1
|
Kour D, Khan SS, Kumari S, Singh S, Khan RT, Kumari C, Kumari S, Dasila H, Kour H, Kaur M, Ramniwas S, Kumar S, Rai AK, Cheng WH, Yadav AN. Microbial nanotechnology for agriculture, food, and environmental sustainability: Current status and future perspective. Folia Microbiol (Praha) 2024; 69:491-520. [PMID: 38421484 DOI: 10.1007/s12223-024-01147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Shilpa Kumari
- Department of Physics, IEC University, Baddi, 174103, Solan, Himachal Pradesh, India
| | - Shaveta Singh
- University School of Medical and Allied Sciences, Rayat Bahra University, Mohali, Chandigarh, India
| | - Rabiya Tabbassum Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol 173229, Solan, Himachal Pradesh, India
| | - Swati Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol 173229, Solan, Himachal Pradesh, India
| | - Hemant Dasila
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, 174103, Solan, Himachal Pradesh, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Science, GLA University, Mathura, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
| |
Collapse
|
2
|
Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, Jurowski K. Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. Int J Mol Sci 2024; 25:4057. [PMID: 38612865 PMCID: PMC11012566 DOI: 10.3390/ijms25074057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.
Collapse
Affiliation(s)
- Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Alicja Krośniak
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
3
|
Prodan-Bărbulescu C, Watz CG, Moacă EA, Faur AC, Dehelean CA, Faur FI, Grigoriţă LO, Maghiari AL, Tuţac P, Duţă C, Bolintineanu S, Ghenciu LA. A Preliminary Report Regarding the Morphological Changes of Nano-Enabled Pharmaceutical Formulation on Human Lung Carcinoma Monolayer and 3D Bronchial Microtissue. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:208. [PMID: 38399496 PMCID: PMC10890658 DOI: 10.3390/medicina60020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Nowadays, the development of enabled pharmaceutical nanoparticles of solid lipid type is continuously growing, because they have the potential to be used for targeted drug release leading to an increased effect of chemotherapy, being used in lung cancer nano-diagnosis and nano-therapy. The current study reports the preliminary results obtained regarding the biological effect of a new nano-enabled pharmaceutical formulation in terms of its cytotoxic and biosafety profile. Materials and Methods: The pharmaceutical formulations consist of solid lipid nanoparticles (SLN) obtained via the emulsification-diffusion method by loading green iron oxide nanoparticles (green-IONPs) with a pentacyclic triterpene (oleanolic acid-OA). Further, a complex biological assessment was performed, employing three-dimensional (3D) bronchial microtissues (EpiAirwayTM) to determine the biosafety profile of the SLN samples. The cytotoxic potential of the samples was evaluated on human lung carcinoma, using an in vitro model (A549 human lung carcinoma monolayer). Results: The data revealed that the A549 cell line was strongly affected after treatment with SLN samples, especially those that contained OA-loaded green-IONPs obtained with Ocimum basilicum extract (under 30% viability rates). The biosafety profile investigation of the 3D normal in vitro bronchial model showed that all the SLN samples negatively affected the viability of the bronchial microtissues (below 50%). As regards the morphological changes, all the samples induce major changes such as loss of the surface epithelium integrity, loss of epithelial junctions, loss of cilia, hyperkeratosis, and cell death caused by apoptosis. Conclusions: In summary, the culprit for the negative impact on viability and morphology of 3D normal bronchial microtissues could be the too-high dose (500 µg/mL) of the SLN sample used. Nevertheless, further adjustments in the SLN synthesis process and another complex in vitro evaluation will be considered for future research.
Collapse
Affiliation(s)
- Cătălin Prodan-Bărbulescu
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
| | - Claudia-Geanina Watz
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.-G.W.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.-G.W.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Alexandra-Corina Faur
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
| | - Cristina-Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.-G.W.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Flaviu Ionut Faur
- Department X—Discipline of Surgery II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (F.I.F.); (C.D.)
- 2nd Surgery Clinic, “Pius Brinzeu” Clinical Emergency County Hospital, RO-300723 Timisoara, Romania
| | - Laura Octavia Grigoriţă
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
| | - Anca Laura Maghiari
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
| | - Paul Tuţac
- Toxicology and Molecular Biology Department, “Pius Brinzeu” Clinical Emergency County Hospital, RO-300723 Timisoara, Romania;
| | - Ciprian Duţă
- Department X—Discipline of Surgery II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (F.I.F.); (C.D.)
- 2nd Surgery Clinic, “Pius Brinzeu” Clinical Emergency County Hospital, RO-300723 Timisoara, Romania
| | - Sorin Bolintineanu
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
| | - Laura Andreea Ghenciu
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
- Department III—Discipline of Physiopathology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|
4
|
Nadeem M, Pervez L, Khan AM, Burton RA, Ullah S, Nadhman A, Celli J. Microbial-mediated synthesis of gold nanoparticles—current insights and future vistas. GOLD BULLETIN 2023; 56:69-81. [DOI: 10.1007/s13404-023-00335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/05/2023] [Indexed: 10/10/2024]
|
5
|
Nanobiotechnological approaches in anticoagulant therapy: The role of bioengineered silver and gold nanomaterials. Talanta 2023; 256:124279. [PMID: 36709710 DOI: 10.1016/j.talanta.2023.124279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Nanotechnology is a novel area that has exhibited various remarkable applications, mostly in medicine and industry, due to the unique properties coming with the nanoscale size. One of the notable medical uses of nanomaterials (NMs) that attracted enormous attention recently is their significant anticoagulant activity, preventing or reducing coagulation of blood, decreasing the risk of strokes, heart attacks, and other serious conditions. Despite successful in vitro experiments, in vivo analyses are yet to be confirmed and further research is required to fully prove the safety and efficacy of nanoparticles (NPs) and to introduce them as valid alternatives to conventional ineffective anticoagulants with various shortcomings and side-effects. NMs can be synthesized through two main routes, i.e., the bottom-up route as a more preferable method, and the top-down route. In numerous studies, biological fabrication of NPs, especially metal NPs, is highly suggested given its eco-friendly approach, in which different resources can be employed such as plants, fungi, bacteria, and algae. This review discusses the green synthesis and characterization of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) as two of the most useful metal NPs, and also their alloys in different studies focussing on their anticoagulant potential. Challenges and alternative approaches to the use of these NPs as anticoagulants have also been highlighted.
Collapse
|
6
|
Carmona M, Poblete-Castro I, Rai M, Turner RJ. Opportunities and obstacles in microbial synthesis of metal nanoparticles. Microb Biotechnol 2023; 16:871-876. [PMID: 36965145 PMCID: PMC10128127 DOI: 10.1111/1751-7915.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
Metallic nanoparticles (MeNPs) are widely used in many areas such as biomedicine, packaging, cosmetics, colourants, agriculture, antimicrobial agents, cleaning products, as components of electronic devices and nutritional supplements. In addition, some MeNPs exhibit quantum properties, making them suitable materials in the photonics, electronic and energy industries. Through the lens of technology, microbes can be considered nanofactories capable of producing enzymes, metabolites and capping materials involved in the synthesis, assembly and stabilization of MeNPs. This bioprocess is considered more ecofriendly and less energy intensive than the current chemical synthesis routes. However, microbial synthesis of MeNPs as an alternative method to the chemical synthesis of nanomaterials still faces some challenges that need to be solved. Some of these challenges are described in this Editorial.
