1
|
Ghosh M, Heo Y, Pulicherla KK, Ha MW, Do K, Son YO. Cold-active enzymes from deep marine psychrophiles: harnessing their potential in enhanced food production and sustainability. Crit Rev Biotechnol 2025:1-25. [PMID: 39757008 DOI: 10.1080/07388551.2024.2435974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 01/07/2025]
Abstract
Exploring the untapped potential of deep-sea microorganisms, particularly their cold-active enzymes, or psychrozymes, offers exciting possibilities for revolutionizing various aspects of the food processing industry. This review focuses on these enzymes, derived from the largely unexplored depths of the deep ocean, where microorganisms have developed unique adaptations to extreme conditions. Psychrozymes, as bioactive molecules, hold significant promise for food industry applications. However, despite their potential, the understanding and industrial utilization of psychrozymes remains limited. This review provides an in-depth analysis of how psychrozymes can: improve processing efficiency, enhance sensory qualities, extend product shelf life, and reduce energy consumption across the food production chain. We explore the cryodefense strategies and cold-adaptation mechanisms that support these enzymes, shedding light on the most extensively studied psychrozymes and assessing their journey from theoretical applications to practical use in food production. The key properties, such as stability, substrate specificity, and catalytic efficiency in cold environments, are also discussed. Although psychrozymes show considerable promise, their large-scale application in the food industry remains largely unexplored. This review emphasizes the need for further research to unlock the full potential of psychrozymes, encouraging their broader integration into the food sector to contribute to more sustainable food production processes.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Krishna Kanth Pulicherla
- Department of Science and Technology, Ministry of Science and Technology, Govt. of India, Technology Bhavan, New Delhi, India
| | - Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju-si, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Kyoungtag Do
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, Republic of Korea
- Practical Translational Research Center, Jeju National University, Jeju-si, Republic of Korea
| |
Collapse
|
2
|
Xu H, Xu D, Liu Y. Molecular Biology Applications of Psychrophilic Enzymes: Adaptations, Advantages, Expression, and Prospective. Appl Biochem Biotechnol 2024; 196:5765-5789. [PMID: 38183603 DOI: 10.1007/s12010-023-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/08/2024]
Abstract
Psychrophilic enzymes are primarily produced by microorganisms from extremely low-temperature environments which are known as psychrophiles. Their high efficiency at low temperatures and easy heat inactivation property have attracted extensive attention from various food and industrial bioprocesses. However, the application of these enzymes in molecular biology is still limited. In a previous review, the applications of psychrophilic enzymes in industries such as the detergent additives, the food additives, the bioremediation, and the pharmaceutical medicine, and cosmetics have been discussed. In this review, we discuss the main cold adaptation characteristics of psychrophiles and psychrophilic enzymes, as well as the relevant information on different psychrophilic enzymes in molecular biology. We summarize the mining and screening methods of psychrophilic enzymes. We finally recap the expression of psychrophilic enzymes. We aim to provide a reference process for the exploration and expression of new generation of psychrophilic enzymes.
Collapse
Affiliation(s)
- Hu Xu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dawei Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yongqin Liu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Lee MJ, Kim B, Kim K, Lee JH, Do H. Heterologous protein production using Psychrobacter sp. PAMC 21119 analyzed with a green fluorescent protein-based reporter system. Protein Expr Purif 2023; 212:106352. [PMID: 37595854 DOI: 10.1016/j.pep.2023.106352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Insolubility and low expression are typical bottlenecks in the production of proteins for studying their function and structure using X-ray crystallography or nuclear magnetic resonance spectroscopy. Cold-active enzymes from polar microorganisms have unique structural features that render them unstable and thermolabile, and are responsible for decreased protein yield in heterologous expression systems. To address these challenges, we developed a heterologous protein expression system using a psychrophilic organism, Psychrobacter sp. PAMC 21119, as a protein expression host with its own promoter. We screened 11 promoters and evaluated their strength using quantitative real-time polymerase chain reaction and a reporter system harboring the SfGFP gene. The highest expression was achieved using promoters RH96_RS13655 (P21119_20930) and RH96_RS15090 (P21119_23410), regardless of the temperature used. The p20930 strain exhibited a maximum expression level 19.6-fold higher than that of its control at 20 °C and produced approximately 0.5 mg of protein per gram of dry cell weight. To our knowledge, this is the first report of a low-temperature recombinant protein expression system developed using Psychrobacter sp. that can be used to express various difficult-to-express and cold-active proteins.
Collapse
Affiliation(s)
- Min Ju Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Bomi Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Kitae Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| |
Collapse
|
4
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Garcia-Fruitós E. Recombinant Protein Production and Purification of Insoluble Proteins. Methods Mol Biol 2022; 2406:1-31. [PMID: 35089548 DOI: 10.1007/978-1-0716-1859-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The efficient production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and its growth conditions to minimize the formation of insoluble protein aggregates should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
5
|
Fondi M, Gonzi S, Dziurzynski M, Turano P, Ghini V, Calvanese M, Colarusso A, Lauro C, Parrilli E, Tutino ML. Modelling hCDKL5 Heterologous Expression in Bacteria. Metabolites 2021; 11:metabo11080491. [PMID: 34436432 PMCID: PMC8401935 DOI: 10.3390/metabo11080491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
hCDKL5 refers to the human cyclin-dependent kinase like 5 that is primarily expressed in the brain. Mutations in its coding sequence are often causative of hCDKL5 deficiency disorder, a devastating neurodevelopmental disorder currently lacking a cure. The large-scale recombinant production of hCDKL5 is desirable to boost the translation of preclinical therapeutic approaches into the clinic. However, this is hampered by the intrinsically disordered nature of almost two-thirds of the hCDKL5 sequence, making this region more susceptible to proteolytic attack, and the observed toxicity when the enzyme is accumulated in the cytoplasm of eukaryotic host cells. The bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) is the only prokaryotic host in which the full-length production of hCDKL5 has been demonstrated. To date, a system-level understanding of the metabolic burden imposed by hCDKL5 production is missing, although it would be crucial for upscaling of the production process. Here, we combined experimental data on protein production and nutrients assimilation with metabolic modelling to infer the global consequences of hCDKL5 production in PhTAC125 and to identify potential overproduction targets. Our analyses showed a remarkable accuracy of the model in simulating the recombinant strain phenotype and also identified priority targets for optimised protein production.
