1
|
Identification of traits to improve co-assimilation of glucose and xylose by adaptive evolution of Spathaspora passalidarum and Scheffersomyces stipitis yeasts. Appl Microbiol Biotechnol 2023; 107:1143-1157. [PMID: 36625916 DOI: 10.1007/s00253-023-12362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
Lignocellulosic biomass is a renewable raw material for producing several high-value-added chemicals and fuels. In general, xylose and glucose are the major sugars in biomass hydrolysates, and their efficient utilization by microorganisms is critical for an economical production process. Yeasts capable of co-consuming mixed sugars might lead to higher yields and productivities in industrial fermentation processes. Herein, we performed adaptive evolution assays with two xylose-fermenting yeasts, Spathaspora passalidarum and Scheffersomyces stipitis, to obtain derived clones with improved capabilities of glucose and xylose co-consumption. Adapted strains were obtained after successive growth selection using xylose and the non-metabolized glucose analog 2-deoxy-D-glucose as a selective pressure. The co-fermentation capacity of evolved and parental strains was evaluated on xylose-glucose mixtures. Our results revealed an improved co-assimilation capability by the evolved strains; however, xylose and glucose consumption were observed at slower rates than the parental yeasts. Genome resequencing of the evolved strains revealed genes affected by non-synonymous variants that might be involved with the co-consumption phenotype, including the HXT2.4 gene that encodes a putative glucose transporter in Sp. passalidarum. Expression of this mutant HXT2.4 in Saccharomyces cerevisiae improved the cells' co-assimilation of glucose and xylose. Therefore, our results demonstrated the successful improvement of co-fermentation through evolutionary engineering and the identification of potential targets for further genetic engineering of different yeast strains. KEY POINTS: • Laboratory evolution assay was used to obtain improved sugar co-consumption of non-Saccharomyces strains. • Evolved Sp. passalidarum and Sc. stipitis were able to more efficiently co-ferment glucose and xylose. • A mutant Hxt2.4 permease, which co-transports xylose and glucose, was identified.
Collapse
|
2
|
Fu B, Ying J, Chen Q, Zhang Q, Lu J, Zhu Z, Yu P. Enhancing the biosynthesis of riboflavin in the recombinant Escherichia coli BL21 strain by metabolic engineering. Front Microbiol 2023; 13:1111790. [PMID: 36726568 PMCID: PMC9885008 DOI: 10.3389/fmicb.2022.1111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
In this study, to construct the riboflavin-producing strain R1, five key genes, ribA, ribB, ribC, ribD, and ribE, were cloned and ligated to generate the plasmid pET-AE, which was overexpressed in Escherichia coli BL21. The R1 strain accumulated 182.65 ± 9.04 mg/l riboflavin. Subsequently, the R2 strain was constructed by the overexpression of zwf harboring the constructed plasmid pAC-Z in the R1 strain. Thus, the level of riboflavin in the R2 strain increased to 319.01 ± 20.65 mg/l (74.66% increase). To further enhance ribB transcript levels and riboflavin production, the FMN riboswitch was deleted from E. coli BL21 with CRISPR/Cas9 to generate the R3 strain. The R4 strain was constructed by cotransforming pET-AE and pAC-Z into the R3 strain. Compared to those of E. coli BL21, the ribB transcript levels of R2 and R4 improved 2.78 and 3.05-fold, respectively. The R4 strain accumulated 437.58 ± 14.36 mg/l riboflavin, increasing by 37.17% compared to the R2 strain. These results suggest that the deletion of the FMN riboswitch can improve the transcript level of ribB and facilitate riboflavin production. A riboflavin titer of 611.22 ± 11.25 mg/l was achieved under the optimal fermentation conditions. Ultimately, 1574.60 ± 109.32 mg/l riboflavin was produced through fed-batch fermentation with 40 g/l glucose. This study contributes to the industrial production of riboflavin by the recombinant E. coli BL21.
Collapse
Affiliation(s)
- Bing Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China,College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Junhui Ying
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jiajie Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Zhiwen Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China,*Correspondence: Ping Yu,
| |
Collapse
|
3
|
Qaiser H, Kaleem A, Abdullah R, Iqtedar M, Hoessli DC. Overview of lignocellulolytic enzyme systems with special reference to valorization of lignocellulosic biomass. Protein Pept Lett 2021; 28:1349-1364. [PMID: 34749601 DOI: 10.2174/0929866528666211105110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
Lignocellulosic biomass, one of the most valuable natural resources, is abundantly present on earth. Being a renewable feedstock, it harbors a great potential to be exploited as a raw material, to produce various value-added products. Lignocellulolytic microorganisms hold a unique position regarding the valorization of lignocellulosic biomass as they contain efficient enzyme systems capable of degrading this biomass. The ubiquitous nature of these microorganisms and their survival under extreme conditions have enabled their use as an effective producer of lignocellulolytic enzymes with improved biochemical features crucial to industrial bioconversion processes. These enzymes can prove to be an exquisite tool when it comes to the eco-friendly manufacturing of value-added products using waste material. This review focuses on highlighting the significance of lignocellulosic biomass, microbial sources of lignocellulolytic enzymes and their use in the formation of useful products.
Collapse
Affiliation(s)
- Hina Qaiser
- Department of Biology, Lahore Garrison University, Lahore. Pakistan
| | - Afshan Kaleem
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Roheena Abdullah
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Mehwish Iqtedar
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi. Pakistan
| |
Collapse
|
4
|
Adebami GE, Kuila A, Ajunwa OM, Fasiku SA, Asemoloye MD. Genetics and metabolic engineering of yeast strains for efficient ethanol production. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Arindam Kuila
- Department of Bioscience and Biotechnology Banasthali University Vanasthali India
| | - Obinna M. Ajunwa
- Department of Microbiology Modibbo Adama University of Technology Yola Nigeria
| | - Samuel A. Fasiku
- Department of Biological Sciences Ajayi Crowther University Oyo Nigeria
| | - Michael D. Asemoloye
- Department of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
5
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
6
|
The Effects of Microwave-Assisted Pretreatment and Cofermentation on Bioethanol Production from Elephant Grass. Int J Microbiol 2020. [DOI: 10.1155/2020/6562730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The process of acid hydrolysis using conventional methods at high concentrations results in products having lower yields, and it needs a longer time of process; therefore, it becomes less effective. In this study, we analyzed the effects of microwave-assisted pretreatment and cofermentation on bioethanol production from elephant grass (Pennisetum purpureum). We used a combination of delignification techniques and acid hydrolysis by employing a microwave-assisted pretreatment method on elephant grass (Pennisetum purpureum) as a lignocellulosic material. This was followed by cofermentation with Saccharomyces cerevisiae ITB-R89 and Pichia stipitis ITB-R58 to produce bioethanol. The optimal sugar mixtures (fructose and xylose) of the hydrolysis product were subsequently converted into bioethanol by cofermentation with S. cerevisiae ITB-R89 and P. stipitis ITB-R58, carried out with varying concentrations of inoculum for 5 days (48 h) at 30°C and pH 4.5. The high-power liquid chromatographic analysis revealed that the optimal inoculum concentration capable of converting 76.15% of the sugar mixture substrate (glucose and xylose) to 10.79 g/L (34.74% yield) of bioethanol was 10% (v/v). The optimal rate of ethanol production was 0.45 g/L/d, corresponding to a fermentation efficiency of 69.48%.
