1
|
Abskharon R, Wang F, Wohlkonig A, Ruan J, Soror S, Giachin G, Pardon E, Zou W, Legname G, Ma J, Steyaert J. Structural evidence for the critical role of the prion protein hydrophobic region in forming an infectious prion. PLoS Pathog 2019; 15:e1008139. [PMID: 31815959 PMCID: PMC6922452 DOI: 10.1371/journal.ppat.1008139] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/19/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022] Open
Abstract
Prion or PrPSc is the proteinaceous infectious agent causing prion diseases in various mammalian species. Despite decades of research, the structural basis for PrPSc formation and prion infectivity remains elusive. To understand the role of the hydrophobic region in forming infectious prion at the molecular level, we report X-ray crystal structures of mouse (Mo) prion protein (PrP) (residues 89-230) in complex with a nanobody (Nb484). Using the recombinant prion propagation system, we show that the binding of Nb484 to the hydrophobic region of MoPrP efficiently inhibits the propagation of proteinase K resistant PrPSc and prion infectivity. In addition, when added to cultured mouse brain slices in high concentrations, Nb484 exhibits no neurotoxicity, which is drastically different from other neurotoxic anti-PrP antibodies, suggesting that the Nb484 can be a potential therapeutic agent against prion disease. In summary, our data provides the first structure-function evidence supporting a crucial role of the hydrophobic region of PrP in forming an infectious prion.
Collapse
Affiliation(s)
- Romany Abskharon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vlaams Instituut Biotechnologie (VIB), Brussels, Belgium
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, United States of America
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Fei Wang
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, United States of America
- * E-mail: (FW); (JM); (JS)
| | - Alexandre Wohlkonig
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vlaams Instituut Biotechnologie (VIB), Brussels, Belgium
| | - Juxin Ruan
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Sameh Soror
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vlaams Instituut Biotechnologie (VIB), Brussels, Belgium
- Center of Excellence, Helwan Structural Biology Research, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Gabriele Giachin
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vlaams Instituut Biotechnologie (VIB), Brussels, Belgium
| | - Wenquan Zou
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, United States of America
- * E-mail: (FW); (JM); (JS)
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vlaams Instituut Biotechnologie (VIB), Brussels, Belgium
- * E-mail: (FW); (JM); (JS)
| |
Collapse
|
2
|
Applications of catalyzed cytoplasmic disulfide bond formation. Biochem Soc Trans 2019; 47:1223-1231. [DOI: 10.1042/bst20190088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Disulfide bond formation is an essential post-translational modification required for many proteins to attain their native, functional structure. The formation of disulfide bonds, otherwise known as oxidative protein folding, occurs in the endoplasmic reticulum and mitochondrial inter-membrane space in eukaryotes and the periplasm of prokaryotes. While there are differences in the molecular mechanisms of oxidative folding in different compartments, it can essentially be broken down into two steps, disulfide formation and disulfide isomerization. For both steps, catalysts exist in all compartments where native disulfide bond formation occurs. Due to the importance of disulfide bonds for a plethora of proteins, considerable effort has been made to generate cell factories which can make them more efficiently and cheaper. Recently synthetic biology has been used to transfer catalysts of native disulfide bond formation into the cytoplasm of prokaryotes such as Escherichia coli. While these engineered systems cannot yet rival natural systems in the range and complexity of disulfide-bonded proteins that can be made, a growing range of proteins have been made successfully and yields of homogenously folded eukaryotic proteins exceeding g/l yields have been obtained. This review will briefly give an overview of such systems, the uses reported to date and areas of future potential development, including combining with engineered systems for cytoplasmic glycosylation.