Collapse
Affiliation(s)
- Marco Fondi
- Department of Biology, University of Florence, Sesto F.no Florence, 50019 Florence, Italy;
- Centro Studi Dinamiche Complesse (CSDC), University of Florence, Sesto F.no Florence, 50019 Florence, Italy
- Correspondence:
| | - Stefano Gonzi
- Department of Biology, University of Florence, Sesto F.no Florence, 50019 Florence, Italy;
| | - Mikolaj Dziurzynski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, via Sacconi 6, Sesto Fiorentino, 50019 Fiorentino, Italy; (P.T.); (V.G.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Fiorentino, Italy
| | - Veronica Ghini
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, via Sacconi 6, Sesto Fiorentino, 50019 Fiorentino, Italy; (P.T.); (V.G.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Fiorentino, Italy
| | - Marzia Calvanese
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.C.); (A.C.); (C.L.); (E.P.); (M.L.T.)
| | - Andrea Colarusso
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.C.); (A.C.); (C.L.); (E.P.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi—I.N.B.B., Viale Medaglie d’Oro, 305-00136 Roma, Italy
| | - Concetta Lauro
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.C.); (A.C.); (C.L.); (E.P.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi—I.N.B.B., Viale Medaglie d’Oro, 305-00136 Roma, Italy
| | - Ermenegilda Parrilli
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.C.); (A.C.); (C.L.); (E.P.); (M.L.T.)
| | - Maria Luisa Tutino
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.C.); (A.C.); (C.L.); (E.P.); (M.L.T.)
| |
Collapse
|
6
|
Söderberg JJ, Grgic M, Hjerde E, Haugen P. Aliivibrio wodanis as a production host: development of genetic tools for expression of cold-active enzymes. Microb Cell Fact 2019; 18:197. [PMID: 31711487 PMCID: PMC6844050 DOI: 10.1186/s12934-019-1247-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/31/2019] [Indexed: 01/16/2023] Open
Abstract
Background Heterologous production of cold-adapted proteins currently represents one of the greatest bottlenecks in the ongoing bioprospecting efforts to find new enzymes from low-temperature environments, such as, the polar oceans that represent essentially untapped resources in this respect. In mesophilic expression hosts such as Escherichia coli, cold-adapted enzymes often form inactive aggregates. Therefore it is necessary to develop new low-temperature expression systems, including identification of new host organisms and complementary genetic tools. Psychrophilic bacteria, including Pseudoalteromonas haloplanktis, Shewanella and Rhodococcus erythropolis have all been explored as candidates for such applications. However to date none of these have found widespread use as efficient expression systems, or are commercially available. In the present work we explored the use of the sub-Arctic bacterium Aliivibrio wodanis as a potential host for heterologous expression of cold-active enzymes. Results We tested 12 bacterial strains, as well as available vectors, promoters and reporter systems. We used RNA-sequencing to determine the most highly expressed genes and their intrinsic promoters in A. wodanis. In addition we examined a novel 5′-fusion to stimulate protein production and solubility. Finally we tested production of a set of “difficult-to-produce” enzymes originating from various bacteria and one Archaea. Our results show that cold-adapted enzymes can be produced in soluble and active form, even in cases when protein production failed in E. coli due to the formation of inclusion bodies. Moreover, we identified a 60-bp/20-aa fragment from the 5′-end of the AW0309160_00174 gene that stimulates expression of Green Fluorescent Protein and improves production of cold-active enzymes when used as a 5′-fusion. A 25-aa peptide from the same protein enhanced secretion of a 25-aa-sfGFP fusion. Conclusions Our results indicate the use of A. wodanis and associated genetic tools for low-temperature protein production and indicate that A. wodanis represents an interesting platform for further development of a protein production system that can promote further cold-enzyme discoveries.