Collapse
|
7
|
Jin LQ, Yang B, Xu W, Chen XX, Jia DX, Liu ZQ, Zheng YG. Immobilization of recombinant Escherichia coli whole cells harboring xylose reductase and glucose dehydrogenase for xylitol production from xylose mother liquor. BIORESOURCE TECHNOLOGY 2019; 285:121344. [PMID: 30999186 DOI: 10.1016/j.biortech.2019.121344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
In this study, recombinant E. coli BL21(DE3)/pCDFDuet-1-XR-GDH harboring xylose reductase (XR) and glucose dehydrogenase (GDH) were immobilized and applied for the production of xylitol from xylose mother liquor (XML). Various immobilization methods were screened and the cross-linking approach with diatomite and polyetherimide as the raw materials and glutaraldehyde as the cross-linking agent was the optimal one, and the recovery activity reached of 80.3% after immobilization. The half-life of immobilized cells was 1.52 times to that of free cells. Batch experiments showed that the enzyme activity of immobilized cells remained 70.5% of the initial activity after 10 batches and the space-time yield of xylitol reached of 11.5 g/(L h). The production of xylitol from xylose mother liquor by immobilized E. coli cells containing xylose reductase and glucose dehydrogenase was reported for the first time, which paved a foundation for industrial production of xylitol from waste xylose mother liquor.
Collapse
Affiliation(s)
- Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Bo Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wei Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xian-Xiao Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dong-Xu Jia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
8
|
Li X, Chen Y, Nielsen J. Harnessing xylose pathways for biofuels production. Curr Opin Biotechnol 2019; 57:56-65. [PMID: 30785001 DOI: 10.1016/j.copbio.2019.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Abstract
Energy security, environmental pollution, and economic development drive the development of alternatives to fossil fuels as an urgent global priority. Lignocellulosic biomass has the potential to contribute to meeting the demand for biofuel production via hydrolysis and fermentation of released sugars, such as glucose, xylose, and arabinose. Construction of robust cell factories requires introducing and rewiring of their metabolism to efficiently use all these sugars. Here, we review recent advances in re-constructing pathways for metabolism of pentoses, with special focus on xylose metabolism in the most widely used cell factories Saccharomyces cerevisiae and Escherichia coli. We also highlight engineering advanced biofuels-synthesis pathways and describes progress toward overcoming the challenges facing adoption of large-scale biofuel production.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; Wallenberg Center for Protein Research, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
9
|
Endalur Gopinarayanan V, Nair NU. Pentose Metabolism in Saccharomyces cerevisiae: The Need to Engineer Global Regulatory Systems. Biotechnol J 2019; 14:e1800364. [PMID: 30171750 PMCID: PMC6452637 DOI: 10.1002/biot.201800364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Extending the host substrate range of industrially relevant microbes, such as Saccharomyces cerevisiae, has been a highly-active area of research since the conception of metabolic engineering. Yet, rational strategies that enable non-native substrate utilization in this yeast without the need for combinatorial and/or evolutionary techniques are underdeveloped. Herein, this review focuses on pentose metabolism in S. cerevisiae as a case study to highlight the challenges in this field. In the last three decades, work has focused on expressing exogenous pentose metabolizing enzymes as well as endogenous enzymes for effective pentose assimilation, growth, and biofuel production. The engineering strategies that are employed for pentose assimilation in this yeast are reviewed, and compared with metabolism and regulation of native sugar, galactose. In the case of galactose metabolism, multiple signals regulate and aid growth in the presence of the sugar. However, for pentoses that are non-native, it is unclear if similar growth and regulatory signals are activated. Such a comparative analysis aids in identifying missing links in xylose and arabinose utilization. While research on pentose metabolism have mostly concentrated on pathway level optimization, recent transcriptomics analyses highlight the need to consider more global regulatory, structural, and signaling components.
Collapse
Affiliation(s)
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, U.S.A
| |
Collapse
|
10
|
Caballero A, Ramos JL. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain. Microbiology (Reading) 2017; 163:442-452. [DOI: 10.1099/mic.0.000437] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Antonio Caballero
- Abengoa Research, Department of Biotechnology, Campus de Palmas Altas, c/Energia Solar number 1, 41004 Sevilla, Spain
- BacMine, C/de Santiago Grisolía 28760 Tres Cantos, Spain
| | - Juan Luis Ramos
- Abengoa Research, Department of Biotechnology, Campus de Palmas Altas, c/Energia Solar number 1, 41004 Sevilla, Spain
| |
Collapse
|
11
|
Peris D, Moriarty RV, Alexander WG, Baker E, Sylvester K, Sardi M, Langdon QK, Libkind D, Wang QM, Bai FY, Leducq JB, Charron G, Landry CR, Sampaio JP, Gonçalves P, Hyma KE, Fay JC, Sato TK, Hittinger CT. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:78. [PMID: 28360936 PMCID: PMC5369230 DOI: 10.1186/s13068-017-0763-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/18/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. RESULTS To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. CONCLUSIONS This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.
Collapse
Affiliation(s)
- David Peris
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Ryan V. Moriarty
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - William G. Alexander
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - EmilyClare Baker
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Kayla Sylvester
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Maria Sardi
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Quinn K. Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, IPATEC (CONICET-UNComahue), Centro Regional Universitario Bariloche, Bariloche, Río Negro Argentina
| | - Qi-Ming Wang
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jean-Baptiste Leducq
- Departement des Sciences Biologiques, Université de Montréal, Montreal, QC Canada
- Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC Canada
| | - Guillaume Charron
- Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC Canada
| | - Christian R. Landry
- Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC Canada
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Katie E. Hyma
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Justin C. Fay
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
12
|
Coutilization of D-Glucose, D-Xylose, and L-Arabinose in Saccharomyces cerevisiae by Coexpressing the Metabolic Pathways and Evolutionary Engineering. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5318232. [PMID: 28459063 PMCID: PMC5385224 DOI: 10.1155/2017/5318232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/04/2017] [Accepted: 03/20/2017] [Indexed: 11/23/2022]
Abstract
Efficient and cost-effective fuel ethanol production from lignocellulosic materials requires simultaneous cofermentation of all hydrolyzed sugars, mainly including D-glucose, D-xylose, and L-arabinose. Saccharomyces cerevisiae is a traditional D-glucose fermenting strain and could utilize D-xylose and L-arabinose after introducing the initial metabolic pathways. The efficiency and simultaneous coutilization of the two pentoses and D-glucose for ethanol production in S. cerevisiae still need to be optimized. Previously, we constructed an L-arabinose-utilizing S. cerevisiae BSW3AP. In this study, we further introduced the XI and XR-XDH metabolic pathways of D-xylose into BSW3AP to obtain D-glucose, D-xylose, and L-arabinose cofermenting strain. Benefits of evolutionary engineering: the resulting strain BSW4XA3 displayed a simultaneous coutilization of D-xylose and L-arabinose with similar consumption rates, and the D-glucose metabolic capacity was not decreased. After 120 h of fermentation on mixed D-glucose, D-xylose, and L-arabinose, BSW4XA3 consumed 24% more amounts of pentoses and the ethanol yield of mixed sugars was increased by 30% than that of BSW3AP. The resulting strain BSW4XA3 was a useful chassis for further enhancing the coutilization efficiency of mixed sugars for bioethanol production.