Collapse
Affiliation(s)
- Manuel Carmona
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | | | - Mahendra Rai
- Sant Gadge Baba Amravati University, Amravati, Maharashtra, India
| | | |
Collapse
|
7
|
Cekuolyte K, Gudiukaite R, Klimkevicius V, Mazrimaite V, Maneikis A, Lastauskiene E. Biosynthesis of Silver Nanoparticles Produced Using Geobacillus spp. Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040702. [PMID: 36839070 PMCID: PMC9965977 DOI: 10.3390/nano13040702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/01/2023]
Abstract
Silver nanoparticles (AgNPs) are well known for their unique physical and chemical properties, which can be incorporated into a wide range of applications. The growing resistance of microorganisms to antimicrobial compounds promoted the use of AgNPs in antimicrobial therapy. AgNPs can be obtained using physical and chemical methods, but these technologies are highly unfriendly to nature and produce large amounts of side compounds (for example, sodium borohydride and N,N-dimethylformamide). Therefore, alternative technologies are required for obtaining AgNPs. This report focuses on the biosynthesis of silver nanoparticles through the reduction of Ag+ with the cell-free secretomes of four Geobacillus bacterial strains, namely, 18, 25, 95, and 612. Only a few studies that involved Geobacillus bacteria in the synthesis of metal nanoparticles, including AgNPs, have been reported to date. The silver nanoparticles synthesized through bio-based methods were characterized using UV-Vis spectroscopy, scanning electron microscopy (SEM), dynamic light scattering (DLS), and zeta potential measurements. UV-Vis spectroscopy showed a characteristic absorbance peak at 410-425 nm, indicative of AgNPs. SEM analysis confirmed that most nanoparticles were spherical. DLS analysis showed that the sizes of the obtained AgNPs were widely distributed, with the majority less than 100 nm in diameter, while the zeta potential values ranged from -25.7 to -31.3 mV and depended on the Geobacillus spp. strain.
Collapse
Affiliation(s)
- Kotryna Cekuolyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257 Vilnius, Lithuania
| | - Renata Gudiukaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257 Vilnius, Lithuania
| | - Vaidas Klimkevicius
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Veronika Mazrimaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257 Vilnius, Lithuania
| | - Andrius Maneikis
- Faculty of Electronics, Vilnius Gediminas Technical University, Sauletekis Avenue 11, LT-10223 Vilnius, Lithuania
| | - Egle Lastauskiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
8
|
Alavi N, Maghami P, Pakdel AF, Rezaei M, Avan A. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment. Curr Pharm Des 2023; 29:3103-3122. [PMID: 37990429 DOI: 10.2174/0113816128265544231102065515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
9
|
Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Jawahar MJ, Neshaanthini JP, Saravanan R. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. CHEMOSPHERE 2022; 307:135713. [PMID: 35843436 DOI: 10.1016/j.chemosphere.2022.135713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Freshwater has been incessantly polluted by various activities such as rapid industrialization, fast growth of population and agricultural activities. Water pollution is considered as one the major threatens to human health and aquatic bodies which causes various severe harmful diseases including gastrointestinal disorders, asthma, cancer, etc. The polluted wastewater could be treated by different conventional and advanced methodologies. Amongst them, adsorption is the most utilized low cost, efficient technique to treat and remove the harmful pollutants from the wastewater. The efficiency of adsorption mainly depends on the surface properties such as functional group availability and surface area of the adsorbents used. Since various waste-based carbon derivatives are utilized as adsorbents for harmful pollutants removal; nanomaterials are employed as effective adsorbents in recent times due to its excellent surface properties. This review presents an overview of the different types of nanomaterials such as nano-particles, nanotubes, nano-sheets, nano-rods, nano-spheres, quantum dots, etc. which have been synthesized by different chemical and green synthesis methodologies using plants, microorganisms, biomolecules and carbon derivatives, metals and metal oxides and polymers. By concentrating on potential research difficulties, this study offers a new viewpoint on fundamental field of nanotechnology for wastewater treatment applications. This review paper critically reviewed the synthesis of nanomaterials more importantly green synthesis and their applications in wastewater treatment to remove the harmful pollutants such as heavy metals, dyes, pesticides, polycyclic aromatic hydrocarbons, etc.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, 603110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - Marie Jyotsna Jawahar
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - J P Neshaanthini
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
10
|
Cherian T, Maity D, Rajendra Kumar RT, Balasubramani G, Ragavendran C, Yalla S, Mohanraju R, Peijnenburg WJGM. Green Chemistry Based Gold Nanoparticles Synthesis Using the Marine Bacterium Lysinibacillus odysseyi PBCW2 and Their Multitudinous Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172940. [PMID: 36079977 PMCID: PMC9458051 DOI: 10.3390/nano12172940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/24/2023]
Abstract
Green chemistry has paved an 'avant-garde avenue' in the production and fabrication of eco-friendly stable nanoparticles employing the utilization of biological agents. In the present study we present the first report on the potential of the marine bacterium Lysinibacillus odysseyi PBCW2 for the extracellular production of gold nanoparticles (AuNPs). Utilizing a variety of methods, AuNPs in the cell-free supernatant of L. odysseyi (CFS-LBOE) were identified and their antioxidant, antibacterial, and dye-degrading properties were examined. The visual coloring of the reaction mixture to a ruby red hue showed the production of LBOE-AuNPs; validated by means of XRD, TEM, SEM, XRD, DLS, TGA, and FT-IR analysis. Additionally, the 2,2-diphenyl-1-picrylhydrazyl technique and the well diffusion assay were used to examine their dose-dependent antioxidant and antibacterial activity. These biogenic LBOE-AuNPs showed 91% dye degradation efficiency during catalytic reduction activity on BTB dye, demonstrating their versatility as options for heterogeneous catalysis.
Collapse
Affiliation(s)
- Tijo Cherian
- Department of Ocean Studies and Marine Biology, Pondicherry University—Port Blair Campus, Port Blair 744 112, Andaman and Nicobar Islands, India
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai 600 028, Tamil Nadu, India
| | - Debasis Maity
- ETH Zürich—Department of Biosystems Science and Engineering ETH (D-BSSE ETH Zürich), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ramasamy T. Rajendra Kumar
- Advanced Materials and Research Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Govindasamy Balasubramani
- Department of Biotechnology, Division of Research & Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveethanagar, Chennai 602 105, Tamil Nadu, India
| | - Chinnasamy Ragavendran
- Department of Biotechnology, School of Biosciences, Periyar University, Salem 636 011, Tamil Nadu, India
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Suneelkumar Yalla
- Department of Ocean Studies and Marine Biology, Pondicherry University—Port Blair Campus, Port Blair 744 112, Andaman and Nicobar Islands, India
| | - Raju Mohanraju
- Department of Ocean Studies and Marine Biology, Pondicherry University—Port Blair Campus, Port Blair 744 112, Andaman and Nicobar Islands, India
| | - Willie J. G. M. Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
11
|
Moacă EA, Watz CG, (Ionescu) DF, Păcurariu C, Tudoran LB, Ianoș R, Socoliuc V, Drăghici GA, Iftode A, Liga S, Dragoș D, Dehelean CA. Biosynthesis of Iron Oxide Nanoparticles: Physico-Chemical Characterization and Their In Vitro Cytotoxicity on Healthy and Tumorigenic Cell Lines. NANOMATERIALS 2022; 12:nano12122012. [PMID: 35745350 PMCID: PMC9230869 DOI: 10.3390/nano12122012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023]
Abstract
Iron oxide nanoparticles were synthesized starting from two aqueous extracts based on Artemisia absinthium L. leaf and stems, employing a simplest, eco-friendliness and low toxicity method—green synthesis. The nanoparticles were characterized by powder X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), X-ray fluorescence analysis (XRF), thermal analysis (TG/DSC), and scanning electron microscopy (SEM). Lack of magnetic properties and the reddish-brown color of all the samples confirms the presence of hematite as majority phase. The FTIR bands located at 435 cm−1 and 590 cm−1, are assigned to Fe-O stretching vibration from hematite, confirming the formation of α-Fe2O3 nanoparticles (NPs). The in vitro screening of the samples revealed that the healthy cell line (HaCaT) presents a good viability (above 80%) after exposure to iron oxide NPs and lack of apoptotic features, while the tumorigenic cell lines manifested a higher sensitivity, especially the melanoma cells (A375) when exposed to concentration of 500 µg/mL iron oxide NPs for 72 h. Moreover, A375 cells elicited significant apoptotic markers under these parameters (concentration of 500 µg/mL iron oxide NPs for a contact time of 72 h).
Collapse
Affiliation(s)
- Elena-Alina Moacă
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Claudia Geanina Watz
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
- Correspondence: (C.G.W.); (D.F.); Tel.: +40-746227217 (C.G.W.); +40-746183917 (D.F.)
| | - Daniela Flondor (Ionescu)
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
- Correspondence: (C.G.W.); (D.F.); Tel.: +40-746227217 (C.G.W.); +40-746183917 (D.F.)
| | - Cornelia Păcurariu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Victoriei Square no. 2, RO-300006 Timisoara, Romania; (C.P.); (R.I.)
