1
|
Hernández-Flandes A, Hernández-Ortega S, Ramírez-Apan T, Rocha-Zavaleta L, Silva-Jimenez N, Martínez-Vázquez M. Synthesis of Cycloartan-16β-ol from 16β 24R-Epoxy-Cycloartane and Their Cytotoxicity Evaluation Against Human Cancer Cell Lines. Chem Biodivers 2024; 21:e202301346. [PMID: 38520744 DOI: 10.1002/cbdv.202301346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
It was found that Argentatins A and B triterpenoids make up approximately 20-30 % of the waste resin produced from the industrial processes to isolate rubber from P. argentatum. We have developed an efficient protocol for synthesizing cycloartane-16β-ol derivatives by opening the oxepane ring of argentatin B acetate (2) with BF3-OEt2. Although three new cycloartenol derivatives showed high cytotoxicity against PC-3 and HCT-15 cancer cell lines, nevertheless, the best results were obtained for (16β,24R) -(16,24-epoxy-cycloartan-2(1H)-ylidene) acetate (14), compound with intact oxepane ring. These results indicate that the substituents in the argentatin nucleus and a side chain account for the cytotoxic activity. However, according to the selectivity index (SI), 14 did not show selectivity activity to cancer cell lines over the HaCat noncancerous cell line. The compound 3β,16β-Dihydroxy-cycloartan-24-one (5), synthesized by oxepane opening, demonstrated high cytotoxic activity to cancer cell lines and showed a remarkable selectivity to cancer cell lines over the noncancerous ones. These results suggest that 5 could lead to the development of new anticancer compounds.
Collapse
Affiliation(s)
- Atzin Hernández-Flandes
- Departmento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México. C. Exterior, C. Universitaria, Ciudad de México, Coyoacán, 04510 DCMX, México
| | - Simón Hernández-Ortega
- Departmento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México. C. Exterior, C. Universitaria, Ciudad de México, Coyoacán, 04510 DCMX, México
| | - Teresa Ramírez-Apan
- Departmento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México. C. Exterior, C. Universitaria, Ciudad de México, Coyoacán, 04510 DCMX, México
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas., Universidad Nacional Autónoma de México. C. Exterior, C. Universitaria, Ciudad de México, Coyoacán, 04510 DCMX, México
| | - Noemi Silva-Jimenez
- Departmento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México. C. Exterior, C. Universitaria, Ciudad de México, Coyoacán, 04510 DCMX, México
| | - Mariano Martínez-Vázquez
- Departmento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México. C. Exterior, C. Universitaria, Ciudad de México, Coyoacán, 04510 DCMX, México
| |
Collapse
|
2
|
Kale VP, Hengst JA, Sharma AK, Golla U, Dovat S, Amin SG, Yun JK, Desai DH. Characterization of Anticancer Effects of the Analogs of DJ4, a Novel Selective Inhibitor of ROCK and MRCK Kinases. Pharmaceuticals (Basel) 2023; 16:1060. [PMID: 37630974 PMCID: PMC10458458 DOI: 10.3390/ph16081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
The Rho associated coiled-coil containing protein kinase (ROCK1 and ROCK2) and myotonic dystrophy-related Cdc-42 binding kinases (MRCKα and MRCKβ) are critical regulators of cell proliferation and cell plasticity, a process intimately involved in cancer cell migration and invasion. Previously, we reported the discovery of a novel small molecule (DJ4) selective multi-kinase inhibitor of ROCK1/2 and MRCKα/β. Herein, we further characterized the anti-proliferative and apoptotic effects of DJ4 in non-small cell lung cancer and triple-negative breast cancer cells. To further optimize the ROCK/MRCK inhibitory potency of DJ4, we generated a library of 27 analogs. Among the various structural modifications, we identified four additional active analogs with enhanced ROCK/MRCK inhibitory potency. The anti-proliferative and cell cycle inhibitory effects of the active analogs were examined in non-small cell lung cancer, breast cancer, and melanoma cell lines. The anti-proliferative effectiveness of DJ4 and the active analogs was further demonstrated against a wide array of cancer cell types using the NCI-60 human cancer cell line panel. Lastly, these new analogs were tested for anti-migratory effects in highly invasive MDA-MB-231 breast cancer cells. Together, our results demonstrate that selective inhibitors of ROCK1/2 (DJE4, DJ-Allyl) inhibited cell proliferation and induced cell cycle arrest at G2/M but were less effective in cell death induction compared with dual ROCK1/2 and MRCKα/β (DJ4 and DJ110).