Collapse
|
13
|
Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metab Eng 2016; 38:464-472. [DOI: 10.1016/j.ymben.2016.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 11/19/2022]
|
14
|
Brink DP, Borgström C, Tueros FG, Gorwa-Grauslund MF. Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling. Microb Cell Fact 2016; 15:183. [PMID: 27776527 PMCID: PMC5078928 DOI: 10.1186/s12934-016-0580-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/14/2016] [Indexed: 12/03/2022] Open
Abstract
Background The sugar sensing and carbon catabolite repression in Baker’s yeast Saccharomyces cerevisiae is governed by three major signaling pathways that connect carbon source recognition with transcriptional regulation. Here we present a screening method based on a non-invasive in vivo reporter system for real-time, single-cell screening of the sugar signaling state in S. cerevisiae in response to changing carbon conditions, with a main focus on the response to glucose and xylose. Results The artificial reporter system was constructed by coupling a green fluorescent protein gene (yEGFP3) downstream of endogenous yeast promoters from the Snf3p/Rgt2p, SNF1/Mig1p and cAMP/PKA signaling pathways: HXT1p/2p/4p; SUC2p, CAT8p; TPS1p/2p and TEF4p respectively. A panel of eight biosensors strains was generated by single copy chromosomal integration of the different constructs in a W303-derived strain. The signaling biosensors were validated for their functionality with flow cytometry by comparing the fluorescence intensity (FI) response in the presence of high or nearly depleted glucose to the known induction/repression conditions of the eight different promoters. The FI signal correlated with the known patterns of the selected promoters while maintaining a non-invasive property on the cellular phenotype, as was demonstrated in terms of growth, metabolites and enzyme activity. Conclusions Once verified, the sensors were used to evaluate the signaling response to varying conditions of extracellular glucose, glycerol and xylose by screening in 96-well microtiter plates. We show that these yeast strains, which do not harbor any recombinant pathways for xylose utilization, are lacking a signaling response for extracellular xylose. However, for the HXT2p/4p sensors, a shift in the flow cytometry population dynamics indicated that internalized xylose does affect the signaling. These results suggest that the previously observed effects of this pentose on the S. cerevisiae physiology and gene regulation can be attributed to xylose and not only to a lack of glucose. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0580-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden.
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Felipe G Tueros
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| |
Collapse
|
15
|
Amores GR, Guazzaroni ME, Arruda LM, Silva-Rocha R. Recent Progress on Systems and Synthetic Biology Approaches to Engineer Fungi As Microbial Cell Factories. Curr Genomics 2016; 17:85-98. [PMID: 27226765 PMCID: PMC4864837 DOI: 10.2174/1389202917666151116212255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/23/2015] [Accepted: 06/01/2015] [Indexed: 01/03/2023] Open
Abstract
Filamentous fungi are remarkable organisms naturally specialized in deconstructing plant
biomass and this feature has a tremendous potential for biofuel production from renewable sources.
The past decades have been marked by a remarkable progress in the genetic engineering of fungi to
generate industry-compatible strains needed for some biotech applications. In this sense, progress in
this field has been marked by the utilization of high-throughput techniques to gain deep understanding
of the molecular machinery controlling the physiology of these organisms, starting thus the Systems
Biology era of fungi. Additionally, genetic engineering has been extensively applied to modify wellcharacterized
promoters in order to construct new expression systems with enhanced performance under the conditions of
interest. In this review, we discuss some aspects related to significant progress in the understating and engineering of
fungi for biotechnological applications, with special focus on the construction of synthetic promoters and circuits in organisms
relevant for industry. Different engineering approaches are shown, and their potential and limitations for the construction
of complex synthetic circuits in these organisms are examined. Finally, we discuss the impact of engineered
promoter architecture in the single-cell behavior of the system, an often-neglected relationship with a tremendous impact
in the final performance of the process of interest. We expect to provide here some new directions to drive future research
directed to the construction of high-performance, engineered fungal strains working as microbial cell factories.
Collapse
|
16
|
Enzymatic hydrolysis and fermentation of ultradispersed wood particles after ultrasonic pretreatment. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2015.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Knoshaug EP, Vidgren V, Magalhães F, Jarvis EE, Franden MA, Zhang M, Singh A. Novel transporters from
Kluyveromyces marxianus
and
Pichia guilliermondii
expressed in
Saccharomyces cerevisiae
enable growth on
l
‐arabinose and
d
‐xylose. Yeast 2015; 32:615-28. [DOI: 10.1002/yea.3084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/11/2015] [Accepted: 06/23/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eric P. Knoshaug
- National Renewable Energy Laboratory National Bioenergy Centre Golden CO USA
| | - Virve Vidgren
- VTT Technical Research Centre of Finland PO Box 1000 FI‐02044 VTT Finland
| | | | - Eric E. Jarvis
- National Renewable Energy Laboratory National Bioenergy Centre Golden CO USA
| | - Mary Ann Franden
- National Renewable Energy Laboratory National Bioenergy Centre Golden CO USA
| | - Min Zhang
- National Renewable Energy Laboratory National Bioenergy Centre Golden CO USA
| | - Arjun Singh
- National Renewable Energy Laboratory National Bioenergy Centre Golden CO USA
| |
Collapse
|
18
|
Wang C, Bao X, Li Y, Jiao C, Hou J, Zhang Q, Zhang W, Liu W, Shen Y. Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metab Eng 2015; 30:79-88. [DOI: 10.1016/j.ymben.2015.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/25/2015] [Accepted: 04/24/2015] [Indexed: 12/31/2022]
|
19
|
Reznicek O, Facey S, de Waal P, Teunissen A, de Bont J, Nijland J, Driessen A, Hauer B. Improved xylose uptake in Saccharomyces cerevisiae
due to directed evolution of galactose permease Gal2 for sugar co-consumption. J Appl Microbiol 2015; 119:99-111. [DOI: 10.1111/jam.12825] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022]
Affiliation(s)
- O. Reznicek
- Institute of Technical Biochemistry; University of Stuttgart; Stuttgart Germany
| | - S.J. Facey
- Institute of Technical Biochemistry; University of Stuttgart; Stuttgart Germany
| | | | | | | | - J.G. Nijland
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology; Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen The Netherlands
| | - A.J.M. Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology; Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen The Netherlands
| | - B. Hauer
- Institute of Technical Biochemistry; University of Stuttgart; Stuttgart Germany
| |
Collapse
|
20
|
Kordowska-Wiater M. Production of arabitol by yeasts: current status and future prospects. J Appl Microbiol 2015; 119:303-14. [PMID: 25809659 DOI: 10.1111/jam.12807] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/28/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
Arabitol belongs to the pentitol family and is used in the food industry as a sweetener and in the production of human therapeutics as an anticariogenic agent and an adipose tissue reducer. It can also be utilized as a substrate for chemical products such as arabinoic and xylonic acids, propylene, ethylene glycol, xylitol and others. It is included on the list of 12 building block C3-C6 compounds, designated for further biotechnological research. This polyol can be produced by yeasts in the processes of bioconversion or biotransformation of waste materials from agriculture, the forest industry (l-arabinose, glucose) and the biodiesel industry (glycerol). The present review discusses research on native yeasts from the genera Candida, Pichia, Debaryomyces and Zygosaccharomyces as well as genetically modified strains of Saccharomyces cerevisiae which are able to utilize biomass hydrolysates to effectively produce L- or D-arabitol. The metabolic pathways of these yeasts leading from sugars and glycerol to arabitol are presented. Although the number of reports concerning microbial production of arabitol is rather limited, the research on this topic has been growing for the last several years, with researchers looking for new micro-organisms, substrates and technologies.