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, RO-400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Robert Ianoș
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Victoriei Square no. 2, RO-300006 Timisoara, Romania; (C.P.); (R.I.)
| | - Vlad Socoliuc
- Romanian Academy—Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, 24 M. Viteazu Ave., RO-300223 Timisoara, Romania;
| | - George-Andrei Drăghici
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Andrada Iftode
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Sergio Liga
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
| | - Dan Dragoș
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
| | - Cristina Adriana Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (G.-A.D.); (A.I.); (S.L.); (D.D.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|
12
|
Abstract
By virtue of their unique physicochemical properties, gold nanoparticles (AuNPs) have gained significant interest in a broad range of biomedical applications such as sensors, diagnosis, and therapy. AuNPs are generally synthesized via different conventional physical and chemical methods, which often use harmful chemicals that induce health hazards and pollute the environment. To overcome these issues, green synthesis techniques have evolved as alternative and eco-friendly approaches to the synthesis of environmentally safe and less-expensive nanoparticles using naturally available metabolites from plants and microorganisms such as bacteria, fungi, and algae. This review provides an overview of the advances in the synthesis of AuNPs using different biological resources with examples, and their profound applications in biomedicine. A special focus on the biosynthesis of AuNPs using different medicinal plants and their multifunctional applications in antibacterial, anti-inflammatory, and immune responses are featured. Additionally, the applications of AuNPs in cancer theranostics, including contrast imaging, drug delivery, hyperthermia, and cancer therapeutics, are comprehensively discussed. Moreover, this review will shed light on the importance of the green synthesis approach, and discuss the advantages, challenges, and prospects in this field.
Collapse
|
13
|
Alves MF, Murray PG. Biological Synthesis of Monodisperse Uniform-Size Silver Nanoparticles (AgNPs) by Fungal Cell-Free Extracts at Elevated Temperature and pH. J Fungi (Basel) 2022; 8:jof8050439. [PMID: 35628695 PMCID: PMC9144091 DOI: 10.3390/jof8050439] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Fungi’s ability to convert organic materials into bioactive products offers environmentally friendly solutions for diverse industries. In the nanotechnology field, fungi metabolites have been explored for green nanoparticle synthesis. Silver nanoparticle (AgNP) research has grown rapidly over recent years mainly due to the enhanced optical, antimicrobial and anticancer properties of AgNPs, which make them extremely useful in the biomedicine and biotechnology field. However, the biological synthesis mechanism is still not fully established. Therefore, this study aimed to evaluate the combined effect of time, temperature and pH variation in AgNP synthesis using three different fungi phyla (Ascomycota, Basidiomycota and Zygomycota) represented by six different fungi species: Cladophialophora bantiana (C. bantiana), Penicillium antarcticum (P. antarcticum), Trametes versicolor (T. versicolor), Trichoderma martiale (T. martiale), Umbelopsis isabellina (U. isabellina) and Bjerkandera adusta (B. adusta). Ultraviolet–visible (UV-Vis) spectrophotometry and transmission electron microscopy (TEM) results demonstrated the synthesis of AgNPs of different sizes (3 to 17 nm) and dispersity percentages (25 to 95%, within the same size range) using fungi extracts by changing physicochemical reaction parameters. It was observed that higher temperatures (90 °C) associated with basic pH (9 and 12) favoured the synthesis of monodisperse small AgNPs. Previous studies demonstrated enhanced antibacterial and anticancer properties correlated with smaller nanoparticle sizes. Therefore, the biologically synthesised AgNPs shown in this study have potential as sustainable substitutes for chemically made antibacterial and anticancer products. It was also shown that not all fungi species (B. adusta) secrete metabolites capable of reducing silver nitrate (AgNO3) precursors into AgNPs, demonstrating the importance of fungal screening studies.
Collapse
|
14
|
Atalah J, Espina G, Blamey L, Muñoz-Ibacache SA, Blamey JM. Advantages of Using Extremophilic Bacteria for the Biosynthesis of Metallic Nanoparticles and Its Potential for Rare Earth Element Recovery. Front Microbiol 2022; 13:855077. [PMID: 35387087 PMCID: PMC8977859 DOI: 10.3389/fmicb.2022.855077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
The exceptional potential for application that metallic nanoparticles (MeNPs) have shown, has steadily increased their demand in many different scientific and technological areas, including the biomedical and pharmaceutical industry, bioremediation, chemical synthesis, among others. To face the current challenge for transitioning toward more sustainable and ecological production methods, bacterial biosynthesis of MeNPs, especially from extremophilic microorganisms, emerges as a suitable alternative with intrinsic added benefits like improved stability and biocompatibility. Currently, biogenic nanoparticles of different relevant metals have been successfully achieved using different bacterial strains. However, information about biogenic nanoparticles from rare earth elements (REEs) is very scarce, in spite of their great importance and potential. This mini review discusses the current understanding of metallic nanoparticle biosynthesis by extremophilic bacteria, highlighting the relevance of searching for bacterial species that are able to biosynthesize RRE nanoparticles.
Collapse
Affiliation(s)
| | | | | | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
15
|
Schuster S, Su Yien Ting A. Decolourisation of triphenylmethane dyes by biogenically synthesised iron nanoparticles from fungal extract. Mycology 2022; 13:56-67. [PMID: 35186413 PMCID: PMC8856070 DOI: 10.1080/21501203.2021.1948928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In this study, the extract from endophytic Fusarium proliferatum was used to synthesise iron nanoparticles (Fe-NPs). The properties of the biogenically synthesised Fe-NPs were then characterised by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The efficacy of the synthesised Fe-NPs in decolourizing triphenylmethane dyes was evaluated. Results revealed that fungal extract from F. proliferatum was successfully used to synthesise Fe-NPs. The Fe-NPs produced were 20-50 nm in size, and consist of substantial elemental Fe content (14.83%). The FTIR spectra revealed the presence of amino acids and proteins on the surface of the Fe-NPs, confirming the biogenic synthesis of the Fe-NPs. When tested for decolourisation, the Fe-NPs were most effective in decolourising Methyl Violet (28.9%), followed by Crystal Violet (23.8%) and Malachite Green (18.3%). This study is the first few to report the biogenic synthesis of Fe-NPs using extracts from an endophytic Fusarium species and their corresponding dye decolourisation activities.
Collapse
|
16
|
Noah NM, Ndangili PM. Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
17
|
Chowdhury NK, Choudhury R, Gogoi B, Chang CM, Pandey RP. Microbial synthesis of gold nanoparticles and their application. Curr Drug Targets 2022; 23:752-760. [PMID: 35088666 DOI: 10.2174/1389450123666220128152408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/02/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanoparticles play a very important role in our daily lives and have a wide range of applications in agriculture and the field of biology such as antioxidants and antimicrobial compounds. Among them are gold nanoparticles (AuNPs) that are highly complex and widely used. In recent years gold nanoparticles have attracted much attention because of their optical properties, electronic, physicochemical and surface Plasmon resonance (SPR). Gold plated nanoparticles, similar to metal nanoparticles, have many unusual chemical and physical properties due to the effects of their quantum size and location, compared to other iron or metal atoms. Gold nanoparticles can be used in pharmaceutical products such as antimicrobial and anti-biofilm agents, targeted delivery of anti-cancer drugs, biosensors, biocatalysis, bioremediation modification of toxic chemicals exposing the soil and atmosphere, dye reduction etc. Yet such methods are expensive and out of harmony with nature. In that account the microbes mediated synthesis of gold nanoparticles changed rapidly recently when pure microbes are ac-friendly, non-toxic and bio compatible as physiological and chemical methods. This document aims to review the progress made in recent years with the fusion of gold nanoparticles. Microbial source includes bacteria, algae fungi. These works motivate the people for how to apply and synthesize of gold nanoparticles. This review also focuses on the process of classification of gold nanoparticles, structures and their use in the development of various requirements. OBJECTIVE The main goal is to study about the gold nanoparticles and their application in future. METHODS We study different research paper, review paper from "Google Scholar", "NCBI", "PubMed", "Science Direct" and then we making our review paper. CONCLUSION Metal nanoparticles are suitable for many emerging technologies. Understanding the microorganisms found in nature because the fusion of gold nanoparticles is required.