Collapse
Affiliation(s)
- Jenny Johansson Söderberg
- Department of Chemistry and Center for Bioinformatics (SfB) and The Norwegian Structural Biology Centre (NorStruct), Faculty of Science and Technology, UiT -The Arctic University of Norway, 9037, Tromsø, Norway
| | - Miriam Grgic
- Department of Chemistry and Center for Bioinformatics (SfB) and The Norwegian Structural Biology Centre (NorStruct), Faculty of Science and Technology, UiT -The Arctic University of Norway, 9037, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry and Center for Bioinformatics (SfB) and The Norwegian Structural Biology Centre (NorStruct), Faculty of Science and Technology, UiT -The Arctic University of Norway, 9037, Tromsø, Norway
| | - Peik Haugen
- Department of Chemistry and Center for Bioinformatics (SfB) and The Norwegian Structural Biology Centre (NorStruct), Faculty of Science and Technology, UiT -The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
7
|
New insights on Pseudoalteromonas haloplanktis TAC125 genome organization and benchmarks of genome assembly applications using next and third generation sequencing technologies. Sci Rep 2019; 9:16444. [PMID: 31712730 PMCID: PMC6848147 DOI: 10.1038/s41598-019-52832-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudoalteromonas haloplanktis TAC125 is among the most commonly studied bacteria adapted to cold environments. Aside from its ecological relevance, P. haloplanktis has a potential use for biotechnological applications. Due to its importance, we decided to take advantage of next generation sequencing (Illumina) and third generation sequencing (PacBio and Oxford Nanopore) technologies to resequence its genome. The availability of a reference genome, obtained using whole genome shotgun sequencing, allowed us to study and compare the results obtained by the different technologies and draw useful conclusions for future de novo genome assembly projects. We found that assembly polishing using Illumina reads is needed to achieve a consensus accuracy over 99.9% when using Oxford Nanopore sequencing, but not in PacBio sequencing. However, the dependency of consensus accuracy on coverage is lower in Oxford Nanopore than in PacBio, suggesting that a cost-effective solution might be the use of low coverage Oxford Nanopore sequencing together with Illumina reads. Despite the differences in consensus accuracy, all sequencing technologies revealed the presence of a large plasmid, pMEGA, which was undiscovered until now. Among the most interesting features of pMEGA is the presence of a putative error-prone polymerase regulated through the SOS response. Aside from the characterization of the newly discovered plasmid, we confirmed the sequence of the small plasmid pMtBL and uncovered the presence of a potential partitioning system. Crucially, this study shows that the combination of next and third generation sequencing technologies give us an unprecedented opportunity to characterize our bacterial model organisms at a very detailed level.
Collapse
|
8
|
Parrilli E, Tedesco P, Fondi M, Tutino ML, Lo Giudice A, de Pascale D, Fani R. The art of adapting to extreme environments: The model system Pseudoalteromonas. Phys Life Rev 2019; 36:137-161. [PMID: 31072789 DOI: 10.1016/j.plrev.2019.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/10/2023]
Abstract
Extremophilic microbes have adapted to thrive in ecological niches characterized by harsh chemical/physical conditions such as, for example, very low/high temperature. Living organisms inhabiting these environments have developed peculiar mechanisms to cope with extreme conditions, in such a way that they mark the chemical-physical boundaries of life on Earth. Studying such mechanisms is stimulating from a basic research viewpoint and because of biotechnological applications. Pseudoalteromonas species are a group of marine gamma-proteobacteria frequently isolated from a range of extreme environments, including cold habitats and deep-sea sediments. Since deep-sea floors constitute almost 60% of the Earth's surface and cold temperatures represent the most common of the extreme conditions, the genus Pseudoalteromonas can be considered one of the most important model systems for studying microbial adaptation. Particularly, among all Pseudoalteromonas representatives, P. haloplanktis TAC125 has recently gained a central role. This bacterium was isolated from seawater sampled along the Antarctic ice-shell and is considered one of the model organisms of cold-adapted bacteria. It is capable of thriving in a wide temperature range and it has been suggested as an alternative host for the soluble overproduction of heterologous proteins, given its ability to rapidly multiply at low temperatures. In this review, we will present an overview of the recent advances in the characterization of Pseudoalteromonas strains and, more importantly, in the understanding of their evolutionary and chemical-physical strategies to face such a broad array of extreme conditions. A particular attention will be given to systems-biology approaches in the study of the above-mentioned topics, as genome-scale datasets (e.g. genomics, proteomics, phenomics) are beginning to expand for this group of organisms. In this context, a specific section dedicated to P. haloplanktis TAC125 will be presented to address the recent efforts in the elucidation of the metabolic rewiring of the organisms in its natural environment (Antarctica).
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Pietro Tedesco
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France
| | - Marco Fondi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, ViaMadonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy
| | | | - Donatella de Pascale
- Institute of Protein Biochemistry, CNR, Napoli, Italy, Stazione Zoologica "Anthon Dorn", Villa Comunale, I-80121 Napoli, Italy
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, ViaMadonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
9
|
Buijs Y, Bech PK, Vazquez-Albacete D, Bentzon-Tilia M, Sonnenschein EC, Gram L, Zhang SD. Marine Proteobacteria as a source of natural products: advances in molecular tools and strategies. Nat Prod Rep 2019; 36:1333-1350. [DOI: 10.1039/c9np00020h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the recent advances in molecular tools and strategies for studies and use of natural products from marine Proteobacteria.
Collapse
Affiliation(s)
- Yannick Buijs
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Pernille Kjersgaard Bech
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Dario Vazquez-Albacete
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| |
Collapse
|
10
|
Nikolaivits E, Dimarogona M, Fokialakis N, Topakas E. Marine-Derived Biocatalysts: Importance, Accessing, and Application in Aromatic Pollutant Bioremediation. Front Microbiol 2017; 8:265. [PMID: 28265269 PMCID: PMC5316534 DOI: 10.3389/fmicb.2017.00265] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of the present review is to highlight the potential use of marine biocatalysts (whole cells or enzymes) as an alternative bioprocess for the degradation of aromatic pollutants. Firstly, information about the characteristics of the still underexplored marine environment and the available scientific tools used to access novel marine-derived biocatalysts is provided. Marine-derived enzymes, such as dioxygenases and dehalogenases, and the involved catalytic mechanisms for the degradation of aromatic and halogenated compounds, are presented, with the purpose of underpinning their potential use in bioremediation. Emphasis is given on persistent organic pollutants (POPs) that are organic compounds with significant impact on health and environment due to their resistance in degradation. POPs bioaccumulate mainly in the fatty tissue of living organisms, therefore current efforts are mostly focused on the restriction of their use and production, since their removal is still unclear. A brief description of the guidelines and criteria that render a pollutant POP is given, as well as their potential biodegradation by marine microorganisms by surveying recent developments in this rather unexplored field.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens Athens, Greece
| | - Maria Dimarogona
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens Athens, Greece
| | - Nikolas Fokialakis
- Division of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, University of Athens Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens Athens, Greece
| |
Collapse
|
11
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
12
|
Tools to cope with difficult-to-express proteins. Appl Microbiol Biotechnol 2016; 100:4347-55. [DOI: 10.1007/s00253-016-7514-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
|
13
|
Bjerga GEK, Lale R, Williamson AK. Engineering low-temperature expression systems for heterologous production of cold-adapted enzymes. Bioengineered 2015; 7:33-8. [PMID: 26710170 PMCID: PMC4878266 DOI: 10.1080/21655979.2015.1128589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Production of psychrophilic enzymes in the commonly used mesophilic expression systems is hampered by low intrinsic stability of the recombinant enzymes at the optimal host growth temperatures. Unless strategies for low-temperature expression are advanced, research on psychrophilic enzymes may end up being biased toward those that can be stably produced in commonly used mesophilic host systems. Two main strategies are currently being explored for the development of low-temperature expression in bacterial hosts: (i) low-temperature adaption of existing mesophilic expression systems, and (ii) development of new psychrophilic hosts. These developments include genetic engineering of the expression cassettes to optimize the promoter/operator systems that regulate heterologous expression. In this addendum we present our efforts in the development of such low-temperature expression systems, and speculate about future advancements in the field and potential applications.