Collapse
Affiliation(s)
- M Kordowska-Wiater
- Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
21
|
Challenges for the production of bioethanol from biomass using recombinant yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:89-125. [PMID: 26003934 DOI: 10.1016/bs.aambs.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lignocellulose biomass, one of the most abundant renewable resources on the planet, is an alternative sustainable energy source for the production of second-generation biofuels. Energy in the form of simple or complex carbohydrates can be extracted from lignocellulose biomass and fermented by microorganisms to produce bioethanol. Despite 40 years of active and cutting-edge research invested into the development of technologies to produce bioethanol from lignocellulosic biomass, the process remains commercially unviable. This review describes the achievements that have been made in generating microorganisms capable of utilizing both simple and complex sugars from lignocellulose biomass and the fermentation of these sugars into ethanol. We also provide a discussion on the current "roadblocks" standing in the way of making second-generation bioethanol a commercially viable alternative to fossil fuels.
Collapse
|
22
|
Lai Z, Zhu M, Yang X, Wang J, Li S. Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:119. [PMID: 25184001 PMCID: PMC4147175 DOI: 10.1186/s13068-014-0119-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/28/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND Hydrogen is regarded as an attractive future energy carrier for its high energy content and zero CO2 emission. Currently, the majority of hydrogen is generated from fossil fuels. However, from an environmental perspective, sustainable hydrogen production from low-cost lignocellulosic biomass should be considered. Thermophilic hydrogen production is attractive, since it can potentially convert a variety of biomass-based substrates into hydrogen at high yields. RESULTS Sugarcane bagasse (SCB) was used as the substrate for hydrogen production by Thermoanaerobacterium aotearoense SCUT27/Δldh. The key parameters of acid hydrolysis were studied through the response surface methodology. The hydrogen production was maximized under the conditions of 2.3% of H2SO4 for 114.2 min at 115°C. Using these conditions, a best hydrogen yield of 1.86 mol H2/mol total sugar and a hydrogen production rate (HPR) of 0.52 L/L · h were obtained from 2 L SCB hydrolysates in a 5-L fermentor, showing a superior performance to the results reported in the literature. Additionally, no obvious carbon catabolite repression (CCR) was observed during the fermentation using the multi-sugars as substrates. CONCLUSIONS Considering these advantages and theimpressive HPR, the potential of hydrogen production using T. aotearoense SCUT27/Δldh is intriguing. Thermophilic, anaerobic fermentation using SCB hydrolysates as the medium by this strain would be a practical and eco-friendly process.
Collapse
Affiliation(s)
- Zhicheng Lai
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Panyu District, Guangzhou, 510006 China
| | - Muzi Zhu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Panyu District, Guangzhou, 510006 China
| | - Xiaofeng Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Panyu District, Guangzhou, 510006 China
| | - Jufang Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Panyu District, Guangzhou, 510006 China
| | - Shuang Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Panyu District, Guangzhou, 510006 China
| |
Collapse
|
23
|
Bhutto AW, Qureshi K, Harijan K, Zahedi G, Bahadori A. Strategies for the consolidation of biologically mediated events in the conversion of pre-treated lignocellulose into ethanol. RSC Adv 2014. [DOI: 10.1039/c3ra44020f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Kim SR, Park YC, Jin YS, Seo JH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 2013; 31:851-61. [DOI: 10.1016/j.biotechadv.2013.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/23/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022]
|
25
|
Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Thevelein JM. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:89. [PMID: 23800147 PMCID: PMC3698012 DOI: 10.1186/1754-6834-6-89] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/12/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND The production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production. RESULTS An expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red. Subsequent EMS mutagenesis, genome shuffling and selection in D-xylose-enriched lignocellulose hydrolysate, followed by multiple rounds of evolutionary engineering in complex medium with D-xylose, gradually established efficient D-xylose fermentation. The best-performing strain, GS1.11-26, showed a maximum specific D-xylose consumption rate of 1.1 g/g DW/h in synthetic medium, with complete attenuation of 35 g/L D-xylose in about 17 h. In separate hydrolysis and fermentation of lignocellulose hydrolysates of Arundo donax (giant reed), spruce and a wheat straw/hay mixture, the maximum specific D-xylose consumption rate was 0.36, 0.23 and 1.1 g/g DW inoculum/h, and the final ethanol titer was 4.2, 3.9 and 5.8% (v/v), respectively. In simultaneous saccharification and fermentation of Arundo hydrolysate, GS1.11-26 produced 32% more ethanol than the parent strain Ethanol Red, due to efficient D-xylose utilization. The high D-xylose fermentation capacity was stable after extended growth in glucose. Cell extracts of strain GS1.11-26 displayed 17-fold higher XI activity compared to the parent strain, but overexpression of XI alone was not enough to establish D-xylose fermentation. The high D-xylose consumption rate was due to synergistic interaction between the high XI activity and one or more mutations in the genome. The GS1.11-26 had a partial respiratory defect causing a reduced aerobic growth rate. CONCLUSIONS An industrial yeast strain for bioethanol production with lignocellulose hydrolysates has been developed in the genetic background of a strain widely used for commercial bioethanol production. The strain uses glucose and D-xylose with high consumption rates and partial cofermentation in various lignocellulose hydrolysates with very high ethanol yield. The GS1.11-26 strain shows highly promising potential for further development of an all-round robust yeast strain for efficient fermentation of various lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Mekonnen M Demeke
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven, Heverlee, Flanders, Belgium
| | - Heiko Dietz
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Yingying Li
