaria viridis in hydroponic monoassociation reveals improvement in plant growth promotion compared to single copy strains. In contrast, inoculation of Zea mays in nitrogen-poor, nonsterile soil does not lead to increased PGP relative to WT, suggesting strain health, resource competition, or colonization capacity in soil may also be limiting factors. In this context, we show that while engineered strains fix more nitrogen per cell compared to WT strains, the expression strength of multiple uAT copies needs to be carefully balanced to maximize ammonia production rates and avoid excessive fitness defects caused by excessive glutamine synthetase shutdown.
Collapse
Affiliation(s)
- Tim Schnabel
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University and HHMI, Stanford, California 94305, United States
| |
Collapse
|
31
|
Sutton G, Fogel GB, Abramson B, Brinkac L, Michael T, Liu ES, Thomas S. A pan-genome method to determine core regions of the Bacillus subtilis and Escherichia coli genomes. F1000Res 2021; 10:286. [PMID: 34113437 PMCID: PMC8156514 DOI: 10.12688/f1000research.51873.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Synthetic engineering of bacteria to produce industrial products is a burgeoning field of research and application. In order to optimize genome design, designers need to understand which genes are essential, which are optimal for growth, and locations in the genome that will be tolerated by the organism when inserting engineered cassettes. Methods: We present a pan-genome based method for the identification of core regions in a genome that are strongly conserved at the species level. Results: We show that the core regions determined by our method contain all or almost all essential genes. This demonstrates the accuracy of our method as essential genes should be core genes. We show that we outperform previous methods by this measure. We also explain why there are exceptions to this rule for our method. Conclusions: We assert that synthetic engineers should avoid deleting or inserting into these core regions unless they understand and are manipulating the function of the genes in that region. Similarly, if the designer wishes to streamline the genome, non-core regions and in particular low penetrance genes would be good targets for deletion. Care should be taken to remove entire cassettes with similar penetrance of the genes within cassettes as they may harbor toxin/antitoxin genes which need to be removed in tandem. The bioinformatic approach introduced here saves considerable time and effort relative to knockout studies on single isolates of a given species and captures a broad understanding of the conservation of genes that are core to a species.
Collapse
Affiliation(s)
- Granger Sutton
- J. Craig Venter Institute, Rockville, Maryland, 20850, USA
| | - Gary B Fogel
- Natural Selection, Inc., San Diego, CA, 92121, USA
| | | | | | - Todd Michael
- J. Craig Venter Institute, Rockville, Maryland, 20850, USA
| | - Enoch S Liu
- Natural Selection, Inc., San Diego, CA, 92121, USA
| | | |
Collapse
|
32
|
Castle SD, Grierson CS, Gorochowski TE. Towards an engineering theory of evolution. Nat Commun 2021; 12:3326. [PMID: 34099656 PMCID: PMC8185075 DOI: 10.1038/s41467-021-23573-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Biological technologies are fundamentally unlike any other because biology evolves. Bioengineering therefore requires novel design methodologies with evolution at their core. Knowledge about evolution is currently applied to the design of biosystems ad hoc. Unless we have an engineering theory of evolution, we will neither be able to meet evolution's potential as an engineering tool, nor understand or limit its unintended consequences for our biological designs. Here, we propose the evotype as a helpful concept for engineering the evolutionary potential of biosystems, or other self-adaptive technologies, potentially beyond the realm of biology.
Collapse
Affiliation(s)
- Simeon D Castle
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Claire S Grierson
- School of Biological Sciences, University of Bristol, Bristol, UK
- BrisSynBio, University of Bristol, Bristol, UK
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Bristol, UK.