Collapse
Affiliation(s)
- Gro Elin Kjæreng Bjerga
- a University of Tromsø, Norstruct, Department of Chemistry, Faculty of Science and Technology , Tromsø , Norway
| | - Rahmi Lale
- b Norwegian University of Science and Technology , Department of Biotechnology , Trondheim , Norway
| | - Adele Kim Williamson
- a University of Tromsø, Norstruct, Department of Chemistry, Faculty of Science and Technology , Tromsø , Norway
| |
Collapse
|
14
|
Yu ZC, Tang BL, Zhao DL, Pang X, Qin QL, Zhou BC, Zhang XY, Chen XL, Zhang YZ. Development of a Cold-Adapted Pseudoalteromonas Expression System for the Pseudoalteromonas Proteins Intractable for the Escherichia coli System. PLoS One 2015; 10:e0137384. [PMID: 26333173 PMCID: PMC4557933 DOI: 10.1371/journal.pone.0137384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/16/2015] [Indexed: 12/01/2022] Open
Abstract
Although the Escherichia coli expression system is the most commonly used expression system, some proteins are still difficult to be expressed by this system, such as proteins with high thermolability and enzymes that cannot mature by autoprocessing. Therefore, it is necessary to develop alternative expression systems. In this study, a cold-adapted Pseudoalteromonas expression system was developed. A shuttle vector was constructed, and a conjugational transfer system between E. coli and psychrophilic strain Pseudoalteromonas sp. SM20429 was established. Based on the shuttle vector, three reporter vectors were constructed to compare the strength of the cloned promoters at low temperature. The promoter of xylanase gene from Pseudoalteromonas sp. BSi20429 was chosen due to its high activity at 10–15°C. An expression vector pEV containing the chosen promoter, multiple cloning sites and a His tag was constructed for protein expression and purification. With pEV as expression vector and SM20429 as the host, a cold-adapted protease, pseudoalterin, which cannot be maturely expressed in E. coli, was successfully expressed as an active extracellular enzyme when induced by 2% oat spelt xylan at 15°C for 48 h. Recombinant pseudoalterin purified from the culture by Ni affinity chromatography had identical N-terminal sequence, similar molecular mass and substrate specificity as the native pseudoalterin. In addition, another two cold-adapted enzymes were also successfully expressed by this system. Our results indicate that this cold-adapted Pseudoalteromonas expression system will provide an alternative choice for protein expression, especially for the Pseudoalteromonas proteins intractable for the E. coli system.
Collapse
Affiliation(s)
- Zi-Chao Yu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Bai-Lu Tang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Dian-Li Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xiuhua Pang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Bai-Cheng Zhou
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
- * E-mail:
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| |
Collapse
|
15
|
Unzueta U, Vázquez F, Accardi G, Mendoza R, Toledo-Rubio V, Giuliani M, Sannino F, Parrilli E, Abasolo I, Schwartz S, Tutino ML, Villaverde A, Corchero JL, Ferrer-Miralles N. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A. Appl Microbiol Biotechnol 2015; 99:5863-74. [DOI: 10.1007/s00253-014-6328-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 12/28/2022]
|
16
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Xu Z, García-Fruitós E. General introduction: recombinant protein production and purification of insoluble proteins. Methods Mol Biol 2015; 1258:1-24. [PMID: 25447856 DOI: 10.1007/978-1-4939-2205-5_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and the most appropriate growth conditions to minimize the formation of insoluble proteins should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Departament de Genètica i de Microbiologia, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
Vester JK, Glaring MA, Stougaard P. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 2014; 19:17-29. [PMID: 25399309 PMCID: PMC4272415 DOI: 10.1007/s00792-014-0704-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/28/2014] [Indexed: 11/28/2022]
Abstract
Only a small minority of microorganisms from an environmental sample can be cultured in the laboratory leaving the enormous bioprospecting potential of the uncultured diversity unexplored. This resource can be accessed by improved cultivation methods in which the natural environment is brought into the laboratory or through metagenomic approaches where culture-independent DNA sequence information can be combined with functional screening. The coupling of these two approaches circumvents the need for pure, cultured isolates and can be used to generate targeted information on communities enriched for specific activities or properties. Bioprospecting in extreme environments is often associated with additional challenges such as low biomass, slow cell growth, complex sample matrices, restricted access, and problematic in situ analyses. In addition, the choice of vector system and expression host may be limited as few hosts are available for expression of genes with extremophilic properties. This review summarizes the methods developed for improved cultivation as well as the metagenomic approaches for bioprospecting with focus on the challenges faced by bioprospecting in cold environments.