Collapse
Affiliation(s)
| | - Reshma Choudhury
- Department of Biotechnology, Royal Global University, Guwahati, Assam, India
| | - Bhoirob Gogoi
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Chung-Ming Chang
- Master & Ph.D. program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist
| | | |
Collapse
|
18
|
Nano-reduction of gold and silver ions: A perspective on the fate of microbial laccases as potential biocatalysts in the synthesis of metals (gold and silver) nano-particles. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100098. [PMID: 35024642 PMCID: PMC8732750 DOI: 10.1016/j.crmicr.2021.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/21/2021] [Accepted: 12/12/2021] [Indexed: 11/22/2022] Open
Abstract
Potential involvements of microbial laccases in the synthesis of silver and gold nanoparticles have been comprehensively assessed. Treasured roles of microbes and associated enzymes in synthesis of gold and silver nanoparticles have also been presented. As potential green biocatalysts for the synthesis of metal nanoparticles, microbial laccases may be promisingly used. Methodologies as well as involved possible mechanisms have been discussed in details in order to disclose the effectiveness of microbial laccases in the synthesis of gold and silver nanoparticles. Different characterization results of synthesized gold and silver nanoparticles based on UV–Vis spectra, XRD, SEM, TEM and other techniques have also been discussed. Mechanistic evaluation also shows a hope for the effectiveness of microbial laccases in the synthesis of other metal nanoparticles.
Nanoparticles of metals have momentous place in the field of biological as well as pharmaceutical chemistry due to which in the present scenario of the research, this field is of auspicious interest. Synthesis of metal nanoparticles via microbial assistance is a burning field for their green synthesis. In this direction, microbial enzymes play significant role, out of which microbial laccases may also be a talented biocatalyst for the synthesis of metal nanoparticles considering its efficacy and interesting promising biological applications. A very little works are known on the role of microbial laccases in the synthesis of metal nanoparticles but after effective scrutiny of their reported works on the synthesis of gold and silver nanoparticles, its fate as potential biocatalyst in the synthesis of metals nanoparticles is being automatically established. Thus, this perspective commendably appraises the active applicability of microbial laccases in the synthesis of gold and silver nanoparticles by reducing their ions in suitable reaction environment.
Collapse
|
19
|
Roy A, Elzaki A, Tirth V, Kajoak S, Osman H, Algahtani A, Islam S, Faizo NL, Khandaker MU, Islam MN, Emran TB, Bilal M. Biological Synthesis of Nanocatalysts and Their Applications. Catalysts 2021; 11:1494. [DOI: 10.3390/catal11121494] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the past few decades, the synthesis and potential applications of nanocatalysts have received great attention from the scientific community. Many well-established methods are extensively utilized for the synthesis of nanocatalysts. However, most conventional physical and chemical methods have some drawbacks, such as the toxicity of precursor materials, the requirement of high-temperature environments, and the high cost of synthesis, which ultimately hinder their fruitful applications in various fields. Bioinspired synthesis is eco-friendly, cost-effective, and requires a low energy/temperature ambient. Various microorganisms such as bacteria, fungi, and algae are used as nano-factories and can provide a novel method for the synthesis of different types of nanocatalysts. The synthesized nanocatalysts can be further utilized in various applications such as the removal of heavy metals, treatment of industrial effluents, fabrication of materials with unique properties, biomedical, and biosensors. This review focuses on the biogenic synthesis of nanocatalysts from various green sources that have been adopted in the past two decades, and their potential applications in different areas. This review is expected to provide a valuable guideline for the biogenic synthesis of nanocatalysts and their concomitant applications in various fields.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
| | - Amin Elzaki
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Makkah, Saudi Arabia
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Asir, Saudi Arabia
| | - Samih Kajoak
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Makkah, Saudi Arabia
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Makkah, Saudi Arabia
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Asir, Saudi Arabia
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Asir, Saudi Arabia
| | - Nahla L. Faizo
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Makkah, Saudi Arabia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Muhammad Bilal
- Huaiyin Institute of Technology, School of Life Science and Food Engineering, Huai’an 223003, China
| |
Collapse
|
20
|
Preparation of blue luminescence gold quantum dots using laser ablation in aromatic solvents. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Yadav N, Garg VK, Chhillar AK, Rana JS. Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review. CHEMOSPHERE 2021; 280:130792. [PMID: 34162093 DOI: 10.1016/j.chemosphere.2021.130792] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Environmental deterioration due to anthropogenic activities is a threat to sustainable, clean and green environment. Accumulation of hazardous chemicals pollutes soil, water and air and thus significantly affects all the ecosystems. This article highlight the challenges associated with various conventional techniques such as filtration, absorption, flocculation, coagulation, chromatographic and mass spectroscopic techniques. Environmental nanotechnology has provided an innovative frontier to combat the aforesaid issues of sustainable environment by reducing the non-requisite use of raw materials, electricity, excessive use of agrochemicals and release of industrial effluents into water bodies. Various nanotechnology based approaches including surface enhance scattering, surface plasmon resonance; and distinct types of nanoparticles like silver, silicon oxide and zinc oxide have contributed significantly in detection of environmental pollutants. Biosensing technology has also gained significant attention for detection and remediation of pollutants. Furthermore, nanoparticles of gold, ferric oxide and manganese oxide have been used for the on-site remediation of antibiotics, organic dyes, pesticides, and heavy metals. Recently, green nanomaterials have been given more attention to address toxicity issues of chemically synthesized nanomaterials. Hence, nanotechnology has provided a platform with tremendous applications to have sustainable environment for present as well as future generations. This review article will help to understand the fundamentals for achieving the goals of sustainable development, and healthy environment.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Vinod Kumar Garg
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151001, India.
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India
| |
Collapse
|
22
|
A Novel Bacterial Route to Synthesize Cu Nanoparticles and Their Antibacterial Activity. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Cai F, Li S, Huang H, Iqbal J, Wang C, Jiang X. Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives. J Biomed Mater Res A 2021; 110:424-442. [PMID: 34331516 DOI: 10.1002/jbm.a.37281] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Immune responses are involved in the pathogenesis of many diseases, including cancer, autoimmune diseases, and chronic inflammation. These responses are attributed to immune cells that produce cytokines, mediate cytotoxicity, and synthesize antibodies. Gold nanoparticles (GNPs) are novel agents that intervene with immune responses because of their unique physical-chemical properties. In particular, GNPs enhance anti-tumour activity during immunotherapy and eliminate excessive inflammation in autoimmune diseases. However, GNPs synthesized by conventional methods are toxic to living organisms. Green biosynthesis provides a safe and eco-friendly method to obtain GNPs from microbes or plant extracts. In this review, we describe several patterns for green GNP biosynthesis. The applications of GNPs to target immune cells and modulate the immune response are summarized. In particular, we elaborate on how GNPs regulate innate immunity and adaptive immunity, including inflammatory signaling and immune cell differentiation. Finally, perspectives and challenges in utilizing green biosynthesized GNPs for novel therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Feiyang Cai
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Huang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Canran Wang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A. Biological Nanofactories: Using Living Forms for Metal Nanoparticle Synthesis. Mini Rev Med Chem 2021; 21:245-265. [PMID: 33198616 DOI: 10.2174/1389557520999201116163012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Metal nanoparticles are nanosized entities with dimensions of 1-100 nm that are increasingly in demand due to applications in diverse fields like electronics, sensing, environmental remediation, oil recovery and drug delivery. Metal nanoparticles possess large surface energy and properties different from bulk materials due to their small size, large surface area with free dangling bonds and higher reactivity. High cost and pernicious effects associated with the chemical and physical methods of nanoparticle synthesis are gradually paving the way for biological methods due to their eco-friendly nature. Considering the vast potentiality of microbes and plants as sources, biological synthesis can serve as a green technique for the synthesis of nanoparticles as an alternative to conventional methods. A number of reviews are available on green synthesis of nanoparticles but few have focused on covering the entire biological agents in this process. Therefore present paper describes the use of various living organisms like bacteria, fungi, algae, bryophytes and tracheophytes in the biological synthesis of metal nanoparticles, the mechanisms involved and the advantages associated therein.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | | | - Ahmed M Abdel-Azeem
- Botany Department, Faculty of Science, University of Suez Canal, Ismailia, Egypt
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Govind Gupta
- Sage School of Agriculture, Sage University, Bhopal, India
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|
25
|
Koul B, Poonia AK, Yadav D, Jin JO. Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects. Biomolecules 2021; 11:886. [PMID: 34203733 PMCID: PMC8246319 DOI: 10.3390/biom11060886] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology is the science of nano-sized particles/structures (~100 nm) having a high surface-to-volume ratio that can modulate the physical, chemical and biological properties of the chemical compositions. In last few decades, nanoscience has attracted the attention of the scientific community worldwide due to its potential uses in the pharmacy, medical diagnostics and disease treatment, energy, electronics, agriculture, chemical and space industries. The properties of nanoparticles (NPs) are size and shape dependent. These characteristic features of nanoparticles can be explored for various other applications such as computer transistors, chemical sensors, electrometers, memory schemes, reusable catalysts, biosensing, antimicrobial activity, nanocomposites, medical imaging, tumor detection and drug delivery. Therefore, synthesizing nanoparticles of desired size, structure, monodispersity and morphology is crucial for the aforementioned applications. Recent advancements in nanotechnology aim at the synthesis of nanoparticles/materials using reliable, innoxious and novel ecofriendly techniques. In contrast to the traditional methods, the biosynthesis of nanoparticles of a desired nature and structure using the microbial machinery is not only quicker and safer but more environmentally friendly. Various microbes, including bacteria, actinobacteria, fungi, yeast, microalgae and viruses, have recently been explored for the synthesis of metal, metal oxide and other important NPs through intracellular and extracellular processes. Some bacteria and microalgae possess specific potential to fabricate distinctive nanomaterials such as exopolysaccharides, nanocellulose, nanoplates and nanowires. Moreover, their ability to synthesize nanoparticles can be enhanced using genetic engineering approaches. Thus, the use of microorganisms for synthesis of nanoparticles is unique and has a promising future. The present review provides explicit information on different strategies for the synthesis of nanoparticles using microbial cells; their applications in bioremediation, agriculture, medicine and diagnostics; and their future prospects.