Collapse
Affiliation(s)
- Vijay Pralhad Kale
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Jeremy A. Hengst
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Arati K. Sharma
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Upendarrao Golla
- Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Sinisa Dovat
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Shantu G. Amin
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Jong K. Yun
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Dhimant H. Desai
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| |
Collapse
|
3
|
Wang L, Wang P, Chen X, Yang H, Song S, Song Z, Jia L, Chen H, Bao X, Guo N, Huan X, Xi Y, Shen Y, Yang X, Su Y, Sun Y, Gao Y, Chen Y, Ding J, Lang J, Miao Z, Zhang A, He J. Thioparib inhibits homologous recombination repair, activates the type I IFN response, and overcomes olaparib resistance. EMBO Mol Med 2023; 15:e16235. [PMID: 36652375 PMCID: PMC9994488 DOI: 10.15252/emmm.202216235] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have shown great promise for treating BRCA-deficient tumors. However, over 40% of BRCA-deficient patients fail to respond to PARPi. Here, we report that thioparib, a next-generation PARPi with high affinity against multiple PARPs, including PARP1, PARP2, and PARP7, displays high antitumor activities against PARPi-sensitive and -resistant cells with homologous recombination (HR) deficiency both in vitro and in vivo. Thioparib treatment elicited PARP1-dependent DNA damage and replication stress, causing S-phase arrest and apoptosis. Conversely, thioparib strongly inhibited HR-mediated DNA repair while increasing RAD51 foci formation. Notably, the on-target inhibition of PARP7 by thioparib-activated STING/TBK1-dependent phosphorylation of STAT1, triggered a strong induction of type I interferons (IFNs), and resulted in tumor growth retardation in an immunocompetent mouse model. However, the inhibitory effect of thioparib on tumor growth was more pronounced in PARP1 knockout mice, suggesting that a specific PARP7 inhibitor, rather than a pan inhibitor such as thioparib, would be more relevant for clinical applications. Finally, genome-scale CRISPR screening identified PARP1 and MCRS1 as genes capable of modulating thioparib sensitivity. Taken together, thioparib, a next-generation PARPi acting on both DNA damage response and antitumor immunity, serves as a therapeutic potential for treating hyperactive HR tumors, including those resistant to earlier-generation PARPi.
Collapse
Affiliation(s)
- Li‐Min Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pingyuan Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- Pharm‐X Center, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Xiao‐Min Chen
- University of Chinese Academy of SciencesBeijingChina
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Hui Yang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shan‐Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zilan Song
- Pharm‐X Center, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Li Jia
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hua‐Dong Chen
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xu‐Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ne Guo
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia‐Juan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong Xi
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan‐Yan Shen
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xin‐Ying Yang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Su
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi‐Ming Sun
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ying‐Lei Gao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Chen
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian Ding
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing‐Yu Lang
- University of Chinese Academy of SciencesBeijingChina
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Ze‐Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ao Zhang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Pharm‐X Center, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Jin‐Xue He
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Lo MM, Benfodda Z, Dunyach-Rémy C, Bénimélis D, Roulard R, Fontaine JX, Mathiron D, Quéro A, Molinié R, Meffre P. Isolation and Identification of Flavones Responsible for the Antibacterial Activities of Tillandsia bergeri Extracts. ACS OMEGA 2022; 7:35851-35862. [PMID: 36249367 PMCID: PMC9557886 DOI: 10.1021/acsomega.2c04195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Plants are an everlasting inspiration source of biologically active compounds. Among these medicinal plants, the biological activity of extracts from some species of the Tillandsia genus has been studied, but the phytochemistry of the hardy species Tillandsia bergeri remains unknown. The aim of the present study was to perform the first phytochemical study of T. bergeri and to identify the compounds responsible for the antibacterial activity of T. bergeri extracts. Soxhlet extraction of predried and grinded leaves was first performed using four increasing polarity solvents. A bio-guided fractionation was performed using agar overlay bioautography as a screening method against 12 Gram-positive, Gram-negative, sensitive, and resistant bacterial strains. The results showed the inhibition of Gram-positive methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA), methicillin-resistant S. aureus N-SARM-1 (MRSA), and Staphylococcus caprae ATCC 35538 by the dichloromethane fraction. A phytochemical investigation led to the isolation and identification by high-resolution mass spectrometry and nuclear magnetic resonance of the two flavones penduletin and viscosine, responsible for this antibacterial activity. For viscosine, the minimum inhibitory concentration (MIC) value is equal to 128 μg/mL against MSSA and is equal to 256 μg/mL against MRSA and S. caprae. The combination of these compounds with vancomycin and cloxacillin showed a decrease in MICs of the antibiotics. Penduletin showed synergistic activity when combined with vancomycin against MSSA (FICI < 0.258) and S. caprae (FICI < 0.5). Thus, unexplored Tillandsia species may represent a valuable source for potential antibiotics and adjuvants.