Collapse
Affiliation(s)
- Jan Kjølhede Vester
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark,
| | | | | |
Collapse
|
18
|
An exceptionally cold-adapted alpha-amylase from a metagenomic library of a cold and alkaline environment. Appl Microbiol Biotechnol 2014; 99:717-27. [PMID: 25038927 DOI: 10.1007/s00253-014-5931-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
A cold-active α-amylase, AmyI3C6, identified by a functional metagenomics approach was expressed in Escherichia coli and purified to homogeneity. Sequence analysis showed that the AmyI3C6 amylase was similar to α-amylases from the class Clostridia and revealed classical characteristics of cold-adapted enzymes, as did comparison of the kinetic parameters K m and k cat to a mesophilic α-amylase. AmyI3C6 was shown to be heat-labile. Temperature optimum was at 10-15 °C, and more than 70 % of the relative activity was retained at 1 °C. The pH optimum of AmyI3C6 was at pH 8-9, and the enzyme displayed activity in two commercial detergents tested, suggesting that the AmyI3C6 α-amylase may be useful as a detergent enzyme in environmentally friendly, low-temperature laundry processes.
Collapse
|
19
|
Olszewski M, Nowak M, Cyranka-Czaja A, Kur J. Identification and characterization of single-stranded DNA-binding protein from the facultative psychrophilic bacteria Pseudoalteromonas haloplanktis. Microbiol Res 2013; 169:139-47. [PMID: 23953921 DOI: 10.1016/j.micres.2013.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/09/2013] [Accepted: 07/16/2013] [Indexed: 11/18/2022]
Abstract
Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism such as DNA replication, repair, and recombination, and is essential for cell survival. This study reports on the ssb-like gene cloning, gene expression and characterization of a single-stranded DNA-binding protein of Pseudoalteromonas haloplanktis (PhaSSB) and is the first report of such a protein from psychrophilic microorganism. PhaSSB possesses a high sequence similarity to Escherichia coli SSB (48% identity and 57% similarity) and has the longest amino acid sequence (244 amino acid residues) of all the known bacterial SSBs with one OB-fold per monomer. An analysis of purified PhaSSB by means of chemical cross-linking experiments, sedimentation analysis and size exclusion chromatography revealed a stable tetramer in solution. Using EMSA, we characterized the stoichiometry of PhaSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined as being approximately 35 nucleotides long. In fluorescence titrations, the occluded site size of PhaSSB on poly(dT) is 34 nucleotides per tetramer under low-salt conditions (2mM NaCl), but increases to 54-64 nucleotides at higher-salt conditions (100-300mM NaCl). This suggests that PhaSSB undergoes a transition between ssDNA binding modes, which is observed for EcoSSB. The binding properties of PhaSSB investigated using SPR technology revealed that the affinity of PhaSSB to ssDNA is typical of SSB proteins. The only difference in the binding mode of PhaSSB to ssDNA is a faster association phase, when compared to EcoSSB, though compensated by faster dissociation rate. When analyzed by differential scanning calorimetry (DSC), the melting temperature (Tm) was determined as 63 °C, which is only a few degrees lower than for EcoSSB.
Collapse
Affiliation(s)
- Marcin Olszewski
- Department of Microbiology, Chemical Faculty, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Marta Nowak
- Department of Microbiology, Chemical Faculty, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Anna Cyranka-Czaja
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, ul. Tamka 2, 50-138 Wrocław, Poland
| | - Józef Kur
- Department of Microbiology, Chemical Faculty, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
20
|
Martínez-Rosales C, Fullana N, Musto H, Castro-Sowinski S. Antarctic DNA moving forward: genomic plasticity and biotechnological potential. FEMS Microbiol Lett 2012; 331:1-9. [PMID: 22360528 DOI: 10.1111/j.1574-6968.2012.02531.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/09/2012] [Accepted: 02/18/2012] [Indexed: 02/06/2023] Open
Abstract
Antarctica is the coldest, driest, and windiest continent, where only cold-adapted organisms survive. It has been frequently cited as a pristine place, but it has a highly diverse microbial community that is continually seeded by nonindigenous microorganisms. In addition to the intromission of 'alien' microorganisms, global warming strongly affects microbial Antarctic communities, changing the genes (qualitatively and quantitatively) potentially available for horizontal gene transfer. Several mobile genetic elements have been described in Antarctic bacteria (including plasmids, transposons, integrons, and genomic islands), and the data support that they are actively involved in bacterial evolution in the Antarctic environment. In addition, this environment is a genomic source for the identification of novel molecules, and many investigators have used culture-dependent and culture-independent approaches to identify cold-adapted proteins. Some of them are described in this review. We also describe studies for the design of new recombinant technologies for the production of 'difficult' proteins.
Collapse
|
21
|
Giuliani M, Parrilli E, Pezzella C, Rippa V, Duilio A, Marino G, Tutino ML. A novel strategy for the construction of genomic mutants of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Methods Mol Biol 2012; 824:219-33. [PMID: 22160901 DOI: 10.1007/978-1-61779-433-9_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The sequencing and the annotation of the marine Antarctic Pseudoalteromonas haloplanktis TAC125 genome has paved the way to investigate on the molecular mechanisms involved in adaptation to cold conditions. The growing interest in this unique bacterium prompted the developing of several genetic tools for studying it at the molecular level. To allow a deeper understanding of the PhTAC125 physiology a genetic system for the reverse genetics in this bacterium was developed. In the present work, we describe a practical technique for allelic exchange and/or gene inactivation by in-frame deletion and the use of a counterselectable marker in P. haloplanktis. The construction of suitable non-replicating plasmid and methods used to carry out a two-step integration-segregation strategy in this bacterium are reported in detail.Furthermore two examples, in which the developed methodology was applied to find out gene function or to construct genetically engineered bacterial strains, were described.