Collapse
Affiliation(s)
- Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Anil Kumar Poonia
- Centre for Plant Biotechnology, CCSHAU, Hisar 125004, Haryana, India;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
26
|
Sayadi K, Akbarzadeh F, Pourmardan V, Saravani-Aval M, Sayadi J, Chauhan NPS, Sargazi G. Methods of green synthesis of Au NCs with emphasis on their morphology: A mini-review. Heliyon 2021; 7:e07250. [PMID: 34189304 PMCID: PMC8220187 DOI: 10.1016/j.heliyon.2021.e07250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Greener synthetic methods are becoming more popular as a means of reducing environmental pollution caused by reaction byproducts. Another important advantage of green methods is their low cost and the abundance of raw materials. Herein, we investigate the green Au nanoclusters (NCs) using microorganisms (bacteria and fungi) and plant extraction with various shapes and development routes. Natural products derived from plants, tea, coffee, banana, simple amino acids, enzyme, sugar, and glucose have been used as reductants and as capping agents during synthesis in literature. The synthesis techniques are generally chemical, physical and green methods. Green synthesis of Au NCs using bacteria and fungi can be divided into intracellular and extracellular. In an intracellular manner, bacterial cells are implanted in a culture medium containing salt and heated under suitable growth conditions. However, in an extracellular manner, the Au ions are directed from the outside into the cell. Thus, these methods are considered as a better alternative to chemical and physical synthesis. The research on green synthesis of Au nanoparticles (NPs) and its influence on their size and morphology are summarized in this review.
Collapse
Affiliation(s)
- Khali Sayadi
- Young Researchers Society, Shahid Bahonar University of Kerman, Department of Chemistry, Kerman, Iran
| | - Fatemeh Akbarzadeh
- Department of Microbiology, Islamic Azad University Kerman, Kerman, Iran
| | - Vahid Pourmardan
- Department of Environmental Engineering, University of Zabol, Zabol, 98613-35856, Iran
| | - Mehdi Saravani-Aval
- Young Researcher, Department Environmental Engineering, University of Zabol, Zabol, 98613-35856, Iran
| | - Jalis Sayadi
- Young Researchers Society, Zabol University of Medical Sciences, Zabol, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles' University, Udaipur, 313002, Rajasthan, India
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
27
|
Abbas SZ, Rafatullah M. Recent advances in soil microbial fuel cells for soil contaminants remediation. CHEMOSPHERE 2021; 272:129691. [PMID: 33573807 DOI: 10.1016/j.chemosphere.2021.129691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The cost-effective and eco-friendly approaches are needed for decontamination of polluted soils. The bio-electrochemical system, especially microbial fuel cells (MFCs) offer great promise as a technology for remediation of soil, sediment, sludge and wastewater. Recently, soil MFCs (SMFCs) have been attracting increasing amounts of interest in environmental remediation, since they are capable of providing a clean and inexhaustible source of electron donors or acceptors and can be easily controlled by adjusting the electrochemical parameters. In this review, we comprehensively covered the principle of SMFCs including the mechanisms of electron releasing and electron transportation, summarized the applications for soil contaminants remediation by SMFCs with highlights on organic contaminants degradation and heavy metal ions removal. In addition, the main factors that affected the performance of SMFCs were discussed in details which would be helpful for performance optimization of SMFCs as well as the efficiency improvement for soil remediation. Moreover, the key issues need to be addressed and future perspectives are presented.
Collapse
Affiliation(s)
- Syed Zaghum Abbas
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
28
|
Gupta N, Malviya R. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188532. [PMID: 33667572 DOI: 10.1016/j.bbcan.2021.188532] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
The present communication summarizes the importance, understanding and advancement in the photothermal therapy of cancer using gold nanoparticles. Photothermal therapy was used earlier as a single line therapy, but using a combination of photothermal therapy with other therapies like immunotherapy, chemotherapy, photodynamic therapy; efficient therapy management can be achieved. As it was discussed in many studies that gold nanoparticles are treated as idyllic photothermal transducers due to their structural dimensions, which enables them to strongly absorb near infrared light. Gold nanoparticles which are mediated for photothermal therapy can warn cancer cells to chemotherapy, regulate genes and immunotherapy by enhancing the cell permeability and intracellular delivery. The necrosis process and apoptosis depend on the power of laser and temperature within the cancerous tissues which are reached during irradiation. Cells death mechanism is also important because the cells which died through the process of necrosis can endorse secondary tumor growth while the cells which died through apoptosis may provoke the immune response to inhibit the development of secondary tumor growth. To decrease the in vivo barriers, gold nanostructures are again modified with targeting ligand and bio-responsive linker. The manuscript summarizes that the use of gold nanoparticles is capable of inhibiting the growth of cancerous cells by using photothermal therapy which has lesser adverse effects compared to other line therapies.
Collapse
Affiliation(s)
- Nandan Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
29
|
Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S, Ray RR. Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Front Microbiol 2021; 12:636588. [PMID: 33717030 PMCID: PMC7947885 DOI: 10.3389/fmicb.2021.636588] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 01/21/2023] Open
Abstract
The emergence of bacterial resistance to antibiotics has led to the search for alternate antimicrobial treatment strategies. Engineered nanoparticles (NPs) for efficient penetration into a living system have become more common in the world of health and hygiene. The use of microbial enzymes/proteins as a potential reducing agent for synthesizing NPs has increased rapidly in comparison to physical and chemical methods. It is a fast, environmentally safe, and cost-effective approach. Among the biogenic sources, fungi and bacteria are preferred not only for their ability to produce a higher titer of reductase enzyme to convert the ionic forms into their nano forms, but also for their convenience in cultivating and regulating the size and morphology of the synthesized NPs, which can effectively reduce the cost for large-scale manufacturing. Effective penetration through exopolysaccharides of a biofilm matrix enables the NPs to inhibit the bacterial growth. Biofilm is the consortia of sessile groups of microbial cells that are able to adhere to biotic and abiotic surfaces with the help extracellular polymeric substances and glycocalyx. These biofilms cause various chronic diseases and lead to biofouling on medical devices and implants. The NPs penetrate the biofilm and affect the quorum-sensing gene cascades and thereby hamper the cell-to-cell communication mechanism, which inhibits biofilm synthesis. This review focuses on the microbial nano-techniques that were used to produce various metallic and non-metallic nanoparticles and their "signal jamming effects" to inhibit biofilm formation. Detailed analysis and discussion is given to their interactions with various types of signal molecules and the genes responsible for the development of biofilm.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Hassan I. Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India
- Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, India
| | | | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, Ganjam, Odisha, India
- Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
30
|
Meena M, Yadav G, Sonigra P, Nagda A. Bacteriogenic synthesis of gold nanoparticles: mechanisms and applications. NANOBIOTECHNOLOGY 2021:75-90. [DOI: 10.1016/b978-0-12-822878-4.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
31
|
Kumari S, Shivakrishna P, Sreenivasulu K. Synthesis and characterization of gold nanoparticles from marine Micrococcus sp. OUS9. Bioinformation 2020; 16:849-855. [PMID: 34803259 PMCID: PMC8573469 DOI: 10.6026/97320630016849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022] Open
Abstract
Studies on biological synthesis techniques of nanoparticles have been significantly expanded in recent years. This reduced adverse effects of chemical processing techniques. We describe the synthesis and characterization of gold nanoparticles from marine Micrococcus sp. OUS9 for potential application in nanobiotechnology.