- BrisSynBio, University of Bristol, Bristol, UK.
| |
Collapse
|
33
|
Sutton G, Fogel GB, Abramson B, Brinkac L, Michael T, Liu ES, Thomas S. A pan-genome method to determine core regions of the Bacillus subtilis and Escherichia coli genomes. F1000Res 2021; 10:286. [DOI: 10.12688/f1000research.51873.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Synthetic engineering of bacteria to produce industrial products is a burgeoning field of research and application. In order to optimize genome design, designers need to understand which genes are essential, which are optimal for growth, and locations in the genome that will be tolerated by the organism when inserting engineered cassettes. Methods: We present a pan-genome based method for the identification of core regions in a genome that are strongly conserved at the species level. Results: We show that the core regions determined by our method contain all or almost all essential genes. This demonstrates the accuracy of our method as essential genes should be core genes. We show that we outperform previous methods by this measure. We also explain why there are exceptions to this rule for our method. Conclusions: We assert that synthetic engineers should avoid deleting or inserting into these core regions unless they understand and are manipulating the function of the genes in that region. Similarly, if the designer wishes to streamline the genome, non-core regions and in particular low penetrance genes would be good targets for deletion. Care should be taken to remove entire cassettes with similar penetrance of the genes within cassettes as they may harbor toxin/antitoxin genes which need to be removed in tandem. The bioinformatic approach introduced here saves considerable time and effort relative to knockout studies on single isolates of a given species and captures a broad understanding of the conservation of genes that are core to a species.
Collapse
|
34
|
Ajibola W, Karcagi I, Somlyai G, Somlyai I, Fehér T. Deuterium-depletion has no significant impact on the mutation rate of Escherichia coli, deuterium abundance therefore has a probabilistic, not deterministic effect on spontaneous mutagenesis. PLoS One 2021; 16:e0243517. [PMID: 33684107 PMCID: PMC7939293 DOI: 10.1371/journal.pone.0243517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/19/2021] [Indexed: 11/18/2022] Open
Abstract
Deuterium (D), the second most abundant isotope of hydrogen is present in natural waters at an approximate concentration of 145-155 ppm (ca. 1.5E-4 atom/atom). D is known to influence various biological processes due to its physical and chemical properties, which significantly differ from those of hydrogen. For example, increasing D-concentration to >1000-fold above its natural abundance has been shown to increase the frequency of genetic mutations in several species. An interesting deterministic hypothesis, formulated with the intent of explaining the mechanism of D-mutagenicity is based on the calculation that the theoretical probability of base pairs to comprise two adjacent D-bridges instead of H-bridges is 2.3E-8, which is equal to the mutation rate of certain species. To experimentally challenge this hypothesis, and to infer the mutagenicity of D present at natural concentrations, we investigated the effect of a nearly 100-fold reduction of D concentration on the bacterial mutation rate. Using fluctuation tests, we measured the mutation rate of three Escherichia coli genes (cycA, ackA and galK) in media containing D at either <2 ppm or 150 ppm concentrations. Out of 15 pair-wise fluctuation analyses, nine indicated a significant decrease, while three marked the significant increase of the mutation/culture value upon D-depletion. Overall, growth in D-depleted minimal medium led to a geometric mean of 0.663-fold (95% confidence interval: 0.483-0.911) change in the mutation rate. This falls nowhere near the expected 10,000-fold reduction, indicating that in our bacterial systems, the effect of D abundance on the formation of point mutations is not deterministic. In addition, the combined results did not display a statistically significant change in the mutation/culture value, the mutation rate or the mutant frequency upon D-depletion. The potential mutagenic effect of D present at natural concentrations on E. coli is therefore below the limit of detection using the indicated methods.
