1
|
Wang J, Wang W, Chen Y, Liu Z, Ji X, Pan G, Li Z, Fan K. Development of a xylose-inducible and glucose-insensitive expression system for Parageobacillus thermoglucosidasius. Appl Microbiol Biotechnol 2024; 108:493. [PMID: 39441395 PMCID: PMC11499391 DOI: 10.1007/s00253-024-13333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Inducible expression systems are pivotal for governing gene expression in strain engineering and synthetic biotechnological applications. Therefore, a critical need persists for the development of versatile and efficient inducible expression mechanisms. In this study, the xylose-responsive promoter xylA5p and its transcriptional regulator XylR were identified in Parageobacillus thermoglucosidasius DSM 2542. By combining promoter xylA5p with its regulator XylR, fine-tuning the expression strength of XylR, and reducing the glucose catabolite repression on xylose uptake, we successfully devised a xylose-inducible and glucose-insensitive expression system, denoted as IExyl*. This system exhibited diverse promoter strengths upon induction with xylose at varying concentrations and remained unhindered in the presence of glucose. Moreover, we showed the applicability of IExyl* in P. thermoglucosidasius by redirecting metabolic flux towards riboflavin biosynthesis, culminating in a 2.8-fold increase in riboflavin production compared to that of the starting strain. This glucose-insensitive and xylose-responsive expression system provides valuable tools for designing optimized biosynthetic pathways for high-value products and facilitates future synthetic biology investigations in Parageobacillus. KEY POINTS: • A xylose-inducible and glucose-insensitive expression system IExyl* was developed. • IExyl* was applied to enhance the riboflavin production in P. thermoglucosidasius • A tool for metabolic engineering and synthetic biology research in Parageobacillus strains.
Collapse
Affiliation(s)
- Junyang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xu Ji
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Chen S, Xiong W, Zhao X, Luo W, Yan X, Lu Y, Chen C, Ling X. Study on the mechanism of efficient extracellular expression of toxic streptomyces phospholipase D in Brevibacillus choshinensis under Mg2+ stress. Microb Cell Fact 2022; 21:41. [PMID: 35305639 PMCID: PMC8933894 DOI: 10.1186/s12934-022-01770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Phospholipase D (PLD) has significant advantages in the food and medicine industries due to its unique transphosphatidylation. However, the high heterologous expression of PLD is limited by its cytotoxicity. The present study sought to develop an efficient and extracellular expression system of PLD in the non-pathogenic Brevibacillus choshinensis (B. choshinensis).
Results
The extracellular PLD was effectively expressed by the strong promoter (P2) under Mg2+ stress, with the highest activity of 10 U/mL. The inductively coupled plasma–mass spectrometry (ICP-MS) results elucidated that the over-expression of PLD by P2 promoter without Mg2+ stress induced the ionic homeostasis perturbation caused by the highly enhanced Ca2+ influx, leading to cell injury or death. Under Mg2+ stress, Ca2+ influx was significantly inhibited, and the strengths of P2 promoter and HWP gene expression were weakened. The study results revealed that the mechanism of Mg2+ induced cell growth protection and PLD expression might be related to the lowered strength of PLD expression by P2 promoter repression to meet with the secretion efficiency of B. choshinensis, and the redistribution of intracellular ions accompanied by decreased Ca2+ influx.
Conclusions
The PLD production was highly improved under Mg2+ stress. By ICP-MS and qPCR analysis combined with other results, the mechanism of the efficient extracellular PLD expression under Mg2+ stress was demonstrated. The relatively low-speed PLD expression during cell growth alleviated cell growth inhibition and profoundly improved PLD production. These results provided a potential approach for the large-scale production of extracellular PLD and novel insights into PLD function.