Collapse
Affiliation(s)
- Maria Giuliani
- Department of Organic Chemistry and Biochemistry, Università degli studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhao DL, Yu ZC, Li PY, Wu ZY, Chen XL, Shi M, Yu Y, Chen B, Zhou BC, Zhang YZ. Characterization of a cryptic plasmid pSM429 and its application for heterologous expression in psychrophilic Pseudoalteromonas. Microb Cell Fact 2011; 10:30. [PMID: 21542941 PMCID: PMC3112385 DOI: 10.1186/1475-2859-10-30] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/05/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudoalteromonas is an important genus widespread in marine environment, and a lot of psychrophilic Pseudoalteromonas strains thrive in deep sea and polar sea. By now, there are only a few genetic systems for Pseudoalteromonas reported and no commercial Pseudoalteromonas genetic system is available, which impedes the study of Pseudoalteromonas, especially for psychrophilic strains. The aim of this study is to develop a heterologous expression system for psychrophilic Pseudoalteromonas. RESULTS A cryptic plasmid pSM429 isolated from psychrophilic Pseudoalteromonas sp. BSi20429 from the Arctic sea ice, was sequenced and characterized. The plasmid pSM429 is 3874 bp in length, with a G+C content of 28%. Four putative open reading frames (ORFs) were identified on pSM429. Based on homology, the ORF4 was predicted to encode a replication initiation (Rep) protein. A shuttle vector (Escherichia coli, Pseudoalteromonas), pWD, was constructed by ligating pSM429 and pUC19 and inserting a chloramphenicol acetyl transferase (CAT) cassette conferring chloramphenicol resistance. To determine the minimal replicon of pSM429 and to check the functionality of identified ORFs, various pWD derivatives were constructed. All derivatives except the two smallest ones were shown to allow replication in Pseudoalteromonas sp. SM20429, a plasmid-cured strain of Pseudoalteromonas sp. BSi20429, suggesting that the orf4 and its flanking intergenic regions are essential for plasmid replication. Although not essential, the sequence including some repeats between orf1 and orf2 plays important roles in segregational stability of the plasmid. With the aid of pWD-derived plasmid pWD2, the erythromycin resistance gene and the cd gene encoding the catalytic domain of a cold-adapted cellulase were successfully expressed in Pseudoalteromonas sp. SM20429. CONCLUSIONS Plasmid pSM429 was isolated and characterized, and the regions essential for plasmid replication and stability were determined, helping the development of pSM429-based shuttle vectors. The shuttle vectors pWD and its derivatives could be used as cloning vectors for Pseudoalteromonas, offering new perspectives in the genetic manipulation of Pseudoalteromonas strains. With the aid of pWD-derived vector and its host, the erythromycin resistance gene and the cd gene of a cold-adapted protein were successfully expressed, indicating that the potential use of this system for recombinant protein production, especially for cold-adapted proteins.
Collapse
Affiliation(s)
- Dian-Li Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wilmes B, Kock H, Glagla S, Albrecht D, Voigt B, Markert S, Gardebrecht A, Bode R, Danchin A, Feller G, Hecker M, Schweder T. Cytoplasmic and periplasmic proteomic signatures of exponentially growing cells of the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 2011; 77:1276-83. [PMID: 21183643 PMCID: PMC3067249 DOI: 10.1128/aem.01750-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/13/2010] [Indexed: 11/20/2022] Open
Abstract
The psychrophilic model bacterium Pseudoalteromonas haloplanktis is characterized by remarkably fast growth rates under low-temperature conditions in a range from 5°C to 20°C. In this study the proteome of cellular compartments, the cytoplasm and periplasm, of P. haloplanktis strain TAC125 was analyzed under exponential growth conditions at a permissive temperature of 16°C. By means of two-dimensional protein gel electrophoresis and mass spectrometry, a first inventory of the most abundant cytoplasmic and periplasmic proteins expressed in a peptone-supplemented minimal medium was established. By this approach major enzymes of the amino acid catabolism of this marine bacterium could be functionally deduced. The cytoplasmic proteome showed a predominance of amino acid degradation pathways and tricarboxylic acid (TCA) cycle enzymes but also the protein synthesis machinery. Furthermore, high levels of cold acclimation and oxidative stress proteins could be detected at this moderate growth temperature. The periplasmic proteome was characterized by a significant abundance of transporters, especially of highly expressed putative TonB-dependent receptors. This high capacity for protein synthesis, efficient amino acid utilization, and substrate transport may contribute to the fast growth rates of the copiotrophic bacterium P. haloplanktis in its natural environments.