Collapse
Affiliation(s)
- Mame-Marietou Lo
- UNIV.
NIMES, UPR CHROME, 5
rue du Dr Georges Salan, F-30021 Nîmes Cedex 1, France
| | - Zohra Benfodda
- UNIV.
NIMES, UPR CHROME, 5
rue du Dr Georges Salan, F-30021 Nîmes Cedex 1, France
| | - Catherine Dunyach-Rémy
- Institut
National de la Santé et de la Recherche Médicale, U1047, Montpellier University, CHU de Nîmes, Place du Pr R. Debré, 30029 Nîmes, France
| | - David Bénimélis
- UNIV.
NIMES, UPR CHROME, 5
rue du Dr Georges Salan, F-30021 Nîmes Cedex 1, France
| | - Romain Roulard
- UMR
1158 Transfontalière BioEcoAgro, BIOlogie des Plantes et Innovation
(BIOPI), UPJV, Faculté de Pharmacie, 1 rue des Louvels, 80025 Amiens CEDEX, France
| | - Jean-Xavier Fontaine
- UMR
1158 Transfontalière BioEcoAgro, BIOlogie des Plantes et Innovation
(BIOPI), UPJV, Faculté de Pharmacie, 1 rue des Louvels, 80025 Amiens CEDEX, France
| | - David Mathiron
- Plateforme-Analytique, Université
de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens, France
| | - Anthony Quéro
- UMR
1158 Transfontalière BioEcoAgro, BIOlogie des Plantes et Innovation
(BIOPI), UPJV, Faculté de Pharmacie, 1 rue des Louvels, 80025 Amiens CEDEX, France
| | - Roland Molinié
- UMR
1158 Transfontalière BioEcoAgro, BIOlogie des Plantes et Innovation
(BIOPI), UPJV, Faculté de Pharmacie, 1 rue des Louvels, 80025 Amiens CEDEX, France
| | - Patrick Meffre
- UNIV.
NIMES, UPR CHROME, 5
rue du Dr Georges Salan, F-30021 Nîmes Cedex 1, France
| |
Collapse
|
5
|
A new horizon for the steroidal alkaloid cyclovirobuxine D (huangyangning) and analogues: Anticancer activities and mechanism of action. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Yuan H, Jiang S, Liu Y, Daniyal M, Jian Y, Peng C, Shen J, Liu S, Wang W. The flower head of Chrysanthemum morifolium Ramat. (Juhua): A paradigm of flowers serving as Chinese dietary herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113043. [PMID: 32593689 DOI: 10.1016/j.jep.2020.113043] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dietary herbal medicines are widely used for the prevention and treatment of a variety of diseases due to their pharmacological activities in China. Juhua (the flower head of Chrysanthemum morifolium Ramat.), the most representative flower-derived one, which is mainly used for the treatment of respiratory and cardiovascular diseases, shows significant activities, such as antimicrobial, anti-inflammatory, and anticancer, and, neuroprotective, as well as effects on the cardiovascular system. AIMS OF THIS REVIEW This review aims to provide an overview of the crucial roles of flowers in Chinese dietary herbal medicine, and the pharmaceutical research progress of Juhua (the paradigm of dietary herbal medicine derived from the flower) including its applications in Traditional Chinese medicine and diet, cultivars, phytochemistry, quality control, pharmacology, and toxicity, along with chrysanthemum breeding and biotechnology. METHOD The information associated with Chinese dietary herbal medicine, flower-derived medicine, dietary flower, and pharmaceutical research of Juhua, was collected from government reports, classic books of Traditional Chinese medicine, the thesis of doctors of philosophy and maters, and database including Pubmed, Scifinder, Web of Science, Google Scholar, China National Knowledge Internet; and others. RESULT All flower-originated crude medicines recorded in Chinese pharmacopeia and their applications were summarized for the first time in this paper. The edible history and development of flowers in China, the theory of Chinese dietary herbal medicines, as well as flowers serving as dietary herbal medicines, were discussed. Moreover, applications in Traditional Chinese medicine and diet, cultivars, phytochemistry, quality control, pharmacology, and safety evaluation of Juhua, together with chrysanthemum breeding and biotechnology, were summarized in this paper. CONCLUSION The theory of dietary herbal medicines, which are an important part of the Traditional Chinese medicine system, has a history of thousands of years. Many herbal flowers, serving as dietary herbal medicines, contribute significantly to the prevention and treatment of a variety of diseases for Chinese people. To better benefit human health, more effective supervision practice for dietary herbal medicines is needed. Although various investigations on Juhua have been done, there is a lack of analytical methods for discrimination of cultivar flowers and identification of authenticity. Research on the major compounds with bioactivities, especially those related to its clinical application or healthcare function, as well as their possible mechanize, need be strengthened. More safety evaluation of Juhua should be carried out. The research limitations Juhua is facing exist in all dietary herbal medicine.