Collapse
|
3
|
Yao D, Zhang K, Zhu X, Su L, Wu J. Enhanced extracellular α-amylase production in Brevibacillus choshinensis by optimizing extracellular degradation and folding environment. J Ind Microbiol Biotechnol 2021; 49:6380490. [PMID: 34601573 PMCID: PMC9113144 DOI: 10.1093/jimb/kuab061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/22/2021] [Indexed: 11/14/2022]
Abstract
A strategy for optimizing the extracellular degradation and folding environment of Brevibacillus choshinensis has been used to enhance the extracellular production of recombinant α-amylase. First, a gene (bcp) encoding an extracellular protease and another encoding an extracellular chaperone (prsC) were identified in the genome of B. choshinensis HPD31-SP3. Then, the effect of extracellular protein degradation on recombinant α-amylase production was investigated by establishing a CRISPR/Cas9n system to knock out bcp. The effect of extracellular folding capacity was investigated separately by coexpressing extracellular chaperones genes from different sources (prsA, prsC, prsL, prsQ) in B. choshinensis. The final recombinant strain (BCPPSQ), which coexpressed prsQ in a genetic background lacking bcp, produced an extracellular α-amylase activity of 6940.9 U/mL during shake-flask cultivation. This was 2.1-fold greater than that of the original strain BCWPS (3367.9 U/mL). Cultivation of BCPPSQ in a 3-L fermenter produced an extracellular α-amylase activity of 17 925.6 U/mL at 72 h, which was 7.6-fold greater than that of BCWPS (2358.1 U/mL). This strategy demonstrates its great potential in enhancing extracellular α-amylase production in B. choshinensis. What's more, this study provides a strategic reference for improving the extracellular production of other recombinant proteins in B. choshinensis.
Collapse
Affiliation(s)
- Dongbang Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Kang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xuyang Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
4
|
Yao D, Zhang K, Wu J. Available strategies for improved expression of recombinant proteins in Brevibacillus expression system: a review. Crit Rev Biotechnol 2020; 40:1044-1058. [PMID: 32781847 DOI: 10.1080/07388551.2020.1805404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brevibacillus offers great potential as a recombinant protein expression host because of its exceptional abilities to synthesize and excrete proteins and its low extracellular protease activity. Despite these strengths, effective recombinant expression strategies are still the key to achieving high-level expression of recombinant proteins in Brevibacillus due to individual differences among strains and target proteins. Many strategies have been developed to improve recombinant protein expression in Brevibacillus. This review begins by introducing the processes used to establish and apply the Brevibacillus expression system, and then critically discusses the strategies available for improving recombinant protein expression in Brevibacillus, including optimization of the host and the expression vector, co-expression of a fusion partner or foldase, and optimization of the fermentation process. Finally, the prospects for further improvement of recombinant protein expression based on Brevibacillus are also discussed. This review is intended to provide a strategic reference for scientists wanting to improve the expression of a specific recombinant protein in Brevibacillus or other expression systems.
Collapse
Affiliation(s)
- Dongbang Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Kang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Liu J, Cui X, Liu Z, Guo Z, Yu Z, Yao Q, Sui Y, Jin J, Liu X, Wang G. The Diversity and Geographic Distribution of Cultivable Bacillus-Like Bacteria Across Black Soils of Northeast China. Front Microbiol 2019; 10:1424. [PMID: 31293554 PMCID: PMC6598460 DOI: 10.3389/fmicb.2019.01424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/05/2019] [Indexed: 11/21/2022] Open
Abstract
Bacillus-like species are gram-positive bacteria that are ubiquitous in soils. Many of Bacillus-like bacteria are demonstrated as beneficial microbes widely used in industry and agriculture. However, the knowledge related to their diversity and distribution patterns in soils is still rudimentary. In this study, we developed a combined research method of using culture-dependent and high-throughput sequencing to investigate the composition and diversity of cultivable Bacillus-like bacterial communities across 26 soil samples obtained from the black soil zone in northeast China. Nearly all bacterial 16S rDNA sequences were classified into the order Bacillales. Fifteen genera were detected, with Bacillus, Paenibacillus, and Brevibacillus being the three most abundant genera. Although more than 2,000 OTUs were obtained across all samples, 33 OTUs were confirmed as the abundant species with a relative abundance over 5% in at least one sample. Pairwise analysis showed that the diversity of Bacillus-like bacterial communities were significantly and positively correlated with soil total carbon contents and soil sampling latitudes, which suggests that a latitudinal gradient diversity of Bacillus-like bacterial communities exists in the black soil zone. The principal coordinates analysis revealed that the Bacillus-like bacterial communities were remarkably affected by soil sampling latitudes and soil total carbon content. In general, this study demonstrated that a distinct biogeographic distribution pattern of cultivable Bacillus-like bacterial communities existed in the black soil zone, which emphasizes that the strategy of local isolation and application of beneficial Bacillus-like strains is rather important in black soil agriculture development.