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven, Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven, Heverlee, Flanders, Belgium
| | - Sarma Mutturi
- Department of Chemical Engineering, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Sylvie Deprez
- Laboratory of Enzyme, Fermentation and Brewing Technology, KAHO Sint-Lieven University College, KU Leuven Association, Gebroeders De Smetstraat 1, 9000, Ghent, Flanders, Belgium
| | - Tom Den Abt
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven, Heverlee, Flanders, Belgium
| | - Beatriz M Bonini
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven, Heverlee, Flanders, Belgium
| | - Gunnar Liden
- Department of Chemical Engineering, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Françoise Dumortier
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven, Heverlee, Flanders, Belgium
| | - Alex Verplaetse
- Laboratory of Enzyme, Fermentation and Brewing Technology, KAHO Sint-Lieven University College, KU Leuven Association, Gebroeders De Smetstraat 1, 9000, Ghent, Flanders, Belgium
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven, Heverlee, Flanders, Belgium
| |
Collapse
|
26
|
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 2012; 6:131-40. [PMID: 23164409 PMCID: PMC3917455 DOI: 10.1111/1751-7915.12001] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 11/29/2022] Open
Abstract
Because of their abundance in hemicellulosic wastes arabinose and xylose are an interesting source of carbon for biotechnological production processes. Previous studies have engineered several Corynebacterium glutamicum strains for the utilization of arabinose and xylose, however, with inefficient xylose utilization capabilities. To improve xylose utilization, different xylose isomerase genes were tested in C. glutamicum. The gene originating from Xanthomonas campestris was shown to have the highest effect, resulting in growth rates of 0.14 h−1, followed by genes from Bacillus subtilis, Mycobacterium smegmatis and Escherichia coli. To further increase xylose utilization different xylulokinase genes were expressed combined with X. campestris xylose isomerase gene. All combinations further increased growth rates of the recombinant strains up to 0.20 h−1 and moreover increased biomass yields. The gene combination of X. campestris xylose isomerase and C. glutamicum xylulokinase was the fastest growing on xylose and compared with the previously described strain solely expressing E. coli xylose isomerase gene delivered a doubled growth rate. Productivity of the amino acids glutamate, lysine and ornithine, as well as the diamine putrescine was increased as well as final titres except for lysine where titres remained unchanged. Also productivity in medium containing rice straw hydrolysate as carbon source was increased. Funding Information No funding information provided.
Collapse
|
27
|
Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 2012; 14:611-22. [PMID: 22921355 DOI: 10.1016/j.ymben.2012.07.011] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/10/2012] [Accepted: 07/21/2012] [Indexed: 11/28/2022]
Abstract
Xylose is the main pentose and second most abundant sugar in lignocellulosic feedstocks. To improve xylose utilization, necessary for the cost-effective bioconversion of lignocellulose, several metabolic engineering approaches have been employed in the yeast Saccharomyces cerevisiae. In this study, we describe the rational metabolic engineering of a S. cerevisiae strain, including overexpression of the Piromyces xylose isomerase gene (XYLA), Pichia stipitis xylulose kinase (XYL3) and genes of the non-oxidative pentose phosphate pathway (PPP). This engineered strain (H131-A3) was used to initialize a three-stage process of evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation followed by growth in a xylose-limited chemostat. The evolved strain H131-A3-AL(CS) displayed significantly increased anaerobic growth rate (0.203±0.006 h⁻¹) and xylose consumption rate (1.866 g g⁻¹ h⁻¹) along with high ethanol conversion yield (0.41 g/g). These figures exceed by a significant margin any other performance metrics on xylose utilization and ethanol production by S. cerevisiae reported to-date. Further inverse metabolic engineering based on functional complementation suggested that efficient xylose assimilation is attributed, in part, to the elevated expression level of xylose isomerase, which was accomplished through the multiple-copy integration of XYLA in the chromosome of the evolved strain.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
28
|
Ma TY, Lin TH, Hsu TC, Huang CF, Guo GL, Hwang WS. An improved method of xylose utilization by recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2012; 39:1477-86. [PMID: 22740288 DOI: 10.1007/s10295-012-1153-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/28/2012] [Indexed: 12/28/2022]
Abstract
The aim of this study was to develop a method to optimize expression levels of xylose-metabolizing enzymes to improve xylose utilization capacity of Saccharomyces cerevisiae. A xylose-utilizing recombinant S. cerevisiae strain YY2KL, able to express nicotinamide adenine dinucleotide phosphate, reduced (NADPH)-dependent xylose reductase (XR), nicotinamide adenine dinucleotide (NAD(+))-dependent xylitol dehydrogenase (XDH), and xylulokinase (XK), showed a low ethanol yield and sugar consumption rate. To optimize xylose utilization by YY2KL, a recombinant expression plasmid containing the XR gene was transformed and integrated into the aur1 site of YY2KL. Two recombinant expression plasmids containing an nicotinamide adenine dinucleotide phosphate (NADP(+))-dependent XDH mutant and XK genes were dually transformed and integrated into the 5S ribosomal DNA (rDNA) sites of YY2KL. This procedure allowed systematic construction of an S. cerevisiae library with different ratios of genes for xylose-metabolizing enzymes, and well-grown colonies with different xylose fermentation capacities could be further selected in yeast protein extract (YPX) medium (1 % yeast extract, 2 % peptone, and 2 % xylose). We successfully isolated a recombinant strain with a superior xylose fermentation capacity and designated it as strain YY5A. The xylose consumption rate for strain YY5A was estimated to be 2.32 g/gDCW/h (g xylose/g dry cell weight/h), which was 2.34 times higher than that for the parent strain YY2KL (0.99 g/gDCW/h). The ethanol yield was also enhanced 1.83 times by this novel method. Optimal ratio and expression levels of xylose-metabolizing enzymes are important for efficient conversion of xylose to ethanol. This study provides a novel method that allows rapid and effective selection of ratio-optimized xylose-utilizing yeast strains. This method may be applicable to other multienzyme systems in yeast.