Collapse
|
3
|
LIU X, YANG Y, JIANG P, LI X, GE Y, CAO Y, ZHAO Z, FANG X, YU X. Effect of QSOX1 on cattle carcass traits as well as apoptosis and triglyceride production in bovine fetal fibroblasts and mammary epithelial cells. J Vet Med Sci 2018; 80:1329-1336. [PMID: 29848850 PMCID: PMC6115246 DOI: 10.1292/jvms.17-0705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/24/2018] [Indexed: 01/22/2023] Open
Abstract
QSOX1 (quiescin-sulfhydryl oxidase 1) is involved in various processes, including apoptosis and the development of breast diseases. Here, we investigated the effect of QSOX1 on the meat quality of Simmental cattle by analyzing the correlation between QSOX1 single nucleotide polymorphisms (SNPs), I2 204 C>T and I2 378 C>T, and certain meat quality traits. The effects of QSOX1 on triglyceride synthesis and cell apoptosis were further validated by gene silencing or overexpression in bovine fetal fibroblasts and mammary epithelial cells. The results showed that I2 204 C>T and I2 378 C>T had significant correlations with loin thickness, hind hoof weight, fat coverage, liver weight, heart weight, marbling and back fat thickness (P<0.05). QSOX1 overexpression also increased triglyceride production and suppressed apoptosis. In summary, QSOX1 is an important factor for meat quality, lipid metabolism, and cell apoptosis, indicating that QSOX1 could be used as a biomarker to assist in breeding cattle with superior meat.
Collapse
Affiliation(s)
- Xiaochuan LIU
- College of Animal Science, Jilin University, Xi An Road
5333, Changchun, Jilin 130062, P.R. China
| | - Yuwei YANG
- College of Animal Science, Jilin University, Xi An Road
5333, Changchun, Jilin 130062, P.R. China
| | - Ping JIANG
- College of Animal Science, Jilin University, Xi An Road
5333, Changchun, Jilin 130062, P.R. China
| | - Xiaohui LI
- College of Animal Science, Jilin University, Xi An Road
5333, Changchun, Jilin 130062, P.R. China
| | - Yanliang GE
- College of Animal Science, Jilin University, Xi An Road
5333, Changchun, Jilin 130062, P.R. China
| | - Yang CAO
- Branch of Animal Husbandry, Jilin Academy of Agricultural
Sciences, Changchun 130033, P.R. China
| | - Zhihui ZHAO
- Agricultural College, Guangdong Ocean University, Zhanjiang
524088, P.R. China
| | - Xibi FANG
- College of Animal Science, Jilin University, Xi An Road
5333, Changchun, Jilin 130062, P.R. China
| | - Xianzhong YU
- College of Animal Science, Jilin University, Xi An Road
5333, Changchun, Jilin 130062, P.R. China
- Department of Biological Sciences, 132 Long Hall, Clemson
University, Clemson, SC 29634, U.S.A
| |
Collapse
|
4
|
Rehbein P, Schwalbe H. Improved high-yield expression, purification and refolding of recombinant mammalian prion proteins under aerosol-free elevated biological safety conditions. Protein Expr Purif 2018; 150:53-60. [PMID: 29751084 DOI: 10.1016/j.pep.2018.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 11/28/2022]
Abstract
Production of recombinant prion proteins is of crucial relevance in food technology (analytical standards, assay development) but also in basic research, most importantly structural biology (NMR, X-ray diffraction). Structural approaches conveniently allow for sophisticated investigation of prion disease pathogenesis, but usually require large amounts of sample material. Recently, working with recombinant prion proteins has been recategorized to biosafety levels > S1 as infectious prions may readily be generated de novo and become airborne via aerosols. Heterologous expression should therefore be established with appropriately adjusted safety precautions. We have developed a protocol for high-yield expression, purification and refolding of recombinant mammalian prion proteins at elevated biological safety levels by introducing means of abolishing aerosol formation and propagation.
Collapse
Affiliation(s)
- Peter Rehbein
- Institute for Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany.
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Zhan YA, Abskharon R, Li Y, Yuan J, Zeng L, Dang J, Martinez MC, Wang Z, Mikol J, Lehmann S, Bu S, Steyaert J, Cui L, Petersen RB, Kong Q, Wang GX, Wohlkonig A, Zou WQ. Quiescin-sulfhydryl oxidase inhibits prion formation in vitro. Aging (Albany NY) 2017; 8:3419-3429. [PMID: 27959866 PMCID: PMC5270677 DOI: 10.18632/aging.101132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/24/2016] [Indexed: 02/03/2023]
Abstract
Prions are infectious proteins that cause a group of fatal transmissible diseases in animals and humans. The scrapie isoform (PrPSc) of the cellular prion protein (PrPC) is the only known component of the prion. Several lines of evidence have suggested that the formation and molecular features of PrPSc are associated with an abnormal unfolding/refolding process. Quiescin-sulfhydryl oxidase (QSOX) plays a role in protein folding by introducing disulfides into unfolded reduced proteins. Here we report that QSOX inhibits human prion propagation in protein misfolding cyclic amplification reactions and murine prion propagation in scrapie-infected neuroblastoma cells. Moreover, QSOX preferentially binds PrPSc from prion-infected human or animal brains, but not PrPC from uninfected brains. Surface plasmon resonance of the recombinant mouse PrP (moPrP) demonstrates that the affinity of QSOX for monomer is significantly lower than that for octamer (312 nM vs 1.7 nM). QSOX exhibits much lower affinity for N-terminally truncated moPrP (PrP89-230) than for the full-length moPrP (PrP23-231) (312 nM vs 2 nM), suggesting that the N-terminal region of PrP is critical for the interaction of PrP with QSOX. Our study indicates that QSOX may play a role in prion formation, which may open new therapeutic avenues for treating prion diseases.