Collapse
Affiliation(s)
- Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiao Cui
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- School of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Zhuxiu Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Guo
- Institute of Tobacco Science, Heilongjiang Branch, China National Tobacco Corporation, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yueyu Sui
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
6
|
Lemaitre RP, Bogdanova A, Borgonovo B, Woodruff JB, Drechsel DN. FlexiBAC: a versatile, open-source baculovirus vector system for protein expression, secretion, and proteolytic processing. BMC Biotechnol 2019; 19:20. [PMID: 30925874 PMCID: PMC6441187 DOI: 10.1186/s12896-019-0512-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Background Baculovirus-mediated expression in insect cells is a powerful approach for protein production. However, many existing methods are time-consuming, offer limited options for protein tagging, and are unsuitable for secreted proteins requiring proteolytic maturation, such as TGF-β family growth factors. Results To overcome the limitations of traditional baculovirus expression systems, we engineered “FlexiBAC”. This system allows recombinant baculovirus formation inside insect cells and reduces the time between initial cloning and protein production to 13 days. FlexiBAC includes 143 shuttle vectors that append combinations of purification tags, fluorescent markers, proteolytic cleavage sites, trafficking signals, and chemical conjugation tags to the termini of the target protein. This system also overexpresses recombinant furin convertase to allow efficient proteolytic processing of secreted proteins. We demonstrate that FlexiBAC can be used to produce high levels of mature, active forms of TGF-β family growth factors, such as Activin A, as well as other proteins that are typically difficult to reconstitute, such as proteins rich in coiled-coil, low complexity, and disordered domains. Conclusions FlexiBAC is a protein expression system for production of both cytosolic proteins and secreted proteins that require proteolytic maturation. The design of FlexiBAC and its expansive complementary shuttle vector system reduces cloning steps and simplifies baculovirus production. Electronic supplementary material The online version of this article (10.1186/s12896-019-0512-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Régis P Lemaitre
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Barbara Borgonovo
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Jeffrey B Woodruff
- Department of Cell Biology, Dept. of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - David N Drechsel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany. .,Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
7
|
Duan X, Shen Z, Zhang X, Wang Y, Huang Y. Production of recombinant beta-amylase of Bacillus aryabhattai. Prep Biochem Biotechnol 2019; 49:88-94. [PMID: 30636502 DOI: 10.1080/10826068.2018.1536987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, the effects of carbon source, nitrogen source, and metal ions on cell growth and Bacillus aryabhattai β-amylase production in recombinant Brevibacillus choshinensis were investigated. The optimal medium for β-amylase production, containing glucose (7.5 g·L-1), pig bone peptone (40.0 g·L-1), Mg2+ (0.05 mol·L-1), and trace metal elements, was determined through single-factor experiments in shake flasks. When cultured in the optimized medium, the β-amylase yield reached 925.4 U mL-1, which was 7.2-fold higher than that obtained in the initial medium. Besides, a modified feeding strategy was proposed and applied in a 3-L fermentor fed with glucose, which achieved a dry cell weight of 15.4 g L-1. Through this cultivation approached 30 °C with 0 g·L-1 initial glucose concentration, the maximum β-amylase activity reached 5371.8 U mL-1, which was 41.7-fold higher than that obtained with the initial medium in shake flask.