Collapse
Affiliation(s)
- Tien-Yang Ma
- Cellulosic Ethanol Program, Institute of Nuclear Energy Research, 32546, Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
29
|
Vinuselvi P, Kim MK, Lee SK, Ghim CM. Rewiring carbon catabolite repression for microbial cell factory. BMB Rep 2012; 45:59-70. [PMID: 22360882 DOI: 10.5483/bmbrep.2012.45.2.59] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbon catabolite repression (CCR) is a key regulatory system found in most microorganisms that ensures preferential utilization of energy-efficient carbon sources. CCR helps microorganisms obtain a proper balance between their metabolic capacity and the maximum sugar uptake capability. It also constrains the deregulated utilization of a preferred cognate substrate, enabling microorganisms to survive and dominate in natural environments. On the other side of the same coin lies the tenacious bottleneck in microbial production of bioproducts that employs a combination of carbon sources in varied proportion, such as lignocellulose-derived sugar mixtures. Preferential sugar uptake combined with the transcriptional and/or enzymatic exclusion of less preferred sugars turns out one of the major barriers in increasing the yield and productivity of fermentation process. Accumulation of the unused substrate also complicates the downstream processes used to extract the desired product. To overcome this difficulty and to develop tailor-made strains for specific metabolic engineering goals, quantitative and systemic understanding of the molecular interaction map behind CCR is a prerequisite. Here we comparatively review the universal and strain-specific features of CCR circuitry and discuss the recent efforts in developing synthetic cell factories devoid of CCR particularly for lignocellulose- based biorefinery.
Collapse
Affiliation(s)
- Parisutham Vinuselvi
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | | | | | | |
Collapse
|
30
|
Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WHM, Klaassen P, Paddon CJ, Platt D, Kötter P, van Ham RC, Reinders MJT, Pronk JT, de Ridder D, Daran JM. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 2012; 11:36. [PMID: 22448915 PMCID: PMC3364882 DOI: 10.1186/1475-2859-11-36] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/26/2012] [Indexed: 11/26/2022] Open
Abstract
Saccharomyces cerevisiae CEN.PK 113-7D is widely used for metabolic engineering and systems biology research in industry and academia. We sequenced, assembled, annotated and analyzed its genome. Single-nucleotide variations (SNV), insertions/deletions (indels) and differences in genome organization compared to the reference strain S. cerevisiae S288C were analyzed. In addition to a few large deletions and duplications, nearly 3000 indels were identified in the CEN.PK113-7D genome relative to S288C. These differences were overrepresented in genes whose functions are related to transcriptional regulation and chromatin remodelling. Some of these variations were caused by unstable tandem repeats, suggesting an innate evolvability of the corresponding genes. Besides a previously characterized mutation in adenylate cyclase, the CEN.PK113-7D genome sequence revealed a significant enrichment of non-synonymous mutations in genes encoding for components of the cAMP signalling pathway. Some phenotypic characteristics of the CEN.PK113-7D strains were explained by the presence of additional specific metabolic genes relative to S288C. In particular, the presence of the BIO1 and BIO6 genes correlated with a biotin prototrophy of CEN.PK113-7D. Furthermore, the copy number, chromosomal location and sequences of the MAL loci were resolved. The assembled sequence reveals that CEN.PK113-7D has a mosaic genome that combines characteristics of laboratory strains and wild-industrial strains.
Collapse
Affiliation(s)
- Jurgen F Nijkamp
- The Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Genetic engineering has been successfully applied to Saccharomyces cerevisiae laboratory strains for different purposes: extension of substrate range, improvement of productivity and yield, elimination of by-products, improvement of process performance and cellular properties, and extension of product range. The potential of genetically engineered yeasts for the massive production of biofuels as bioethanol and other nonfuel products from renewable resources as lignocellulosic biomass hydrolysates has been recognized. For such applications, robust industrial strains of S. cerevisiae have to be used. Here, some relevant genetic and genomic characteristics of industrial strains are discussed in relation to the problematic of the genetic engineering of such strains. General molecular tools applicable to the manipulation of S. cerevisiae industrial strains are presented and examples of genetically engineered industrial strains developed for the production of bioethanol from lignocellulosic biomass are given.
Collapse
Affiliation(s)
- Sylvie Le Borgne
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico.
| |
Collapse
|
32
|
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol 2011; 92:985-96. [DOI: 10.1007/s00253-011-3478-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 06/29/2011] [Accepted: 07/13/2011] [Indexed: 01/07/2023]
|
33
|
Pival SL, Birner-Gruenberger R, Krump C, Nidetzky B. D-Xylulose kinase from Saccharomyces cerevisiae: isolation and characterization of the highly unstable enzyme, recombinantly produced in Escherichia coli. Protein Expr Purif 2011; 79:223-30. [PMID: 21664974 PMCID: PMC3158326 DOI: 10.1016/j.pep.2011.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/03/2011] [Accepted: 05/29/2011] [Indexed: 10/26/2022]
Abstract
The Saccharomyces cerevisiae gene encoding xylulose kinase (XKS1) was over-expressed to an abundance of ≥ 10% intracellular protein in Escherichia coli. Instability of XKS1, not pointed out in previous reports of the enzyme, prevented isolation of active enzyme in native or "tagged" form under a wide range of purification conditions. A fusion protein haboring C-terminal Strep-tag II (XKS1-Strep) displayed activity (∼20 U/mg) as isolated. However, the half-life time of purified XKS1-Strep was only ∼1.5h at 4°C and could not be enhanced substantially by an assortment of extrinsic stabilizers (osmolytes, protein, substrates). Peptide mass mapping and N-terminal sequencing showed that the recombinant protein was structurally intact, ruling out proteolytic processing and chemical modifications as possible factors to compromise the stability of the enzyme as isolated. Partial functional complementation of a largely inactive XKS1 preparation by the high-molecular mass fraction (≥ 10kDa) of cell extract prepared from an E. coli BL21 (DE3) expression host suggests a possible role for heterotropic protein-XKS1 interactions in conferring activity/stability to the enzyme. Michaelis-Menten constants of XKS1-Strep were determined: d-xylulose (210 ± 40 μM) and Mg(2+)-ATP (1.70 ± 0.10 mM).
Collapse
Affiliation(s)
- Simone L Pival
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
34
|
van Zyl WH, Chimphango AFA, den Haan R, Görgens JF, Chirwa PWC. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa. Interface Focus 2011; 1:196-211. [PMID: 22482027 PMCID: PMC3262263 DOI: 10.1098/rsfs.2010.0017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/12/2011] [Indexed: 11/12/2022] Open
Abstract
The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation.