Collapse
Affiliation(s)
- Yi-An Zhan
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Romany Abskharon
- VIB Center for Structural Biology, VIB, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium.,National Institute of Oceanography and Fisheries (NIFO), 11516 Cairo, Egypt.,CNS, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yu Li
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jue Yuan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Liang Zeng
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Johnny Dang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Manuel Camacho Martinez
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, The People's Republic of China
| | - Jacqueline Mikol
- Hôpital Lariboisière, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Sylvain Lehmann
- IRMB -Hôpital ST ELOI, CHU de Montpellier, Montpellier, France
| | - Shizhong Bu
- Diabetes Research Center, Ningbo University, The People's Republic of China
| | - Jan Steyaert
- VIB Center for Structural Biology, VIB, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, The People's Republic of China
| | - Robert B Petersen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Gong-Xiang Wang
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China
| | - Alexandre Wohlkonig
- VIB Center for Structural Biology, VIB, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Wen-Quan Zou
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, The People's Republic of China.,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, The People's Republic of China
| |
Collapse
|
6
|
Abskharon R, Dang J, Elfarash A, Wang Z, Shen P, Zou LS, Hassan S, Wang F, Fujioka H, Steyaert J, Mulaj M, Surewicz WK, Castilla J, Wohlkonig A, Zou WQ. Soluble polymorphic bank vole prion proteins induced by co-expression of quiescin sulfhydryl oxidase in E. coli and their aggregation behaviors. Microb Cell Fact 2017; 16:170. [PMID: 28978309 PMCID: PMC5628483 DOI: 10.1186/s12934-017-0782-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Background The infectious prion protein (PrPSc or prion) is derived from its cellular form (PrPC) through a conformational transition in animal and human prion diseases. Studies have shown that the interspecies conversion of PrPC to PrPSc is largely swayed by species barriers, which is mainly deciphered by the sequence and conformation of the proteins among species. However, the bank vole PrPC (BVPrP) is highly susceptible to PrPSc from different species. Transgenic mice expressing BVPrP with the polymorphic isoleucine (109I) but methionine (109M) at residue 109 spontaneously develop prion disease. Results To explore the mechanism underlying the unique susceptibility and convertibility, we generated soluble BVPrP by co-expression of BVPrP with Quiescin sulfhydryl oxidase (QSOX) in Escherichia coli. Interestingly, rBVPrP-109M and rBVPrP-109I exhibited distinct seeded aggregation pathways and aggregate morphologies upon seeding of mouse recombinant PrP fibrils, as monitored by thioflavin T fluorescence and electron microscopy. Moreover, they displayed different aggregation behaviors induced by seeding of hamster and mouse prion strains under real-time quaking-induced conversion. Conclusions Our results suggest that QSOX facilitates the formation of soluble prion protein and provide further evidence that the polymorphism at residue 109 of QSOX-induced BVPrP may be a determinant in mediating its distinct convertibility and susceptibility.