Collapse
Affiliation(s)
- Xuguo Duan
- a College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Zhenyan Shen
- a College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Xinyi Zhang
- a College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Yaosong Wang
- a College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Yue Huang
- a College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing , Jiangsu , China
| |
Collapse
|
8
|
Xu Y, Mao W, Gao W, Chi Z, Chi Z, Liu G. Efficient production of a recombinant ι-carrageenase in Brevibacillus choshinensis using a new integrative vector for the preparation of ι-carrageenan oligosaccharides. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Noguchi Y, Kashiwagi N, Uzura A, Ogino C, Kondo A, Ikeda H, Sota M. Development of a strictly regulated xylose-induced expression system in Streptomyces. Microb Cell Fact 2018; 17:151. [PMID: 30241528 PMCID: PMC6149001 DOI: 10.1186/s12934-018-0991-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background Genetic tools including constitutive and inducible promoters have been developed over the last few decades for strain engineering in Streptomyces. Inducible promoters are useful for controlling gene expression, however only a limited number are applicable to Streptomyces. The aim of this study is to develop a controllable protein expression system based on an inducible promoter using sugar inducer, which has not yet been widely applied in Streptomyces. Results To determine a candidate promoter, inducible protein expression was first examined in Streptomyces avermitilis MA-4680 using various carbon sources. Xylose isomerase (xylA) promoter derived from xylose (xyl) operon was selected due to strong expression of xylose isomerase (XylA) in the presence of d-xylose. Next, a xylose-inducible protein expression system was constructed by investigating heterologous protein expression (chitobiase as a model protein) driven by the xylA promoter in Streptomyces lividans. Chitobiase activity was detected at high levels in S. lividans strain harboring an expression vector with xylA promoter (pXC), under both xylose-induced and non-induced conditions. Thus, S. avermitilis xylR gene, which encodes a putative repressor of xyl operon, was introduced into constructed vectors in order to control protein expression by d-xylose. Among strains constructed in the study, XCPR strain harboring pXCPR vector exhibited strict regulation of protein expression. Chitobiase activity in the XCPR strain was observed to be 24 times higher under xylose-induced conditions than that under non-induced conditions. Conclusion In this study, a strictly regulated protein expression system was developed based on a xylose-induced system. As far as we could ascertain, this is the first report of engineered inducible protein expression in Streptomyces by means of a xylose-induced system. This system might be applicable for controllable expression of toxic products or in the field of synthetic biology using Streptomyces strains. Electronic supplementary material The online version of this article (10.1186/s12934-018-0991-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuji Noguchi
- Nagase R&D Center, Nagase & Co., Ltd., 2-2-3 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| | - Norimasa Kashiwagi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Atsuko Uzura
- Nagase R&D Center, Nagase & Co., Ltd., 2-2-3 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Haruo Ikeda
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masahiro Sota
- Nagase R&D Center, Nagase & Co., Ltd., 2-2-3 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| |
Collapse
|
10
|
Zhao Y, Chi Z, Xu Y, Shi N, Chi Z, Liu G. High-level extracellular expression of κ-carrageenase in Brevibacillus choshinensis for the production of a series of κ-carrageenan oligosaccharides. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Irla M, Heggeset TMB, Nærdal I, Paul L, Haugen T, Le SB, Brautaset T, Wendisch VF. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production. Front Microbiol 2016; 7:1481. [PMID: 27713731 PMCID: PMC5031790 DOI: 10.3389/fmicb.2016.01481] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022] Open
Abstract
Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 6.5 to 10.2 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.
Collapse
Affiliation(s)
- Marta Irla
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| | - Tonje M B Heggeset
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Ingemar Nærdal
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Lidia Paul
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| | - Tone Haugen
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Simone B Le
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Trygve Brautaset
- SINTEF Materials and Chemistry, Department of Biotechnology and NanomedicineTrondheim, Norway; Department of Biotechnology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| |
Collapse
|
12
|
Zou C, Duan X, Wu J. Efficient extracellular expression of Bacillus deramificans pullulanase in Brevibacillus choshinensis. ACTA ACUST UNITED AC 2016; 43:495-504. [DOI: 10.1007/s10295-015-1719-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 02/02/2023]
Abstract
Abstract
In this study, the pullulanase gene from Bacillus deramificans was efficiently expressed in Brevibacillus choshinensis. The optimal medium for protein expression was determined through a combination of single-factor experiments and response surface methodology. The initial pH of the medium and the culture temperature were optimized. The pullulanase yield increased 10.8-fold through medium and condition optimization at the shake-flask level. From the results of these experiments, the dissolved oxygen level was optimized in a 3-L fermentor. Under these optimized conditions, the pullulanase activity and the specific pullulanase productivity reached 1005.8 U/mL and 110.5 × 103 U/g dry cell weight, respectively, with negligible intracellular expression. The Brevibacillus choshinensis expression system has proven to be valuable for the extracellular production of pullulanase.