Collapse
Affiliation(s)
- Walliyulahi Ajibola
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, Szeged, Hungary
- Faculty of Science and Informatics, Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Ildikó Karcagi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, Szeged, Hungary
| | - Gábor Somlyai
- HYD LLC for Cancer Research and Drug Development, Budapest, Hungary
| | - Ildikó Somlyai
- HYD LLC for Cancer Research and Drug Development, Budapest, Hungary
| | - Tamás Fehér
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, Szeged, Hungary
- * E-mail: [
| |
Collapse
|
35
|
Zhang C, Zheng W, Cheng M, Omenn GS, Freddolino PL, Zhang Y. Functions of Essential Genes and a Scale-Free Protein Interaction Network Revealed by Structure-Based Function and Interaction Prediction for a Minimal Genome. J Proteome Res 2021; 20:1178-1189. [PMID: 33393786 PMCID: PMC7867644 DOI: 10.1021/acs.jproteome.0c00359] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When the JCVI-syn3.0 genome was designed and implemented in 2016 as the minimal genome of a free-living organism, approximately one-third of the 438 protein-coding genes had no known function. Subsequent refinement into JCVI-syn3A led to inclusion of 16 additional protein-coding genes, including several unknown functions, resulting in an improved growth phenotype. Here, we seek to unveil the biological roles and protein-protein interaction (PPI) networks for these poorly characterized proteins using state-of-the-art deep learning contact-assisted structure prediction, followed by structure-based annotation of functions and PPI predictions. Our pipeline is able to confidently assign functions for many previously unannotated proteins such as putative vitamin transporters, which suggest the importance of nutrient uptake even in a minimized genome. Remarkably, despite the artificial selection of genes in the minimal syn3 genome, our reconstructed PPI network still shows a power law distribution of node degrees typical of naturally evolved bacterial PPI networks. Making use of our framework for combined structure/function/interaction modeling, we are able to identify both fundamental aspects of network biology that are retained in a minimal proteome and additional essential functions not yet recognized among the poorly annotated components of the syn3.0 and syn3A proteomes.
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Micah Cheng
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Departments of Internal Medicine and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter L Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Ji J, Day A. Construction of a highly error-prone DNA polymerase for developing organelle mutation systems. Nucleic Acids Res 2020; 48:11868-11879. [PMID: 33135056 PMCID: PMC7708058 DOI: 10.1093/nar/gkaa929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
A novel family of DNA polymerases replicates organelle genomes in a wide distribution of taxa encompassing plants and protozoans. Making error-prone mutator versions of gamma DNA polymerases revolutionised our understanding of animal mitochondrial genomes but similar advances have not been made for the organelle DNA polymerases present in plant mitochondria and chloroplasts. We tested the fidelities of error prone tobacco organelle DNA polymerases using a novel positive selection method involving replication of the phage lambda cI repressor gene. Unlike gamma DNA polymerases, ablation of 3'-5' exonuclease function resulted in a modest 5-8-fold error rate increase. Combining exonuclease deficiency with a polymerisation domain substitution raised the organelle DNA polymerase error rate by 140-fold relative to the wild type enzyme. This high error rate compares favourably with error-rates of mutator versions of animal gamma DNA polymerases. The error prone organelle DNA polymerase introduced mutations at multiple locations ranging from two to seven sites in half of the mutant cI genes studied. Single base substitutions predominated including frequent A:A (template: dNMP) mispairings. High error rate and semi-dominance to the wild type enzyme in vitro make the error prone organelle DNA polymerase suitable for elevating mutation rates in chloroplasts and mitochondria.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Binding Sites
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Cloning, Molecular
- DNA Polymerase gamma/chemistry
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/metabolism
- DNA Replication
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Mitochondria/genetics
- Mitochondria/metabolism
- Models, Molecular
- Mutation
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Polymorphism, Single Nucleotide
- Porins/chemistry
- Porins/genetics
- Porins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Selection, Genetic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Nicotiana/classification
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Junwei Ji
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Anil Day
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
37
|
Mitigation of host cell mutations and regime shift during microbial fermentation: a perspective from flux memory. Curr Opin Biotechnol 2020; 66:227-235. [DOI: 10.1016/j.copbio.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
|
38
|
Schuller A, Cserjan-Puschmann M, Köppl C, Grabherr R, Wagenknecht M, Schiavinato M, Dohm JC, Himmelbauer H, Striedner G. Adaptive Evolution in Producing Microtiter Cultivations Generates Genetically Stable Escherichia coli Production Hosts for Continuous Bioprocessing. Biotechnol J 2020; 16:e2000376. [PMID: 33084246 DOI: 10.1002/biot.202000376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Indexed: 01/01/2023]
Abstract
The production of recombinant proteins usually reduces cell fitness and the growth rate of producing cells. The growth disadvantage favors faster-growing non-producer mutants. Therefore, continuous bioprocessing is hardly feasible in Escherichia coli due to the high escape rate. The stability of E. coli expression systems under long-term production conditions and how metabolic load triggered by recombinant gene expression influences the characteristics of mutations are investigated. Iterated fed-batch-like microbioreactor cultivations are conducted under production conditions. The easy-to-produce green fluorescent protein (GFP) and a challenging antigen-binding fragment (Fab) are used as model proteins, and BL21(DE3) and BL21Q strains as expression hosts. In comparative whole-genome sequencing analyses, mutations that allowed cells to grow unhindered despite recombinant protein production are identified. A T7 RNA polymerase expression system is only conditionally suitable for long-term cultivation under production conditions. Mutations leading to non-producers occur in either the T7 RNA polymerase gene or the T7 promoter. The host RNA polymerase-based BL21Q expression system remains stable in the production of GFP in long-term cultivations. For the production of Fab, mutations in lacI of the BL21Q derivatives have positive effects on long-term stability. The results indicate that adaptive evolution carried out with genome-integrated E. coli expression systems in microtiter cultivations under industrial-relevant production conditions is an efficient strain development tool for production hosts.