Collapse
Affiliation(s)
- Shanthi Kumari
- KLEF University, Guntur Andhra Pradesh, India
- Osmania University, Department of microbiology, Hyderabad, India
| | | | - K Sreenivasulu
- Osmania University, Department of microbiology, Hyderabad, India
| |
Collapse
|
32
|
Devi Priya D, Elango G, Mohana Roopan S, Shanavas S, Acevedo R, Golkonda M, Sridharan M. Abutilon indicum
Mediated CuO Nanoparticles: Eco‐Approach, Optimum Process of Congo Red Dye Degradation, and Mathematical Model for Multistage Operation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Duraipandi Devi Priya
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamil Nadu India
| | - Ganesh Elango
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamil Nadu India
- School of Publish Health, SRM Medical College and Research CentreSRM Institute of Science and Technology Kattankulathur 603 203 Chengalpattu District Tamil Nadu
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamil Nadu India
| | - Shajahan Shanavas
- Nano and Hybrid Materials LaboratoryDepartment of Physics, Periyar University Salem 636 011 India
| | - Roberto Acevedo
- Facultad de Ingeniería y TecnologíaUniversidad San Sebastián Bellavista 7 Santiago 8420524 Chile
| | - Mokeshrayalu Golkonda
- Department of Mathematics, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamilnadu India
| | - Makuteswaran Sridharan
- Department of ChemistryRashtreeya Vidyalaya College of Engineering, Mysore Road, Bangalore 560059 Karnataka India
| |
Collapse
|
33
|
Muñoz-Villagrán C, Contreras F, Cornejo F, Figueroa M, Valenzuela-Bezanilla D, Luraschi R, Reinoso C, Rivas-Pardo J, Vásquez C, Castro M, Arenas F. Understanding gold toxicity in aerobically-grown Escherichia coli. Biol Res 2020; 53:26. [PMID: 32513271 PMCID: PMC7278051 DOI: 10.1186/s40659-020-00292-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/16/2020] [Indexed: 12/03/2022] Open
Abstract
Background There is an emerging field to put into practice new strategies for developing molecules with antimicrobial properties. In this line, several metals and metalloids are currently being used for these purposes, although their cellular effect(s) or target(s) in a particular organism are still unknown. Here we aimed to investigate and analyze Au3+ toxicity through a combination of biochemical and molecular approaches. Results We found that Au3+ triggers a major oxidative unbalance in Escherichia coli, characterized by decreased intracellular thiol levels, increased superoxide concentration, as well as by an augmented production of the antioxidant enzymes superoxide dismutase and catalase. Because ROS production is, in some cases, associated with metal reduction and the concomitant generation of gold-containing nanostructures (AuNS), this possibility was evaluated in vivo and in vitro. Conclusions Au3+ is toxic for E. coli because it triggers an unbalance of the bacterium’s oxidative status. This was demonstrated by using oxidative stress dyes and antioxidant chemicals as well as gene reporters, RSH concentrations and AuNS generation.
Collapse
Affiliation(s)
- C Muñoz-Villagrán
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - F Contreras
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - F Cornejo
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - M Figueroa
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - D Valenzuela-Bezanilla
- Laboratorio de Microbiología Aplicada, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Sede Santiago, Chile
| | - R Luraschi
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - C Reinoso
- Laboratorio de Microbiología Aplicada, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Sede Santiago, Chile
| | - J Rivas-Pardo
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Laboratorio de Biología estructural, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - C Vásquez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - M Castro
- Laboratorio de Microbiología Aplicada, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Sede Santiago, Chile.
| | - F Arenas
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
34
|
Qin W, Wang CY, Ma YX, Shen MJ, Li J, Jiao K, Tay FR, Niu LN. Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907833. [PMID: 32270552 DOI: 10.1002/adma.201907833] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Microbe-mediated mineralization is ubiquitous in nature, involving bacteria, fungi, viruses, and algae. These mineralization processes comprise calcification, silicification, and iron mineralization. The mechanisms for mineral formation include extracellular and intracellular biomineralization. The mineral precipitating capability of microbes is often harnessed for green synthesis of metal nanoparticles, which are relatively less toxic compared with those synthesized through physical or chemical methods. Microbe-mediated mineralization has important applications ranging from pollutant removal and nonreactive carriers, to other industrial and biomedical applications. Herein, the different types of microbe-mediated biomineralization that occur in nature, their mechanisms, as well as their applications are elucidated to create a backdrop for future research.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
35
|
Green synthesis of gold nanoparticles using extracellular metabolites of fish gut microbes and their antimicrobial properties. Braz J Microbiol 2020; 51:957-967. [PMID: 32424714 DOI: 10.1007/s42770-020-00263-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 03/18/2020] [Indexed: 10/24/2022] Open
Abstract
In the present study, we synthesis nanoparticles using biosynthesis methods because of the eco-friendly approach. Gold nanoparticles were synthesized using extracellular metabolites of marine bacteria (Rastrelliger kanagurta, Selachimorpha sp., and Panna microdon). After the synthesis gold nanoparticles checked their antibacterial and antimycobacterial activities. Here we have few techniques that have been used for characterizing the gold nanoparticles followed by ultraviolet (UV)-visible spectrophotometer analysis, Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM). We observed the formation of gold nanoparticles using UV-Vis spectroscopy (UV-Vis). FT-IR spectroscopy results of the extracellular metabolites showed that different characteristic functional groups are responsible for the bioreduction of gold ions. In the recent years, we used zebrafish for an animal model to estimate nanoparticle toxicity and biocompatibility. We tested toxicity of the gold nanoparticle using the zebrafish larvae that are growing exponentially. Sample 1 showed a good antimicrobial activity, and sample 5 showed a good antimycobacterial activity. Based on the UV spectrophotometer, sample 1 is used for further studies. Color change and UV spectrum confirmed gold nanoparticles. Based on the TEM and SEM particles, size was measured and ranged between 80 and 45 nm, and most of the particles are spherical and are in rod shape. XRD result showed the gold nanoparticles with crystalline nature. Toxicity studies in the zebrafish larvae showed that 50 μg ml-1 showed less toxicity. Based on the studies, gold nanoparticle has good antibacterial and antimycobacterial activities. The present was concluded that gold nanoparticles have potential biocompatibility and less toxicity. Gold nanoparticles will be used as a drug molecule in pharmaceutical company and biomedicine application.
Collapse
|
36
|
Kalimuthu K, Cha BS, Kim S, Park KS. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104296] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Das KR, Tiwari AK, Kerkar S. Psychrotolerant Antarctic bacteria biosynthesize gold nanoparticles active against sulphate reducing bacteria. Prep Biochem Biotechnol 2019; 50:438-444. [PMID: 31876438 DOI: 10.1080/10826068.2019.1706559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study evaluates the biosynthesis of gold nanoparticle (GNP) using Antarctic bacteria and assesses its potential antibacterial activity on sulfate-reducing bacteria (SRB). The GNPs were biosynthesized at distinct temperatures (4°, 10°, 25°, 30° and 37° C) using bacterial isolate GL1.3, obtained from Antarctic lake water. Biochemical and phylogenetic analysis concluded that the isolate GL1.3 belongs to Bacillus sp. The GNP biosynthesis was achieved at all the incubation temperatures (4°, 10°, 25°, 30° and 37° C) only during the log phase of growth. These formed nanoparticles were identified by UV-Visible spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD) to be of size 30-50 nm. These GNPs exhibited antibacterial activity against SRB (Desulfovibrio sp.) evaluated by broth micro-dilution method. At 200 µg mL-1 GNP concentrations, being the minimal inhibitory concentration (MIC), the growth rate and sulfate reducing activity of Desulfovibrio sp. were reduced by 12% and 7% respectively. Comet assay revealed that the genotoxic effect of GNP on SRB is responsible for the inhibition of its growth and sulfide production. This showed that the Antarctic microbes could be useful for GNP synthesis even under psychrophilic conditions for various biomedical applications.