Collapse
Affiliation(s)
- Romany Abskharon
- VIB Center for Structural Biology, VIB, 1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium.,National Institute of Oceanography and Fisheries (NIFO), Cairo, 11516, Egypt.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Johnny Dang
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ameer Elfarash
- Genetic Department, Faculty of Agriculture, Assiut University, Assuit, 71516, Egypt
| | - Zerui Wang
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Pingping Shen
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Lewis S Zou
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sedky Hassan
- Botany Department, Faculty of Science, Assiut University, New Valley Branch, El-Kharja, 72511, Egypt
| | - Fei Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jan Steyaert
- VIB Center for Structural Biology, VIB, 1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Mentor Mulaj
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Bizkaia, Spain
| | - Alexandre Wohlkonig
- VIB Center for Structural Biology, VIB, 1050, Brussels, Belgium. .,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium.
| | - Wen-Quan Zou
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Departments of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China. .,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Production of Monoclonal Antibodies to Pathologic β-sheet Oligomeric Conformers in Neurodegenerative Diseases. Sci Rep 2017; 7:9881. [PMID: 28852189 PMCID: PMC5575137 DOI: 10.1038/s41598-017-10393-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023] Open
Abstract
We describe a novel approach to produce conformational monoclonal antibodies selected to specifically react with the β-sheet secondary structure of pathological oligomeric conformers, characteristic of many neurodegenerative diseases. Contrary to past and current efforts, we utilize a mammalian non-self-antigen as an immunogen. The small, non-self peptide selected was covalently polymerized with glutaraldehyde until it reached a high β-sheet secondary structure content, and species between 10–100kDa that are immunogenic, stable and soluble (p13Bri). Inoculation of p13Bri in mice elicited antibodies to the peptide and the β-sheet secondary structure conformation. Hybridomas were produced and clones selected for their reactivity with at least two different oligomeric conformers from Alzheimer’s, Parkinson and/or Prion diseases. The resulting conformational monoclonals are able to detect pathological oligomeric forms in different human neurodegenerative diseases by ELISA, immunohistochemistry and immunoblots. This technological approach may be useful to develop tools for detection, monitoring and treatment of multiple misfolding disorders.
Collapse
|
8
|
Sengupta I, Udgaonkar JB. Expression and purification of single cysteine-containing mutant variants of the mouse prion protein by oxidative refolding. Protein Expr Purif 2017; 140:1-7. [PMID: 28736314 DOI: 10.1016/j.pep.2017.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Abstract
The folding and aggregation of proteins has been studied extensively, using multiple probes. To facilitate such experiments, introduction of spectroscopically-active moieties in to the protein of interest is often necessary. This is commonly achieved by specifically labelling cysteine residues in the protein, which are either present naturally or introduced artificially by site-directed mutagenesis. In the case of the recombinant prion protein, which is normally expressed in inclusion bodies, the presence of the native disulfide bond complicates the correct refolding of single cysteine-containing mutant variants of the protein. To overcome this major bottleneck, a simple purification strategy for single tryptophan, single cysteine-containing mutant variants of the mouse prion protein is presented, with yields comparable to that of the wild type protein. The protein(s) obtained by this method are correctly folded, with a single reduced cysteine, and the native disulfide bond between residues C178 and C213 intact. The β-sheet rich oligomers formed from these mutant variant protein(s) are identical to the wild type protein oligomer. The current strategy facilitates sample preparation for a number of high resolution spectroscopic measurements for the prion protein, which specifically require thiol labelling.
Collapse
Affiliation(s)
- Ishita Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.