Collapse
Affiliation(s)
- Artur Schuller
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Christoph Köppl
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Reingard Grabherr
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna, A-1120, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| |
Collapse
|
39
|
Tripolszky A, Tóth E, Szabó PT, Hackler L, Kari B, Puskás LG, Bálint E. Synthesis and In Vitro Cytotoxicity and Antibacterial Activity of Novel 1,2,3-Triazol-5-yl-phosphonates. Molecules 2020; 25:E2643. [PMID: 32517229 PMCID: PMC7321403 DOI: 10.3390/molecules25112643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022] Open
Abstract
Novel 1,2,3-triazol-5-yl-phosphonates were prepared by the copper(I)-catalyzed domino reaction of phenylacetylene, organic azides and dialkyl phosphites. The process was optimized on the synthesis of the dibutyl (1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)phosphonate in respect of the catalyst, the base and the solvent, as well as of the reaction parameters (molar ratio of the starting materials, atmosphere, temperature and reaction time). The method elaborated could be applied to a range of organic azides and dialkyl phosphites, which confirmed the large scope and the functional group tolerance. The in vitro cytotoxicity on different cell lines and the antibacterial activity of the synthesized 1,2,3-triazol-5-yl-phosphonates was explored. According to the IC50 values determined, only modest antibacterial effect was detected, while some derivatives showed moderate activity against human promyelocytic leukemia HL-60 cells.
Collapse
Affiliation(s)
- Anna Tripolszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary; (A.T.); (E.T.)
| | - Emese Tóth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary; (A.T.); (E.T.)
| | - Pál Tamás Szabó
- MS Metabolomics Laboratory, Instrumentation Center, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117 Budapest, Hungary;
| | - László Hackler
- Avidin Ltd., Alsó kikötő sor 11/D, H-6726 Szeged, Hungary; (L.H.J.); (B.K.)
| | - Beáta Kari
- Avidin Ltd., Alsó kikötő sor 11/D, H-6726 Szeged, Hungary; (L.H.J.); (B.K.)
| | - László G. Puskás
- Avidin Ltd., Alsó kikötő sor 11/D, H-6726 Szeged, Hungary; (L.H.J.); (B.K.)
| | - Erika Bálint
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary; (A.T.); (E.T.)
| |
Collapse
|
40
|
Stirling F, Silver PA. Controlling the Implementation of Transgenic Microbes: Are We Ready for What Synthetic Biology Has to Offer? Mol Cell 2020; 78:614-623. [PMID: 32442504 PMCID: PMC7307494 DOI: 10.1016/j.molcel.2020.03.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Synthetic biology has promised and delivered on an impressive array of applications based on genetically modified microorganisms. While novel biotechnology undoubtedly offers benefits, like all new technology, precautions should be considered during implementation to reduce the risk of both known and unknown adverse effects. To achieve containment of transgenic microorganisms, confidence to a near-scientific certainty that they cannot transfer their transgenic genes to other organisms, and that they cannot survive to propagate in unintended environments, is a priority. Here, we present an in-depth summary of biological containment systems for micro-organisms published to date, including the production of a genetic firewall through genome recoding and physical containment of microbes using auxotrophies, regulation of essential genes, and expression of toxic genes. The level of containment required to consider a transgenic organism suitable for deployment is discussed, as well as standards of practice for developing new containment systems.