Collapse
Affiliation(s)
- Kirti Ranjan Das
- Polar Environment Division, National Centre for Polar and Ocean Research, Vasco da Gama, India.,Department of Biotechnology, Goa University, Taleigao Plateau, India
| | - Anoop Kumar Tiwari
- Polar Environment Division, National Centre for Polar and Ocean Research, Vasco da Gama, India
| | - Savita Kerkar
- Department of Biotechnology, Goa University, Taleigao Plateau, India
| |
Collapse
|
38
|
Ben Tahar I, Fickers P, Dziedzic A, Płoch D, Skóra B, Kus-Liśkiewicz M. Green pyomelanin-mediated synthesis of gold nanoparticles: modelling and design, physico-chemical and biological characteristics. Microb Cell Fact 2019; 18:210. [PMID: 31796078 PMCID: PMC6891958 DOI: 10.1186/s12934-019-1254-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Synthesis of nanoparticles (NPs) and their incorporation in materials are amongst the most studied topics in chemistry, physics and material science. Gold NPs have applications in medicine due to their antibacterial and anticancer activities, in biomedical imaging and diagnostic test. Despite chemical synthesis of NPs are well characterized and controlled, they rely on the utilization of harsh chemical conditions and organic solvent and generate toxic residues. Therefore, greener and more sustainable alternative methods for NPs synthesis have been developed recently. These methods use microorganisms, mainly yeast or yeast cell extract. NPs synthesis with culture supernatants are most of the time the preferred method since it facilitates the purification scheme for the recovery of the NPs. Extraction of NPs, formed within the cells or cell-wall, is laborious, time-consuming and are not cost effective. The bioactivities of NPs, namely antimicrobial and anticancer, are known to be related to NPs shape, size and size distribution. RESULTS Herein, we reported on the green synthesis of gold nanoparticles (AuNPs) mediated by pyomelanin purified from the yeast Yarrowia lipolytica. A three levels four factorial Box-Behnken Design (BBD) was used to evaluate the influence of temperature, pH, gold salt and pyomelanin concentration on the nanoparticle size distribution. Based on the BBD, a quadratic model was established and was applied to predict the experimental parameters that yield to AuNPs with specific size. The synthesized nanoparticles with median size value of 104 nm were of nanocrystalline structure, mostly polygonal or spherical. They exhibited a high colloidal stability with zeta potential of - 28.96 mV and a moderate polydispersity index of 0.267. The absence of cytotoxicity of the AuNPs was investigated on two mammalian cell lines, namely mouse fibroblasts (NIH3T3) and human osteosarcoma cells (U2OS). Cell viability was only reduced at AuNPs concentration higher than 160 µg/mL. Moreover, they did not affect on the cell morphology. CONCLUSION Our results indicate that different process parameters affect significantly nanoparticles size however with the mathematical model it is possible to define the size of AuNPs. Moreover, this melanin-based gold nanoparticles showed neither cytotoxicity effect nor altered cell morphology.
Collapse
Affiliation(s)
- Imen Ben Tahar
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté, 2, 5030, Gembloux, Belgium
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté, 2, 5030, Gembloux, Belgium
| | - Andrzej Dziedzic
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Dariusz Płoch
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Bartosz Skóra
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Małgorzata Kus-Liśkiewicz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| |
Collapse
|
39
|
Chandran K, Song S, Yun SI. Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf B Biointerfaces 2019; 183:110455. [DOI: 10.1016/j.colsurfb.2019.110455] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 01/25/2023]
|
41
|
Lin JH, Zhang KC, Tao WY, Wang D, Li S. Geobacillus strains that have potential value in microbial enhanced oil recovery. Appl Microbiol Biotechnol 2019; 103:8339-8350. [PMID: 31501940 DOI: 10.1007/s00253-019-10115-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022]
Abstract
Bacteria from the genus Geobacillus are generally obligately thermophilic, with a unique bioenergy production capacity and unique enzymes. Geobacillus species were isolated primarily from hot springs, oilfields, and associated soils. They often exhibit unique survival patterns in these extreme oligotrophic environments. With the development of the microbial resources found in oilfields, Geobacillus spp. have been proven as valuable bacteria in many reports related to oilfields. After the isolation of Geobacillus by culture methods, more evidence was found that they possess the abilities of hydrocarbon utilization and bioemulsifier production. This paper mainly summarizes some characteristics of the Geobacillus species found in the oilfield environment, focusing on the inference and analysis of hydrocarbon degradation and bioemulsifier synthesis based on existing research, which may reveal their potential value in microbial enhanced oil recovery. It also provides references for understanding microbes in extreme environments.
Collapse
Affiliation(s)
- Jia-Hui Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Kun-Cheng Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Wei-Yi Tao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Dan Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China.
| |
Collapse
|
42
|
Onaciu A, Braicu C, Zimta AA, Moldovan A, Stiufiuc R, Buse M, Ciocan C, Buduru S, Berindan-Neagoe I. Gold nanorods: from anisotropy to opportunity. An evolution update. Nanomedicine (Lond) 2019; 14:1203-1226. [PMID: 31075049 DOI: 10.2217/nnm-2018-0409] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles have drawn attention to nanomedicine for many years due to their physicochemical properties, which include: good stability; biocompatibility; easy surface chemistry and superior magnetic; and last, electronic properties. All of these properties distinguish gold nanoparticles as advantageous carriers to be exploited. The challenge to develop new gold nanostructures has led to anisotropy, a new property to exploit for various medical applications: diagnostic and imaging strategies as well as therapeutic options. Gold nanorods are the most studied anisotropic gold nanoparticles because of the presence of two absorption peaks according to their longitudinal and transversal plasmon resonances. The longitudinal surface plasmonic resonance can provide the absorption in the near-infrared region and this is an important aspect of using gold nanorods for medical purposes.
Collapse
Affiliation(s)
- Anca Onaciu
- Animal Facility Department, MedFuture - Research Center for Advanced Medicine, ''Iuliu Haţieganu'' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine & Translational Medicine, ''Iuliu Haţieganu'' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Cellular Therapies Department, MedFuture - Research Center for Advanced Medicine, ''Iuliu Haţieganu'' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Alin Moldovan
- Bionanoscopy Department, MedFuture - Research Center for Advanced Medicine, ''Iuliu Haţieganu'' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Rares Stiufiuc
- Bionanoscopy Department, MedFuture - Research Center for Advanced Medicine, ''Iuliu Haţieganu'' University of Medicine & Pharmacy, Cluj-Napoca, Romania.,Pharmaceutical Physics-Biophysics Department, Faculty of Pharmacy, ''Iuliu Haţieganu'' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Mihail Buse
- Cellular Therapies Department, MedFuture - Research Center for Advanced Medicine, ''Iuliu Haţieganu'' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Cristina Ciocan
- Clinical Studies Department, MedFuture - Research Center for Advanced Medicine, ''Iuliu Haţieganu'' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Smaranda Buduru
- Prosthetics & Dental Materials Department, Faculty of Dental Medicine, ''Iuliu Haţieganu'' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Animal Facility Department, MedFuture - Research Center for Advanced Medicine, ''Iuliu Haţieganu'' University of Medicine & Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine & Translational Medicine, ''Iuliu Haţieganu'' University of Medicine & Pharmacy, Cluj-Napoca, Romania.,Functional Genomics & Experimental Pathology Department, The Oncology Institute "Prof. Dr. Ion Chiricuţa", Cluj-Napoca, Romania
| |
Collapse
|
43
|
Marques MS, Zepon ΚM, Heckler JM, Morisso FDP, da Silva Paula MM, Κanis LA. One-pot synthesis of gold nanoparticles embedded in polysaccharide-based hydrogel: Physical-chemical characterization and feasibility for large-scale production. Int J Biol Macromol 2019; 124:838-845. [DOI: 10.1016/j.ijbiomac.2018.11.231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023]
|
44
|
Patil YM, Rajpathak SN, Deobagkar DD. Characterization and DNA methylation modulatory activity of gold nanoparticles synthesized by Pseudoalteromonas strain. J Biosci 2019; 44:15. [PMID: 30837366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Marine extremophiles are shown to tolerate extreme environmental conditions and have high metal reducing properties. Here, we report intracellular synthesis of gold nanoparticles (AuNP) by marine extremophilic bacteria Pseudoalteromonas sp. Bac178 which was isolated from the OMZ of Arabian Sea. Preliminary observations suggest that these bacteria use different pathways which may involves the membrane as well as intracellular proteins for the gold salt reduction. Characterization of the biosynthesised nanoparticles by various techniques such as Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS) confirmed the presence of crystalline gold. These biologically synthesized AuNP were investigated for cytotoxicity and oxidative stress generation in human normal fibroblast and melanoma cells (A375). As AuNP are envisaged to find many applications in the medical field, it was of interest to study the effect of AuNP at the epigenetic level. They were found to be non-cytotoxic, non-genotoxic and non-oxidative stress generating over a range of concentrations. Exposure to these AuNP is observed to cause alterations in global DNA methylation as well as in the expression of DNA methyltransferase (DNMT) genes. Since biosynthesized AuNP are being used in various applications and therapies, their epigenetic modulatory activity needs careful consideration.