Collapse
Affiliation(s)
- Boris Wilmes
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Holger Kock
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Susanne Glagla
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Dirk Albrecht
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Birgit Voigt
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Stephanie Markert
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Antje Gardebrecht
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Rüdiger Bode
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Antoine Danchin
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Georges Feller
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Michael Hecker
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| | - Thomas Schweder
- Institute of Marine Biotechnology, W. Rathenau Str. 49a, 17489 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Department of Pharmaceutical Biotechnology, F.-L. Jahn Str. 17, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Medical Faculty, Fleischmannstr. 8, 17475 Greifswald, Germany, University of Erlangen, Department of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, F.-L. Jahn Str. 15, 17487 Greifswald, Germany, Ernst Moritz Arndt University Greifswald, Institute of Microbiology, Department of Biochemistry, F. Hausdorff Str. 4, 17487 Greifswald, Germany, AMAbiotics, Genopole 1, 91030 Evry Cedex, France, University of Liège, Centre for Protein Engineering B6a, 4000 Liège, Belgium
| |
Collapse
|
24
|
Wilmes B, Hartung A, Lalk M, Liebeke M, Schweder T, Neubauer P. Fed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis. Microb Cell Fact 2010; 9:72. [PMID: 20858251 PMCID: PMC2954877 DOI: 10.1186/1475-2859-9-72] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/21/2010] [Indexed: 11/30/2022] Open
Abstract
Background Pseudoalteromonas haloplanktis is a cold-adapted γ-proteobacterium isolated from Antarctic sea ice. It is characterized by remarkably high growth rates at low temperatures. P. haloplanktis is one of the model organisms of cold-adapted bacteria and has been suggested as an alternative host for the soluble overproduction of heterologous proteins which tend to form inclusion bodies in established expression hosts. Despite the progress in establishing P. haloplanktis as an alternative expression host the cell densities obtained with this organism, which is unable to use glucose as a carbon source, are still low. Here we present the first fed-batch cultivation strategy for this auspicious alternative expression host. Results The key for the fed-batch cultivation of P. haloplanktis was the replacement of peptone by casamino acids, which have a much higher solubility and allow a better growth control. In contrast to the peptone medium, on which P. haloplanktis showed different growth phases, on a casamino acids-containing, phosphate-buffered medium P. haloplanktis grew exponentially with a constant growth rate until the stationary phase. A fed-batch process was established by feeding of casamino acids with a constant rate resulting in a cell dry weight of about 11 g l-1 (OD540 = 28) which is a twofold increase of the highest densities which have been obtained with P. haloplanktis so far and an eightfold increase of the density obtained in standard shake flask cultures. The cell density was limited in the fed-batch cultivation by the relatively low solubility of casamino acids (about 100 g l-1), which was proven by pulse addition of casamino acid powder which increased the cell density to about 20 g l-1 (OD540 = 55). Conclusion The growth of P. haloplanktis to higher cell densities on complex medium is possible. A first fed-batch fermentation strategy could be established which is feasible to be used in lab-scale or for industrial purposes. The substrate concentration of the feeding solution was found to influence the maximal biomass yield considerably. The bottleneck for growing P. haloplanktis to high cell densities still remains the availability of a highly concentrated substrate and the reduction of the substrate complexity. However, our results indicate glutamic acid as a major carbon source, which provides a good basis for further improvement of the fed-batch process.
Collapse
Affiliation(s)
- Boris Wilmes
- Institute of Marine Biotechnology, W.-Rathenau-Str. 49, D-17489 Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Parrilli E, Giuliani M, Pezzella C, Danchin A, Marino G, Tutino ML. PssA is required for α-amylase secretion in Antarctic Pseudoalteromonas haloplanktis. Microbiology (Reading) 2010; 156:211-219. [DOI: 10.1099/mic.0.032342-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular protein secretion is an essential feature in bacterial physiology. The ability to efficiently secrete diverse hydrolytic enzymes represents a key nutritional strategy for all bacteria, including micro-organisms living in extreme and hostile habitats, such as cold environments. However, little is known about protein secretion mechanisms in psychrophilic bacteria. In this study, the recombinant secretion of a cold-adapted α-amylase in the Antarctic Gram-negative Pseudoalteromonas haloplanktis TAC125 was investigated. By a combination of several molecular techniques, the function of the pssA gene was related to α-amylase secretion in this psychrophilic bacterium. Deletion of the pssA gene completely abolished amylase secretion without affecting the extracellular targeting of other substrates mediated by canonical secretion systems. The pssA gene product, PssA, is a multidomain lipoprotein, predicted to be localized in the bacterial outer membrane, and displaying three TPR (tetratricopeptide repeat) domains and two LysM modules. Based on functional annotation of these domains, combined with the experimental results reported herein, we suggest a role for PssA as a molecular adaptor, in charge of recruiting other cellular components required for specific α-amylase secretion. To the best of our knowledge, no proteins exhibiting the same domain organization have previously been linked to protein secretion.