Collapse
Affiliation(s)
- Finn Stirling
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Bu QT, Li YP, Xie H, Wang J, Li ZY, Chen XA, Mao XM, Li YQ. Comprehensive dissection of dispensable genomic regions in Streptomyces based on comparative analysis approach. Microb Cell Fact 2020; 19:99. [PMID: 32375781 PMCID: PMC7204314 DOI: 10.1186/s12934-020-01359-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Large-scale genome reduction has been performed to significantly improve the performance of microbial chassis. Identification of the essential or dispensable genes is pivotal for genome reduction to avoid synthetic lethality. Here, taking Streptomyces as an example, we developed a combinatorial strategy for systematic identification of large and dispensable genomic regions in Streptomyces based on multi-omics approaches. RESULTS Phylogenetic tree analysis revealed that the model strains including S. coelicolor A3(2), S. albus J1074 and S. avermitilis MA-4680 were preferred reference for comparative analysis of candidate genomes. Multiple genome alignment suggested that the Streptomyces genomes embodied highly conserved core region and variable sub-telomeric regions, and may present symmetric or asymmetric structure. Pan-genome and functional genome analyses showed that most conserved genes responsible for the fundamental functions of cell viability were concentrated in the core region and the vast majority of abundant genes were dispersed in the sub-telomeric regions. These results suggested that large-scale deletion can be performed in sub-telomeric regions to greatly streamline the Streptomyces genomes for developing versatile chassis. CONCLUSIONS The integrative approach of comparative genomics, functional genomics and pan-genomics can not only be applied to perform a multi-tiered dissection for Streptomyces genomes, but also work as a universal method for systematic analysis of removable regions in other microbial hosts in order to generate more miscellaneous and versatile chassis with minimized genome for drug discovery.
Collapse
Affiliation(s)
- Qing-Ting Bu
- Institute of Pharmaceutical Biotechnology and Research Center for Clinical Pharmacy of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058 China
| | - Yue-Ping Li
- Institute of Pharmaceutical Biotechnology and Research Center for Clinical Pharmacy of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Huang Xie
- Institute of Pharmaceutical Biotechnology and Research Center for Clinical Pharmacy of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058 China
| | - Jue Wang
- Institute of Pharmaceutical Biotechnology and Research Center for Clinical Pharmacy of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058 China
| | - Zi-Yue Li
- Institute of Pharmaceutical Biotechnology and Research Center for Clinical Pharmacy of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058 China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology and Research Center for Clinical Pharmacy of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058 China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology and Research Center for Clinical Pharmacy of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058 China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology and Research Center for Clinical Pharmacy of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058 China
| |
Collapse
|
42
|
Exploring the fitness benefits of genome reduction in Escherichia coli by a selection-driven approach. Sci Rep 2020; 10:7345. [PMID: 32355292 PMCID: PMC7193553 DOI: 10.1038/s41598-020-64074-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022] Open
Abstract
Artificial simplification of bacterial genomes is thought to have the potential to yield cells with reduced complexity, enhanced genetic stability, and improved cellular economy. Of these goals, economical gains, supposedly due to the elimination of superfluous genetic material, and manifested in elevated growth parameters in selected niches, have not yet been convincingly achieved. This failure might stem from limitations of the targeted genome reduction approach that assumes full knowledge of gene functions and interactions, and allows only a limited number of reduction trajectories to interrogate. To explore the potential fitness benefits of genome reduction, we generated successive random deletions in E. coli by a novel, selection-driven, iterative streamlining process. The approach allows the exploration of multiple streamlining trajectories, and growth periods inherent in the procedure ensure selection of the fittest variants of the population. By generating single- and multiple-deletion strains and reconstructing the deletions in the parental genetic background, we showed that favourable deletions can be obtained and accumulated by the procedure. The most reduced multiple-deletion strain, obtained in five deletion cycles (2.5% genome reduction), outcompeted the wild-type, and showed elevated biomass yield. The spectrum of advantageous deletions, however, affecting only a few genomic regions, appears to be limited.