| |
Collapse
|
9
|
Shi L, Chen H, Zhang S, Chu T, Zhao Y, Chen Y, Li Y. Semi‐synthesis of murine prion protein by native chemical ligation and chemical activation for preparation of polypeptide‐
α
‐thioester. J Pept Sci 2017; 23:438-444. [DOI: 10.1002/psc.3008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Lei Shi
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of ChemistryTsinghua University Beijing 100084 China
| | - Huai Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of ChemistryTsinghua University Beijing 100084 China
| | - Si‐Yu Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of ChemistryTsinghua University Beijing 100084 China
| | - Ting‐Ting Chu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of ChemistryTsinghua University Beijing 100084 China
| | - Yu‐Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of ChemistryTsinghua University Beijing 100084 China
| | - Yong‐Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of ChemistryTsinghua University Beijing 100084 China
| | - Yan‐Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of ChemistryTsinghua University Beijing 100084 China
- Beijing Institute for Brain Disorders Beijing 100069 China
| |
Collapse
|
10
|
Moda F, T. Le TN, Aulić S, Bistaffa E, Campagnani I, Virgilio T, Indaco A, Palamara L, Andréoletti O, Tagliavini F, Legname G. Synthetic prions with novel strain-specified properties. PLoS Pathog 2015; 11:e1005354. [PMID: 26720726 PMCID: PMC4699842 DOI: 10.1371/journal.ppat.1005354] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/30/2015] [Indexed: 01/10/2023] Open
Abstract
Prions are infectious proteins that possess multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, PrPSc. Many recent studies determined that de novo prion strains could be generated in vitro from the structural conversion of recombinant (rec) prion protein (PrP) into amyloidal structures. Our aim was to elucidate the conformational diversity of pathological recPrP amyloids and their biological activities, as well as to gain novel insights in characterizing molecular events involved in mammalian prion conversion and propagation. To this end we generated infectious materials that possess different conformational structures. Our methodology for the prion conversion of recPrP required only purified rec full-length mouse (Mo) PrP and common chemicals. Neither infected brain extracts nor amplified PrPSc were used. Following two different in vitro protocols recMoPrP converted to amyloid fibrils without any seeding factor. Mouse hypothalamic GT1 and neuroblastoma N2a cell lines were infected with these amyloid preparations as fast screening methodology to characterize the infectious materials. Remarkably, a large number of amyloid preparations were able to induce the conformational change of endogenous PrPC to harbor several distinctive proteinase-resistant PrP forms. One such preparation was characterized in vivo habouring a synthetic prion with novel strain specified neuropathological and biochemical properties. Prions are infectious proteins capable of acquiring multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, designated as PrPSc. During propagation, disease-associated conformer PrPSc coerces the physiological form, denoted as PrPC, to adopt the pathological isoform conformation. We describe here the generation of an array of infectious materials with different structural, morphological, biochemical and cell biological characteristics. After producing purified recombinant prion protein of the wild-type mouse full-length sequence in Escherichia coli, we polymerized the protein into various amyloid fibril conformations based on different amyloid preparations. We also applied a build-in methodology for screening amyloid preparations and generate infectious materials using an amyloid-infected cell culture assay. Some of the amyloid fibrils preparations were able to efficiently amplify in PMCA (Protein Misfolding Cyclic Amplification), and to induce endogenous PrPC to convert into PrPSc in both murine hypothalamic GT1 and neuroblastoma N2a cell lines. One such protocol lead to the generation of a novel synthetic prion strain in mice.
Collapse
Affiliation(s)
- Fabio Moda
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Thanh-Nhat T. Le
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
| | - Suzana Aulić
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
| | - Edoardo Bistaffa
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
| | - Ilaria Campagnani
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Tommaso Virgilio
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Antonio Indaco
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Luisa Palamara
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Olivier Andréoletti
- UMR INRA-ENVT, Physiopathologie Infectieuse et Parasitaire des Ruminants, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Fabrizio Tagliavini
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy
- * E-mail:
| |
Collapse
|
11
|
Ke N, Berkmen M. Production of Disulfide‐Bonded Proteins in
Escherichia coli. ACTA ACUST UNITED AC 2014; 108:16.1B.1-16.1B.21. [DOI: 10.1002/0471142727.mb1601bs108] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Na Ke
- New England Biolabs Ipswich Massachusetts
| | | |
Collapse
|
12
|
Vriens K, Cammue BPA, Thevissen K. Antifungal plant defensins: mechanisms of action and production. Molecules 2014; 19:12280-303. [PMID: 25153857 PMCID: PMC6271847 DOI: 10.3390/molecules190812280] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/18/2022] Open
Abstract
Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been studied extensively during the last decades and several of their fungal targets have been identified to date. This review summarizes the mechanism of action of well-characterized antifungal plant defensins, including RsAFP2, MsDef1, MtDef4, NaD1 and Psd1, and points out the variety by which antifungal plant defensins affect microbial cell viability. Furthermore, this review summarizes production routes for plant defensins, either via heterologous expression or chemical synthesis. As plant defensins are generally considered non-toxic for plant and mammalian cells, they are regarded as attractive candidates for further development into novel antimicrobial agents.