Collapse
Affiliation(s)
- W. H. van Zyl
- Department of Microbiology, University of Stellenbosch, De Beer Street, Stellenbosch 7600, South Africa
| | - A. F. A. Chimphango
- Department of Process Engineering, University of Stellenbosch, De Beer Street, Stellenbosch 7600, South Africa
| | - R. den Haan
- Department of Microbiology, University of Stellenbosch, De Beer Street, Stellenbosch 7600, South Africa
| | - J. F. Görgens
- Department of Process Engineering, University of Stellenbosch, De Beer Street, Stellenbosch 7600, South Africa
| | - P. W. C. Chirwa
- Forest Science Postgraduate Programme, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
35
|
Almeida JRM, Runquist D, Sànchez i Nogué V, Lidén G, Gorwa-Grauslund MF. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 2011; 6:286-99. [PMID: 21305697 DOI: 10.1002/biot.201000301] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 11/09/2022]
Abstract
Conversion of agricultural residues, energy crops and forest residues into bioethanol requires hydrolysis of the biomass and fermentation of the released sugars. During the hydrolysis of the hemicellulose fraction, substantial amounts of pentose sugars, in particular xylose, are released. Fermentation of these pentose sugars to ethanol by engineered Saccharomyces cerevisiae under industrial process conditions is the subject of this review. First, fermentation challenges originating from the main steps of ethanol production from lignocellulosic feedstocks are discussed, followed by genetic modifications that have been implemented in S. cerevisiae to obtain xylose and arabinose fermenting capacity per se. Finally, the fermentation of a real lignocellulosic medium is discussed in terms of inhibitory effects of furaldehydes, phenolics and weak acids and the presence of contaminating microbiota.
Collapse
Affiliation(s)
- João R M Almeida
- Applied Microbiology, Lund University, Lund, Sweden; EMBRAPA Agroenergy, PqEB, Brasilia, 70770-901 DF, Brazil
| | | | | | | | | |
Collapse
|
36
|
Madhavan A, Srivastava A, Kondo A, Bisaria VS. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit Rev Biotechnol 2011; 32:22-48. [PMID: 21204601 DOI: 10.3109/07388551.2010.539551] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.
Collapse
Affiliation(s)
- Anjali Madhavan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | | | | | | |
Collapse
|
37
|
Galafassi S, Merico A, Pizza F, Hellborg L, Molinari F, Piškur J, Compagno C. Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions. J Ind Microbiol Biotechnol 2010; 38:1079-88. [PMID: 20936422 DOI: 10.1007/s10295-010-0885-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 09/23/2010] [Indexed: 11/25/2022]
Abstract
Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able to utilise a broad range of carbon sources and generate ethanol at high yield and productivity. D. bruxellensis has recently been reported to contaminate commercial ethanol processes, where it competes with Saccharomyces cerevisiae [4, 26]. In this work Brettanomyces/Dekkera yeasts were studied to explore their potential to produce ethanol from renewable sources under conditions suitable for industrial processes, such as oxygen-limited and low-pH conditions. Over 50 strains were analysed for their ability to utilise a variety of carbon sources, and some strains grew on cellobiose and pentoses. Two strains of D. bruxellensis were able to produce ethanol at high yield (0.44 g g(-1) glucose), comparable to those reported for S. cerevisiae. B. naardenensis was shown to be able to produce ethanol from xylose. To obtain ethanol from synthetic lignocellulosic hydrolysates we developed a two-step fermentation strategy: the first step under aerobic conditions for fast production of biomass from mixtures of hexoses and pentoses, followed by a second step under oxygen limitation to promote ethanol production. Under these conditions we obtained biomass and ethanol production on synthetic lignocellulosic hydrolysates, with ethanol yields ranging from 0.2 to 0.3 g g(-1) sugar. Hexoses, xylose and arabinose were consumed at the end of the process, resulting in 13 g l(-1) of ethanol, even in the presence of furfural. Our studies showed that Brettanomyces/Dekkera yeasts have clear potential for further development for industrial processes aimed at production of ethanol from renewable sources.
Collapse
Affiliation(s)
- Silvia Galafassi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Du J, Li S, Zhao H. Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. MOLECULAR BIOSYSTEMS 2010; 6:2150-6. [PMID: 20714641 DOI: 10.1039/c0mb00007h] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Saccharomyces cerevisiae is considered one of the most promising organisms for ethanol production from lignocellulosic feedstock. Unfortunately, pentose sugars, which comprise up to 30% of lignocellulose, cannot be utilized by wild type S. cerevisiae. Heterologous pathways were introduced into S. cerevisiae to enable utilization of d-xylose, the most abundant pentose sugar. However, the resulting recombinant S. cerevisiae strains exhibited a slow growth rate and poor sugar utilization efficiency when grown on d-xylose as the sole carbon source. d-xylose uptake is the first step of d-xylose utilization. d-xylose can only enter yeast cells through hexose transporters, which have two orders of magnitude lower affinity towards d-xylose compared to hexoses. It was also shown that inefficient pentose uptake is the limiting step in some d-xylose metabolizing yeast strains. Here we report the cloning and characterization of two novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. These two transporters were identified from a total of 18 putative pentose transporters. They were functionally expressed and properly localized in S. cerevisiae as indicated by HPLC analysis and fluorescence confocal microscopy, respectively. Kinetic parameters of the d-xylose-specific transporters were determined using a (14)C-labeled sugar uptake assay. Use of pentose-specific transporters should improve d-xylose consumption and ethanol production in fast d-xylose assimilating strains, thereby lowering the cost of lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Jing Du
- Energy Biosciences Institute, Institute for Genomic Biology, Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
39
|
Unrean P, Srienc F. Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains. J Biotechnol 2010; 150:215-23. [PMID: 20699108 DOI: 10.1016/j.jbiotec.2010.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/29/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
We have developed highly efficient ethanologenic Escherichia coli strains that selectively consume pentoses and/or hexoses. Mixed cultures of these strains can be used to selectively adjust the sugar utilization kinetics in ethanol fermentations. Based on the kinetics of sugar utilization, we have designed and implemented an immobilized cell system for the optimized continuous conversion of sugars into ethanol. The results confirm that immobilized mixed cultures support a simultaneous conversion of hexoses and pentoses into ethanol at high yield and at a faster rate than immobilized homogenous cells. Continuous ethanol production has been maintained for several weeks at high productivity with near complete sugar utilization. The control of sugar utilization using immobilized mixed cultures can be adapted to any composition of hexoses and pentoses by adjusting the strain distribution of immobilized cells. The approach, therefore, holds promise for ethanol fermentation from lignocellulosic hydrolysates where the feedstock varies in sugar composition.
Collapse
Affiliation(s)
- Pornkamol Unrean
- Department of Chemical Engineering and Materials Science, and BioTechnology Institute, University of Minnesota, 240 Gortner Laboratory, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | | |
Collapse
|
40
|
Garcia Sanchez R, Karhumaa K, Fonseca C, Sànchez Nogué V, Almeida JRM, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. BIOTECHNOLOGY FOR BIOFUELS 2010; 3:13. [PMID: 20550651 PMCID: PMC2908073 DOI: 10.1186/1754-6834-3-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/15/2010] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced. RESULTS Evolutionary engineering was used to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate of xylose and arabinose under aerobic and anaerobic conditions. Improved anaerobic ethanol production was achieved at the expense of xylitol and glycerol but arabinose was almost stoichiometrically converted to arabitol. Further characterization of the strain indicated that the selection pressure during prolonged continuous culture in xylose and arabinose medium resulted in the improved transport of xylose and arabinose as well as increased levels of the enzymes from the introduced fungal xylose pathway. No mutation was found in any of the genes from the pentose converting pathways. CONCLUSION To the best of our knowledge, this is the first report that characterizes the molecular mechanisms for improved mixed-pentose utilization obtained by evolutionary engineering of a recombinant S. cerevisiae strain. Increased transport of pentoses and increased activities of xylose converting enzymes contributed to the improved phenotype.