Collapse
|
43
|
Giri S, Shitut S, Kost C. Harnessing ecological and evolutionary principles to guide the design of microbial production consortia. Curr Opin Biotechnol 2020; 62:228-238. [DOI: 10.1016/j.copbio.2019.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
|
44
|
Blazejewski T, Ho HI, Wang HH. Synthetic sequence entanglement augments stability and containment of genetic information in cells. Science 2020; 365:595-598. [PMID: 31395784 DOI: 10.1126/science.aav5477] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 06/21/2019] [Accepted: 07/15/2019] [Indexed: 12/28/2022]
Abstract
In synthetic biology, methods for stabilizing genetically engineered functions and confining recombinant DNA to intended hosts are necessary to cope with natural mutation accumulation and pervasive lateral gene flow. We present a generalizable strategy to preserve and constrain genetic information through the computational design of overlapping genes. Overlapping a sequence with an essential gene altered its fitness landscape and produced a constrained evolutionary path, even for synonymous mutations. Embedding a toxin gene in a gene of interest restricted its horizontal propagation. We further demonstrated a multiplex and scalable approach to build and test >7500 overlapping sequence designs, yielding functional yet highly divergent variants from natural homologs. This work enables deeper exploration of natural and engineered overlapping genes and facilitates enhanced genetic stability and biocontainment in emerging applications.
Collapse
Affiliation(s)
- Tomasz Blazejewski
- Department of Systems Biology, Columbia University, New York, NY, USA.,Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Hsing-I Ho
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA. .,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
45
|
Engineering Biology to Construct Microbial Chassis for the Production of Difficult-to-Express Proteins. Int J Mol Sci 2020; 21:ijms21030990. [PMID: 32024292 PMCID: PMC7037952 DOI: 10.3390/ijms21030990] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
A large proportion of the recombinant proteins manufactured today rely on microbe-based expression systems owing to their relatively simple and cost-effective production schemes. However, several issues in microbial protein expression, including formation of insoluble aggregates, low protein yield, and cell death are still highly recursive and tricky to optimize. These obstacles are usually rooted in the metabolic capacity of the expression host, limitation of cellular translational machineries, or genetic instability. To this end, several microbial strains having precisely designed genomes have been suggested as a way around the recurrent problems in recombinant protein expression. Already, a growing number of prokaryotic chassis strains have been genome-streamlined to attain superior cellular fitness, recombinant protein yield, and stability of the exogenous expression pathways. In this review, we outline challenges associated with heterologous protein expression, some examples of microbial chassis engineered for the production of recombinant proteins, and emerging tools to optimize the expression of heterologous proteins. In particular, we discuss the synthetic biology approaches to design and build and test genome-reduced microbial chassis that carry desirable characteristics for heterologous protein expression.
Collapse
|
46
|
Wynands B, Otto M, Runge N, Preckel S, Polen T, Blank LM, Wierckx N. Streamlined Pseudomonas taiwanensis VLB120 Chassis Strains with Improved Bioprocess Features. ACS Synth Biol 2019; 8:2036-2050. [PMID: 31465206 DOI: 10.1021/acssynbio.9b00108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host's efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.
Collapse
Affiliation(s)
- Benedikt Wynands
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Maike Otto
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nadine Runge
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sarah Preckel
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
47
|
Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng 2019; 56:1-16. [PMID: 31401242 DOI: 10.1016/j.ymben.2019.08.004] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
Harnessing the process of natural selection to obtain and understand new microbial phenotypes has become increasingly possible due to advances in culturing techniques, DNA sequencing, bioinformatics, and genetic engineering. Accordingly, Adaptive Laboratory Evolution (ALE) experiments represent a powerful approach both to investigate the evolutionary forces influencing strain phenotypes, performance, and stability, and to acquire production strains that contain beneficial mutations. In this review, we summarize and categorize the applications of ALE to various aspects of microbial physiology pertinent to industrial bioproduction by collecting case studies that highlight the multitude of ways in which evolution can facilitate the strain construction process. Further, we discuss principles that inform experimental design, complementary approaches such as computational modeling that help maximize utility, and the future of ALE as an efficient strain design and build tool driven by growing adoption and improvements in automation.