Collapse
Affiliation(s)
- Kim Vriens
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium
| |
Collapse
|
13
|
Zhang W, Zheng W, Mao M, Yang Y. Highly efficient folding of multi-disulfide proteins in superoxidizingEscherichia colicytoplasm. Biotechnol Bioeng 2014; 111:2520-7. [DOI: 10.1002/bit.25309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Wenyao Zhang
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Wenyun Zheng
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Miaowei Mao
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| |
Collapse
|
14
|
Delic M, Göngrich R, Mattanovich D, Gasser B. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 2014; 21:414-37. [PMID: 24483278 DOI: 10.1089/ars.2014.5844] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. RECENT ADVANCES Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. CRITICAL ISSUES While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. FUTURE DIRECTIONS Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.
Collapse
Affiliation(s)
- Marizela Delic
- 1 Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) , Vienna, Austria
| | | | | | | |
Collapse
|
15
|
Rehbein P, Saxena K, Schlepckow K, Schwalbe H. Protocol for aerosol-free recombinant production and NMR analysis of prion proteins. JOURNAL OF BIOMOLECULAR NMR 2014; 59:111-117. [PMID: 24771297 DOI: 10.1007/s10858-014-9831-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
The central hallmark of prion diseases is the misfolding of cellular prion protein (PrP(C)) into a disease-associated aggregated isoform known as scrapie prion protein (PrP(Sc)). NMR spectroscopy has made many essential contributions to the characterization of recombinant PrP in its folded, unfolded and aggregated states. Recent studies reporting on de novo generation of prions from recombinant PrP and infection of animals using prion aerosols suggest that adjustment of current biosafety measures may be necessary, particularly given the relatively high protein concentrations required for NMR applications that favor aggregation. We here present a protocol for the production of recombinant PrP under biosafety level 2 conditions that avoids entirely exposure of the experimenter to aerosols that might contain harmful PrP aggregates. In addition, we introduce an NMR sample tube setup that allows for safe handling of PrP samples at the spectrometer that usually is not part of a dedicated biosafety level 2 laboratory.
Collapse
Affiliation(s)
- Peter Rehbein
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
16
|
Abskharon RNN, Giachin G, Wohlkonig A, Soror SH, Pardon E, Legname G, Steyaert J. Probing the N-terminal β-sheet conversion in the crystal structure of the human prion protein bound to a nanobody. J Am Chem Soc 2014; 136:937-44. [PMID: 24400836 DOI: 10.1021/ja407527p] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prions are fatal neurodegenerative transmissible agents causing several incurable illnesses in humans and animals. Prion diseases are caused by the structural conversion of the cellular prion protein, PrP(C), into its misfolded oligomeric form, known as prion or PrP(Sc). The canonical human PrP(C) (HuPrP) fold features an unstructured N-terminal part (residues 23-124) and a well-defined C-terminal globular domain (residues 125-231). Compelling evidence indicates that an evolutionary N-terminal conserved motif AGAAAAGA (residues 113-120) plays an important role in the conversion to PrP(Sc). The intrinsic flexibility of the N-terminal has hampered efforts to obtain detailed atomic information on the structural features of this palindromic region. In this study, we crystallized the full-length HuPrP in complex with a nanobody (Nb484) that inhibits prion propagation. In the complex, the prion protein is unstructured from residue 23 to 116. The palindromic motif adopts a stable and fully extended configuration to form a three-stranded antiparallel β-sheet with the β1 and β2 strands, demonstrating that the full-length HuPrP(C) can adopt a more elaborate β0-β1-α1-β2-α2-α3 structural organization than the canonical β1-α1-β2-α2-α3 prion-like fold. From this structure, it appears that the palindromic motif mediates β-enrichment in the PrP(C) monomer as one of the early events in the conversion of PrP(C) into PrP(Sc).
Collapse
Affiliation(s)
- Romany N N Abskharon
- Structural Biology Brussels, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Recombinant human prion protein inhibits prion propagation in vitro. Sci Rep 2013; 3:2911. [PMID: 24105336 PMCID: PMC3793212 DOI: 10.1038/srep02911] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/24/2013] [Indexed: 02/05/2023] Open
Abstract
Prion diseases are associated with the conformational conversion of the cellular prion protein (PrPC) into the pathological scrapie isoform (PrPSc) in the brain. Both the in vivo and in vitro conversion of PrPC into PrPSc is significantly inhibited by differences in amino acid sequence between the two molecules. Using protein misfolding cyclic amplification (PMCA), we now report that the recombinant full-length human PrP (rHuPrP23-231) (that is unglycosylated and lacks the glycophosphatidylinositol anchor) is a strong inhibitor of human prion propagation. Furthermore, rHuPrP23-231 also inhibits mouse prion propagation in a scrapie-infected mouse cell line. Notably, it binds to PrPSc, but not PrPC, suggesting that the inhibitory effect of recombinant PrP results from blocking the interaction of brain PrPC with PrPSc. Our findings suggest a new avenue for treating prion diseases, in which a patient's own unglycosylated and anchorless PrP is used to inhibit PrPSc propagation without inducing immune response side effects.