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Facoltà di Scienze Biotecnologiche Università di Napoli Federico II – Complesso Universitario M.S. Angelo via Cinthia 4, 80126 Napoli, Italy
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II – Complesso Universitario M.S. Angelo via Cinthia 4, 80126 Napoli, Italy
| | - Maria Giuliani
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II – Complesso Universitario M.S. Angelo via Cinthia 4, 80126 Napoli, Italy
| | - Cinzia Pezzella
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II – Complesso Universitario M.S. Angelo via Cinthia 4, 80126 Napoli, Italy
| | - Antoine Danchin
- Génétique des Génomes Bactériens URA 2171 CNRS, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Gennaro Marino
- Facoltà di Scienze Biotecnologiche Università di Napoli Federico II – Complesso Universitario M.S. Angelo via Cinthia 4, 80126 Napoli, Italy
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II – Complesso Universitario M.S. Angelo via Cinthia 4, 80126 Napoli, Italy
| | - Maria Luisa Tutino
- Facoltà di Scienze Biotecnologiche Università di Napoli Federico II – Complesso Universitario M.S. Angelo via Cinthia 4, 80126 Napoli, Italy
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II – Complesso Universitario M.S. Angelo via Cinthia 4, 80126 Napoli, Italy
| |
Collapse
|
26
|
Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A. Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 2009; 8:17. [PMID: 19317892 PMCID: PMC2669800 DOI: 10.1186/1475-2859-8-17] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 03/24/2009] [Indexed: 02/01/2023] Open
Abstract
Most of the hosts used to produce the 151 recombinant pharmaceuticals so far approved for human use by the Food and Drug Administration (FDA) and/or by the European Medicines Agency (EMEA) are microbial cells, either bacteria or yeast. This fact indicates that despite the diverse bottlenecks and obstacles that microbial systems pose to the efficient production of functional mammalian proteins, namely lack or unconventional post-translational modifications, proteolytic instability, poor solubility and activation of cell stress responses, among others, they represent convenient and powerful tools for recombinant protein production. The entering into the market of a progressively increasing number of protein drugs produced in non-microbial systems has not impaired the development of products obtained in microbial cells, proving the robustness of the microbial set of cellular systems (so far Escherichia coli and Saccharomyces cerevisae) developed for protein drug production. We summarize here the nature, properties and applications of all those pharmaceuticals and the relevant features of the current and potential producing hosts, in a comparative way.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
27
|
Cieśliński H, Werbowy K, Kur J, Turkiewicz M. Molecular characterization of a cryptic plasmid from the psychrotrophic antarctic bacterium Pseudoalteromonas sp. 643A. Plasmid 2008; 60:154-8. [PMID: 18611409 DOI: 10.1016/j.plasmid.2008.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
We report the identification and nucleotide sequence analysis of pKW1, a plasmid of the psychrotrophic bacterium Pseudoalteromonas sp. 643A isolated from the stomach of Antarctic krill Euphasia superba. pKW1 consists of 4583 bp, has a G+C content of 43% and seven putative open reading frames (ORFs). The deduced amino acid sequence from ORF-1 shared significant similarity with the plasmid replicase protein of Psychrobacter cryohalolentis, strain K5. The DNA region immediately downstream of the ORF-1 showed some homology with the Rep-binding sequence of the theta-replicating ColE2-type plasmids. The ORF-3 amino acid sequence revealed amino acid sequence homology with the mobilization protein of Psychrobacter sp. PRwf-1 and Moraxella catarrhalis, with identities of 28% and 25%, respectively. The ORF-4 showed 46% amino acid sequence homology with the putative relaxase/mobilization nuclease MobA of Hafnia alvei and 44% homology with the putative mobilization protein A of Pasterulla multocida. The copy number of pKW1 in Pseudoalteromonas sp. 643A was estimated of 15 copies per chromosome.
Collapse
Affiliation(s)
- Hubert Cieśliński
- Department of Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-952 Gdańsk, Poland
| | | | | | | |
Collapse
|
28
|
Miteva V, Lantz S, Brenchley J. Characterization of a cryptic plasmid from a Greenland ice core Arthrobacter isolate and construction of a shuttle vector that replicates in psychrophilic high G+C Gram-positive recipients. Extremophiles 2008; 12:441-9. [DOI: 10.1007/s00792-008-0149-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
|
29
|
Parrilli E, De Vizio D, Cirulli C, Tutino ML. Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb Cell Fact 2008; 7:2. [PMID: 18257924 PMCID: PMC2275215 DOI: 10.1186/1475-2859-7-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/07/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In a previous paper, we reported the accomplishment of a cold gene-expression system for the recombinant secretion of heterologous proteins in Pseudoalteromonas haloplanktis TAC125. This system makes use of the psychrophilic alpha-amylase from P. haloplanktis TAB23 as secretion carrier, and allows an effective extra-cellular addressing of recombinant proteins. However, Pseudoalteromonales are reported to secrete a wide range of extra-cellular proteases. This feature works against the efficiency of the cold-adapted secretion system, because of the proteolytic degradation of recombinant products. The aim of this study is the construction of a P. haloplanktis TAC125 mutant strain with reduced extra-cellular proteolytic activity. RESULTS P. haloplanktis TAC125 culture medium resulted to contain multiple and heterogeneous proteases. Since the annotation of the Antarctic bacterium genome highlighted the presence of only one canonical secretion machinery, namely the Type II secretion pathway (T2SS), we have inactivated this secretion system by a gene insertion strategy. A mutant strain of P. haloplanktis TAC125 in which the gspE gene was knocked-out, actually displayed a remarkable reduction of the extra-cellular protease secretion. Quite interestingly this strain still retained the ability to secrete the psychrophilic amylase as efficiently as the wild type. Moreover, the decrease in extra-cellular proteolytic activity resulted in a substantial improvement in the stability of the secreted amylase-beta-lactamase chimera. CONCLUSION Here we report a cell engineering approach to the construction of a P. haloplanktis TAC125 strain with reduced extra-cellular protease activity. The improved strain is able to secrete the psychrophilic alpha-amylase (the carrier of our recombinant secretion system), while it displays a significant reduction of protease content in the culture medium. These features make the gspE mutant an improved host with a remarkable biotechnological potential in recombinant protein secretion at low temperature. Moreover this work demonstrates that P. haloplanktis TAC125 is a versatile psychrophilic host for recombinant protein production since it can be easily improved by a directed engineering approach. To the best of our knowledge, this is the first described example of a strain improvement strategy applied to an Antarctic bacterium.
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Dipartimento di Chimica Organica e Biochimica, Università degli studi di Napoli Federico II - Complesso Universitario M,S, Angelo via Cinthia 4, 80126, Napoli Italia.
| | | | | | | |
Collapse
|
30
|
Villaverde A, Mattanovich D. Recombinant protein production in the new Millennium. Microb Cell Fact 2007; 6:33. [PMID: 17949506 PMCID: PMC2100061 DOI: 10.1186/1475-2859-6-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 10/20/2007] [Indexed: 11/20/2022] Open
Affiliation(s)
- Antonio Villaverde
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Institute of Applied Microbiology, Vienna, Austria.
| | | |
Collapse
|