Collapse
Affiliation(s)
- Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Michael J Salazar
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Liam L Weng
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
48
|
Rugbjerg P, Sommer MOA. Overcoming genetic heterogeneity in industrial fermentations. Nat Biotechnol 2019; 37:869-876. [DOI: 10.1038/s41587-019-0171-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
|
49
|
Nyerges Á, Bálint B, Cseklye J, Nagy I, Pál C, Fehér T. CRISPR-interference-based modulation of mobile genetic elements in bacteria. Synth Biol (Oxf) 2019; 4:ysz008. [PMID: 31008359 PMCID: PMC6462304 DOI: 10.1093/synbio/ysz008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 11/12/2022] Open
Abstract
Spontaneous mutagenesis of synthetic genetic constructs by mobile genetic elements frequently results in the rapid loss of engineered functions. Previous efforts to minimize such mutations required the exceedingly time-consuming manipulation of bacterial chromosomes and the complete removal of insertional sequences (ISes). To this aim, we developed a single plasmid-based system (pCRIS) that applies CRISPR-interference to inhibit the transposition of bacterial ISes. pCRIS expresses multiple guide RNAs to direct inactivated Cas9 (dCas9) to simultaneously silence IS1, IS3, IS5 and IS150 at up to 38 chromosomal loci in Escherichia coli, in vivo. As a result, the transposition rate of all four targeted ISes dropped to negligible levels at both chromosomal and episomal targets. Most notably, pCRIS, while requiring only a single plasmid delivery performed within a single day, provided a reduction of IS-mobility comparable to that seen in genome-scale chromosome engineering projects. The fitness cost of multiple IS-knockdown, detectable in flask-and-shaker systems was readily outweighed by the less frequent inactivation of the transgene, as observed in green fluorescent protein (GFP)-overexpression experiments. In addition, global transcriptomics analysis revealed only minute alterations in the expression of untargeted genes. Finally, the transposition-silencing effect of pCRIS was easily transferable across multiple E. coli strains. The plasticity and robustness of our IS-silencing system make it a promising tool to stabilize bacterial genomes for synthetic biology and industrial biotechnology applications.
Collapse
Affiliation(s)
- Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.,Seqomics Biotechnology Ltd, Mórahalom, Hungary
| | | | - István Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.,Seqomics Biotechnology Ltd, Mórahalom, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Fehér
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
50
|
Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L, Chen S. Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol 2019; 4:25-33. [PMID: 30560208 PMCID: PMC6290258 DOI: 10.1016/j.synbio.2018.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Engineering and modifying synthetic microbial chassis is one of the best ways not only to unravel the fundamental principles of life but also to enhance applications in the health, medicine, agricultural, veterinary, and food industries. The two primary strategies for constructing a microbial chassis are the top-down approach (genome reduction) and the bottom-up approach (genome synthesis). Research programs on this topic have been funded in several countries. The 'Minimum genome factory' (MGF) project was launched in 2001 in Japan with the goal of constructing microorganisms with smaller genomes for industrial use. One of the best examples of the results of this project is E. coli MGF-01, which has a reduced-genome size and exhibits better growth and higher threonine production characteristics than the parental strain [1]. The 'cell factory' project was carried out from 1998 to 2002 in the Fifth Framework Program of the EU (European Union), which tried to comprehensively understand microorganisms used in the application field. One of the outstanding results of this project was the elucidation of proteins secreted by Bacillus subtilis, which was summarized as the 'secretome' [2]. The GTL (Genomes to Life) program began in 2002 in the United States. In this program, researchers aimed to create artificial cells both in silico and in vitro, such as the successful design and synthesis of a minimal bacterial genome by John Craig Venter's group [3]. This review provides an update on recent advances in engineering, modification and application of synthetic microbial chassis, with particular emphasis on the value of learning about chassis as a way to better understand life and improve applications.
Collapse
Affiliation(s)
- Haotian Chi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaoli Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Shao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Ying Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| |
Collapse
|