Collapse
|
18
|
Marbach J, Zentis P, Ellinger P, Müller H, Birkmann E. Expression and characterisation of fully posttranslationally modified cellular prion protein in Pichia pastoris. Biol Chem 2013; 394:1475-83. [PMID: 23893688 DOI: 10.1515/hsz-2013-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/25/2013] [Indexed: 11/15/2022]
Abstract
Prion diseases are fatal neurodegenerative diseases which occur as sporadic, genetic, and transmissible disorders. A molecular hallmark of prion diseases is the conformational conversion of the host-encoded cellular form of the prion protein (PrPC) into its misfolded pathogenic isoform (PrPSc). PrPSc is the main component of the pathological and infectious prion agent. The study of the conversion mechanism from PrPC to PrPSc is a major field in prion research. PrPC is glycosylated and attached to the plasma membrane via its glycosyl phosphatidyl inositol (GPI)-anchor. In this study we established and characterised the expression of fully posttranslationally modified mammalian Syrian golden hamster PrPC in the yeast Pichia pastoris using native PrPC-specific N- and C-terminal signal sequences. In vivo as well as in vitro-studies demonstrated that the signal sequences controlled posttranslational processing and trafficking of native PrPC, resulting in PrPC localised in the plasma membrane of P. pastoris. In addition, the glycosylation pattern of native PrPC could be confirmed.
Collapse
|
19
|
Nozach H, Fruchart-Gaillard C, Fenaille F, Beau F, Ramos OHP, Douzi B, Saez NJ, Moutiez M, Servent D, Gondry M, Thaï R, Cuniasse P, Vincentelli R, Dive V. High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microb Cell Fact 2013; 12:37. [PMID: 23607455 PMCID: PMC3668227 DOI: 10.1186/1475-2859-12-37] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/28/2013] [Indexed: 12/13/2022] Open
Abstract
Background Disulfide-rich proteins or DRPs are versatile bioactive compounds that encompass a wide variety of pharmacological, therapeutic, and/or biotechnological applications. Still, the production of DRPs in sufficient quantities is a major bottleneck for their complete structural or functional characterization. Recombinant expression of such small proteins containing multiple disulfide bonds in the bacteria E. coli is considered difficult and general methods and protocols, particularly on a high throughput scale, are limited. Results Here we report a high throughput screening approach that allowed the systematic investigation of the solubilizing and folding influence of twelve cytoplasmic partners on 28 DRPs in the strains BL21 (DE3) pLysS, Origami B (DE3) pLysS and SHuffle® T7 Express lysY (1008 conditions). The screening identified the conditions leading to the successful soluble expression of the 28 DRPs selected for the study. Amongst 336 conditions tested per bacterial strain, soluble expression was detected in 196 conditions using the strain BL21 (DE3) pLysS, whereas only 44 and 50 conditions for soluble expression were identified for the strains Origami B (DE3) pLysS and SHuffle® T7 Express lysY respectively. To assess the redox states of the DRPs, the solubility screen was coupled with mass spectrometry (MS) to determine the exact masses of the produced DRPs or fusion proteins. To validate the results obtained at analytical scale, several examples of proteins expressed and purified to a larger scale are presented along with their MS and functional characterization. Conclusions Our results show that the production of soluble and functional DRPs with cytoplasmic partners is possible in E. coli. In spite of its reducing cytoplasm, BL21 (DE3) pLysS is more efficient than the Origami B (DE3) pLysS and SHuffle® T7 Express lysY trxB-/gor- strains for the production of DRPs in fusion with solubilizing partners. However, our data suggest that oxidation of the proteins occurs ex vivo. Our protocols allow the production of a large diversity of DRPs using DsbC as a fusion partner, leading to pure active DRPs at milligram scale in many cases. These results open up new possibilities for the study and development of DRPs with therapeutic or biotechnological interest whose production was previously a limitation.