Collapse
Affiliation(s)
- Rosa Garcia Sanchez
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Kaisa Karhumaa
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Soltofts plads, 2800 Kgs Lyngby, Denmark
| | - César Fonseca
- Centro de Recursos Microbiológicos (CREM), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038, Lisboa, Portugal
| | - Violeta Sànchez Nogué
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - João RM Almeida
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
- Carlsberg Research Center, Gamle Carlsberg vej 10, DK-2500 Valby, Denmark
| | - Christer U Larsson
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Oskar Bengtsson
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
- Department of Chemistry, Biotechnology and Food Science Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - Maurizio Bettiga
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Bärbel Hahn-Hägerdal
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | | |
Collapse
|
41
|
la Grange DC, den Haan R, van Zyl WH. Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 2010; 87:1195-208. [DOI: 10.1007/s00253-010-2660-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/02/2010] [Accepted: 05/02/2010] [Indexed: 10/19/2022]
|
42
|
Effect of controlled oxygen limitation on Candida shehatae physiology for ethanol production from xylose and glucose. J Ind Microbiol Biotechnol 2010; 37:437-45. [DOI: 10.1007/s10295-009-0688-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
|
43
|
Porro D, Branduardi P. Yeast cell factory: fishing for the best one or engineering it? Microb Cell Fact 2009; 8:51. [PMID: 19822015 PMCID: PMC2768682 DOI: 10.1186/1475-2859-8-51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 10/12/2009] [Indexed: 11/25/2022] Open
|
44
|
Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 2009; 5:578-95. [PMID: 19774110 PMCID: PMC2748470 DOI: 10.7150/ijbs.5.578] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/02/2009] [Indexed: 11/28/2022] Open
Abstract
The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and beta-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.
Collapse
Affiliation(s)
- Mehdi Dashtban
- 1. Biorefining Research Initiative, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
- 2. Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
| | - Heidi Schraft
- 2. Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
| | - Wensheng Qin
- 1. Biorefining Research Initiative, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
- 2. Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
| |
Collapse
|
45
|
N-acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes. Appl Environ Microbiol 2009; 75:5840-5. [PMID: 19648376 DOI: 10.1128/aem.00053-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthesis of chitin de novo from glucose involves a linear pathway in Saccharomyces cerevisiae. Several of the pathway genes, including GNA1, are essential. Genes for chitin catabolism are absent in S. cerevisiae. Therefore, S. cerevisiae cannot use chitin as a carbon source. Chitin is the second most abundant polysaccharide after cellulose and consists of N-acetylglucosamine (GlcNAc) moieties. Here, we have generated S. cerevisiae strains that are able to use GlcNAc as a carbon source by expressing four Candida albicans genes (NAG3 or its NAG4 paralog, NAG5, NAG2, and NAG1) encoding a GlcNAc permease, a GlcNAc kinase, a GlcNAc-6-phosphate deacetylase, and a glucosamine-6-phosphate deaminase, respectively. Expression of NAG3 and NAG5 or NAG4 and NAG5 in S. cerevisiae resulted in strains in which the otherwise-essential ScGNA1 could be deleted. These strains required the presence of GlcNAc in the medium, indicating that uptake of GlcNAc and its phosphorylation were achieved. Expression of all four NAG genes produced strains that could use GlcNAc as the sole carbon source for growth. Utilization of a GlcNAc catabolic pathway for bioethanol production using these strains was tested. However, fermentation was slow and yielded only minor amounts of ethanol (approximately 3.0 g/liter), suggesting that fructose-6-phosphate produced from GlcNAc under these conditions is largely consumed to maintain cellular functions and promote growth. Our results present the first step toward tapping a novel, renewable carbon source for biofuel production.
Collapse
|
46
|
Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 2009; 8:40. [PMID: 19630951 PMCID: PMC2720912 DOI: 10.1186/1475-2859-8-40] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 07/24/2009] [Indexed: 12/03/2022] Open
Abstract
Background Sustainable and economically viable manufacturing of bioethanol from lignocellulose raw material is dependent on the availability of a robust ethanol producing microorganism, able to ferment all sugars present in the feedstock, including the pentose sugars L-arabinose and D-xylose. Saccharomyces cerevisiae is a robust ethanol producer, but needs to be engineered to achieve pentose sugar fermentation. Results A new recombinant S. cerevisiae strain expressing an improved fungal pathway for the utilization of L-arabinose and D-xylose was constructed and characterized. The new strain grew aerobically on L-arabinose and D-xylose as sole carbon sources. The activities of the enzymes constituting the pentose utilization pathway(s) and product formation during anaerobic mixed sugar fermentation were characterized. Conclusion Pentose fermenting recombinant S. cerevisiae strains were obtained by the expression of a pentose utilization pathway of entirely fungal origin. During anaerobic fermentation the strain produced biomass and ethanol. L-arabitol yield was 0.48 g per gram of consumed pentose sugar, which is considerably less than previously reported for D-xylose reductase expressing strains co-fermenting L-arabinose and D-xylose, and the xylitol yield was 0.07 g per gram of consumed pentose sugar.
Collapse
Affiliation(s)
- Maurizio Bettiga
- Department of Applied Microbiology, Lund University, PO BOX 124, SE-22100 Lund, Sweden.
| | | | | | | |
Collapse
|
47
|
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009; 84:37-53. [DOI: 10.1007/s00253-009-2101-x] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/18/2009] [Accepted: 06/18/2009] [Indexed: 12/20/2022]
|
48
|
Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 2009; 85:105-15. [DOI: 10.1007/s00253-009-2065-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 11/28/2022]
|
49
|
Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F. New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 2009; 20:372-80. [DOI: 10.1016/j.copbio.2009.05.009] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 11/29/2022]
|
50
|
Yomano LP, York SW, Shanmugam KT, Ingram LO. Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol Lett 2009; 31:1389-98. [PMID: 19458924 PMCID: PMC2721133 DOI: 10.1007/s10529-009-0011-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/27/2009] [Accepted: 04/30/2009] [Indexed: 11/28/2022]
Abstract
The use of lignocellulose as a source of sugars for bioproducts requires the development of biocatalysts that maximize product yields by fermenting mixtures of hexose and pentose sugars to completion. In this study, we implicate mgsA encoding methylglyoxal synthase (and methylglyoxal) in the modulation of sugar metabolism. Deletion of this gene (strain LY168) resulted in the co-metabolism of glucose and xylose, and accelerated the metabolism of a 5-sugar mixture (mannose, glucose, arabinose, xylose and galactose) to ethanol.
Collapse
Affiliation(s)
- L P Yomano
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|