Collapse
Affiliation(s)
- Chun Zou
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| | - Xuguo Duan
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| | - Jing Wu
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| |
Collapse
|
13
|
Heiss S, Hörmann A, Tauer C, Sonnleitner M, Egger E, Grabherr R, Heinl S. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum. Microb Cell Fact 2016; 15:50. [PMID: 26966093 PMCID: PMC4785742 DOI: 10.1186/s12934-016-0448-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/25/2016] [Indexed: 01/30/2023] Open
Abstract
Background Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector® micro-fermentation system. Results Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia colilac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector® micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a constitutive promoter). Conclusions We evaluated different inducible promoters, as well as an orthologous expression system, for controlled gene expression in L. plantarum. Furthermore, here we provide proof of concept for a T7 RNA polymerase based expression system for L. plantarum. Thereby we expanded the molecular toolbox for an industrial relevant and generally regarded as safe (GRAS) strain. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0448-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvia Heiss
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Angelika Hörmann
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Margot Sonnleitner
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Esther Egger
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Reingard Grabherr
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Stefan Heinl
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
14
|
Linares DM, Perez M, Ladero V, Del Rio B, Redruello B, Martin MC, Fernandez M, Alvarez MA. An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis. Microb Cell Fact 2014; 13:169. [PMID: 25471381 PMCID: PMC4265343 DOI: 10.1186/s12934-014-0169-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/18/2014] [Indexed: 01/26/2023] Open
Abstract
Background Scientific interest in Enterococcus faecalis has increased greatly over recent decades. Some strains are involved in food fermentation and offer health benefits, whereas others are vancomycin-resistant and cause infections that are difficult to treat. The limited availability of vectors able to express cloned genes efficiently in E. faecalis has hindered biotechnological studies on the bacterium’s regulatory and pathogenicity-related genes. The agmatine deiminase (AGDI) pathway of E. faecalis, involved in the conversion of agmatine into putrescine, is driven by a response inducer gene aguR. Results This study describes that the exposure to the induction factor (agmatine) results in the transcription of genes under the control of the aguB promoter, including the aguBDAC operon. A novel E. faecalis expression vector, named pAGEnt, combining the aguR inducer gene and the aguB promoter followed by a cloning site and a stop codon was constructed. pAGEnt was designed for the overexpression and purification of a protein fused to a 10-amino-acid His-tag at the C-terminus. The use of GFP as a reporter of gene expression in E. faecalis revealed that under induction with 60 mM agmatine, fluorescence reached 40 arbitrary units compared to 0 in uninduced cells. Conclusion pAGEnt vector can be used for the overexpression of recombinant proteins under the induction of agmatine in E. faecalis, with a close correlation between agmatine concentration and fluorescence when GFP was used as reporter.
Collapse
Affiliation(s)
- Daniel M Linares
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Marta Perez
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Victor Ladero
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Beatriz Del Rio
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Begoña Redruello
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - M Cruz Martin
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - María Fernandez
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Miguel A Alvarez
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| |
Collapse
|
15
|
Panda AK, Bisht SS, DeMondal S, Senthil Kumar N, Gurusubramanian G, Panigrahi AK. Brevibacillus as a biological tool: a short review. Antonie van Leeuwenhoek 2014; 105:623-39. [DOI: 10.1007/s10482-013-0099-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/11/2013] [Indexed: 01/12/2023]
|