Collapse
Affiliation(s)
- Hervé Nozach
- CEA, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, CEA Saclay, Gif sur Yvette F-91191, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chu NK, Becker CFW. Recombinant expression of soluble murine prion protein for C-terminal modification. FEBS Lett 2013; 587:430-5. [PMID: 23337878 DOI: 10.1016/j.febslet.2012.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/30/2012] [Accepted: 12/20/2012] [Indexed: 01/31/2023]
Abstract
Membrane attachment of prion protein (PrP) via its glycosylphosphatidylinositol (GPI) anchor plays a key role during conversion of cellular PrP(C) into its pathogenic isoform PrP(Sc). Strategies to access homogenous lipidated PrP via expressed protein ligation (EPL) are required to fully decipher the effect of membrane attachment. Such strategies suffer from insoluble expression of PrP-intein fusion constructs and low folding efficiencies that severely limit the available amount of homogeneous lipidated PrP. Here, we describe an alternative method for expression of soluble PrP-intein fusion proteins in Escherichia coli that provides access to natively folded PrP ready to use in EPL.
Collapse
Affiliation(s)
- Nam Ky Chu
- Institute of Biological Chemistry, University of Vienna, Vienna, Austria
| | | |
Collapse
|
21
|
Gad W, Nair MG, Van Belle K, Wahni K, De Greve H, Van Ginderachter JA, Vandenbussche G, Endo Y, Artis D, Messens J. The quiescin sulfhydryl oxidase (hQSOX1b) tunes the expression of resistin-like molecule alpha (RELM-α or mFIZZ1) in a wheat germ cell-free extract. PLoS One 2013; 8:e55621. [PMID: 23383248 PMCID: PMC3561318 DOI: 10.1371/journal.pone.0055621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 01/02/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although disulfide bond formation in proteins is one of the most common types of post-translational modifications, the production of recombinant disulfide-rich proteins remains a challenge. The most popular host for recombinant protein production is Escherichia coli, but disulfide-rich proteins are here often misfolded, degraded, or found in inclusion bodies. METHODOLOGY/PRINCIPAL FINDINGS We optimize an in vitro wheat germ translation system for the expression of an immunological important eukaryotic protein that has to form five disulfide bonds, resistin-like alpha (mFIZZ1). Expression in combination with human quiescin sulfhydryl oxidase (hQSOX1b), the disulfide bond-forming enzyme of the endoplasmic reticulum, results in soluble, intramolecular disulfide bonded, monomeric, and biological active protein. The mFIZZ1 protein clearly suppresses the production of the cytokines IL-5 and IL-13 in mouse splenocytes cultured under Th2 permissive conditions. CONCLUSION/SIGNIFICANCE The quiescin sulfhydryl oxidase hQSOX1b seems to function as a chaperone and oxidase during the oxidative folding. This example for mFIZZ1 should encourage the design of an appropriate thiol/disulfide oxidoreductase-tuned cell free expression system for other challenging disulfide rich proteins.
Collapse
Affiliation(s)
- Wael Gad
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Meera G. Nair
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Karolien Van Belle
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Khadija Wahni
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Henri De Greve
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A. Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Guy Vandenbussche
- Centre de Biologie Structurale et de Bioinformatique, Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Yaeta Endo
- Cell Free Science and Technology Research Center, Ehime University, Matsuyama, Japan
| | - David Artis
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joris Messens
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
22
|
de Marco A. Recent contributions in the field of the recombinant expression of disulfide bonded proteins in bacteria. Microb Cell Fact 2012; 11:129. [PMID: 22978724 PMCID: PMC3462667 DOI: 10.1186/1475-2859-11-129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 12/03/2022] Open
Abstract
The production of heterologous disulfide bonded proteins in bacteria remains a biotechnological challenge. A rapid literature survey results in the identification of some interesting proposals, such as the option of producing functional proteins in the cytoplasm in the presence of sulfhydryl oxidases and isomerases. Furthermore, an ever-increasing number of applications refers to recombinant proteins displayed at the bacterial surface. Time will tell whether these developments will lead to universally accepted laboratory protocols.
Collapse
|