Collapse
Affiliation(s)
- Yugandhara M Patil
- Molecular Biology Research Laboratory, Centre of Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | | | | |
Collapse
|
45
|
Reich S, Agarwal S, Greiner A. Electrospun Bacteria‐Gold Nanoparticle/Polymer Composite Mesofiber Nonwovens for Catalytic Application. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Steffen Reich
- Macromolecular Chemistry and Bavarian Polymer InstituteUniversity of Bayreuth D‐95440 Bayreuth Germany
| | - Seema Agarwal
- Macromolecular Chemistry and Bavarian Polymer InstituteUniversity of Bayreuth D‐95440 Bayreuth Germany
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer InstituteUniversity of Bayreuth D‐95440 Bayreuth Germany
| |
Collapse
|
46
|
Patil YM, Rajpathak SN, Deobagkar DD. Characterization and DNA methylation modulatory activity of gold nanoparticles synthesized by Pseudoalteromonas strain. J Biosci 2019. [DOI: 10.1007/s12038-018-9842-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Biological Synthesis of Nanoparticles by Different Groups of Bacteria. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-16383-9_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Busi S, Rajkumari J. Microbially synthesized nanoparticles as next generation antimicrobials: scope and applications. NANOPARTICLES IN PHARMACOTHERAPY 2019. [PMCID: PMC7150190 DOI: 10.1016/b978-0-12-816504-1.00008-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of multidrug resistant (MDR) pathogens at an alarming rate has created a great health concern worldwide. Nanotechnology today provides hope as an alternative to antibiotics, in the field of antimicrobial therapy. The diverse structures and small size make the nanoparticles (NPs) exhibit unique and remarkable properties, drastically different from its bulk counterparts. Various microorganisms such as actinomycetes, algae, yeast, fungi, and bacteria synthesize inorganic nanoparticles enzymatically, either extracellularly or intracellularly. Various metallic NPs, for example, magnesium, titanium, copper, silver, and gold, are well reported for their antimicrobial, antiviral, and antifungal properties. The antimicrobial properties of these NPs may be attributed to its ability to disorganize membrane structure, form pores in the bacterial cell wall, inhibit or disruption biofilm, etc. Most metal oxide nanoparticles like ZnO-NPs, exhibit bactericidal properties by generating reactive oxygen species (ROS). However, other NPs like MgO-NPs are effective due to their peculiar physical structure. Nanoparticles can also be fabricated with various bioactive entities. Due to their small and controllable size, functionalized nanoparticles can deliver drugs precisely and safely to the target sites. Thus, microbial mediated production of nanoparticles is gaining substantial interest as a potential solution to the growing need for the development of eco-friendly ways to fight microbial resistance and control diseases.
Collapse
|
49
|
Contreras F, Vargas E, Jiménez K, Muñoz-Villagrán C, Figueroa M, Vásquez C, Arenas F. Reduction of Gold (III) and Tellurium (IV) by Enterobacter cloacae MF01 Results in Nanostructure Formation Both in Aerobic and Anaerobic Conditions. Front Microbiol 2018; 9:3118. [PMID: 30619192 PMCID: PMC6305273 DOI: 10.3389/fmicb.2018.03118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
Microorganism survival in the presence of toxic substances such as metal(loid)s lies chiefly on their ability to resist (or tolerate) such elements through specific resistance mechanisms. Among them, toxicant reduction has attracted the attention of researchers because metal(loid)-reducing bacteria are being used to recover and/or decontaminate polluted sites. Particularly, our interest is to analyze the toxicity of gold and tellurium compounds for the environmental microorganism Enterobacter cloacae MF01 and also to explore the generation of nanostructures to be used in future biotechnological processes. Resistance of E. cloacae MF01 to gold and tellurium salts as well as the putative mechanisms involved -both in aerobic and anaerobic growth conditions- was evaluated. These metal(loid)s were selected because of their potential application in biotechnology. Resistance to auric tetrachloride acid (HAuCl4) and potassium tellurite (K2TeO3) was assessed by determining areas of growth inhibition, minimum inhibitory concentrations, and growth curves as well as by viability tests. E. cloacae MF01 exhibited higher resistance to HAuCl4 and K2TeO3 under aerobic and anaerobic conditions, respectively. In general, their toxicity is mediated by the generation of reactive oxygen species and by a decrease of intracellular reduced thiols (RSH). To assess if resistance implies toxicant reduction, intra- and extra-cellular toxicant-reducing activities were evaluated. While E. cloacae MF01 exhibited intra- and extra-cellular HAuCl4-reducing activity, tellurite reduction was observed only intracellularly. Then, Au- and Te-containing nanostructures (AuNS and TeNS, respectively) were synthesized using crude extracts from E. cloacae MF01 and their size, morphology, and chemical composition was evaluated.
Collapse
Affiliation(s)
- Fernanda Contreras
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Esteban Vargas
- Center for the Development of Nanoscience and Nanotechnology, Santiago, Chile
| | - Karla Jiménez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Maximiliano Figueroa
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Vásquez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Arenas
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
50
|
Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front Microbiol 2018; 9:2309. [PMID: 30425685 PMCID: PMC6218600 DOI: 10.3389/fmicb.2018.02309] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Extremophiles are organisms capable of adjust, survive or thrive in hostile habitats that were previously thought to be adverse or lethal for life. Chile gathers a wide range of extreme environments: salars, geothermal springs, and geysers located at Altiplano and Atacama Desert, salars and cold mountains in Central Chile, and ice fields, cold lakes and fjords, and geothermal sites in Patagonia and Antarctica. The aims of this review are to describe extremophiles that inhabit main extreme biotopes in Chile, and their molecular and physiological capabilities that may be advantageous for bioremediation processes. After briefly describing the main ecological niches of extremophiles along Chilean territory, this review is focused on the microbial diversity and composition of these biotopes microbiomes. Extremophiles have been isolated in diverse zones in Chile that possess extreme conditions such as Altiplano, Atacama Desert, Central Chile, Patagonia, and Antarctica. Interesting extremophiles from Chile with potential biotechnological applications include thermophiles (e.g., Methanofollis tationis from Tatio Geyser), acidophiles (e.g., Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum from Atacama Desert and Central Chile copper ores), halophiles (e.g., Shewanella sp. Asc-3 from Altiplano, Streptomyces sp. HKF-8 from Patagonia), alkaliphiles (Exiguobacterium sp. SH31 from Altiplano), xerotolerant bacteria (S. atacamensis from Atacama Desert), UV- and Gamma-resistant bacteria (Deinococcus peraridilitoris from Atacama Desert) and psychrophiles (e.g., Pseudomonas putida ATH-43 from Antarctica). The molecular and physiological properties of diverse extremophiles from Chile and their application in bioremediation or waste treatments are further discussed. Interestingly, the remarkable adaptative capabilities of extremophiles convert them into an attractive source of catalysts for bioremediation and industrial processes.
Collapse
Affiliation(s)
- Roberto Orellana
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Constanza Macaya
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Guillermo Bravo
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Flavia Dorochesi
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|