Collapse
Affiliation(s)
- Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Sai Jiang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yingkai Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Jianliang Shen
- Hunan Kangdejia Forestry Technology Co., Ltd., Yongzhou, 425600, China
| | - Shifeng Liu
- Hunan Kangdejia Forestry Technology Co., Ltd., Yongzhou, 425600, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
7
|
Abstract
:
For decades now, compounds in the cycloartane-type series have been shown to
have versatile pharmacological activities. However, no extensive review has been written
to summarize these health-beneficial activities. Therefore, the purpose of this paper is to
systematically highlight the biological activities of these compounds, including their antitumor
and anti-osteoporosis effects, their effects on receptors, cytokine release, and
chronic renal failure, as well as their tyrosinase inhibitory, anticomplement, anti-parasite,
anti-HIV, and antituberculosis activities. In this review, we have summarized the structures
of over 200 compounds based on their characteristics and described their structureactivity
relationships (SARs), and potential mechanisms of action.
Collapse
Affiliation(s)
- Wenyan Gao
- Key Laboratory of Neuropsychiatric Drug, Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences & Hangzhou Medical College, Hangzhou, 310013, China
| | - Xiaoyan Dong
- Department of Pharmacy and Medicine Pharmacy, Jiang Su College of Nursing, Huian, 223003, China
| | - Taiming Wei
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China
| |
Collapse
|
8
|
Analysis of natural product regulation of opioid receptors in the treatment of human disease. Pharmacol Ther 2018; 184:51-80. [DOI: 10.1016/j.pharmthera.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Lowe HIC, Toyang NJ, Watson CT, Ayeah KN, Bryant J. HLBT-100: a highly potent anti-cancer flavanone from Tillandsia recurvata (L.) L. Cancer Cell Int 2017; 17:38. [PMID: 28286420 PMCID: PMC5341182 DOI: 10.1186/s12935-017-0404-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/16/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The incidence and mortalities from cancers remain on the rise worldwide. Despite significant efforts to discover and develop novel anticancer agents, many cancers remain in the unmet need category. As such, efforts to discover and develop new and more effective and less toxic agents against cancer remain a top global priority. Our drug discovery approach is natural products based with a focus on plants. Tillandsia recurvata (L.) L. is one of the plants selected by our research team for further studies based on previous bioactivity findings on the anticancer activity of this plant. METHODS The plant biomass was extracted using supercritical fluid extraction technology with CO2 as the mobile phase. Bioactivity guided isolation was achieved by use of chromatographic technics combined with anti-proliferative assays to determine the active fraction and subsequently the pure compound. Following in house screening, the identified molecule was submitted to the US National Cancer Institute for screening on the NCI60 cell line panel using standard protocols. Effect of HLBT-100 on apoptosis, caspase 3/7, cell cycle and DNA fragmentation were assessed using standard protocols. Antiangiogenic activity was carried out using the ex vivo rat aortic ring assay. RESULTS A flavonoid of the flavanone class was isolated from T. recurvata (L.) L. with potent anticancer activity. The molecule was code named as HLBT-100 (also referred to as HLBT-001). The compound inhibited brain cancer (U87 MG), breast cancer (MDA-MB231), leukemia (MV4-11), melanoma (A375), and neuroblastoma (IMR-32) with IC50 concentrations of 0.054, 0.030, 0.024, 0.003 and 0.05 µM, respectively. The molecule also exhibited broad anticancer activity in the NCI60 panel inhibiting especially hematological, colon, CNS, melanoma, ovarian, breast and prostate cancers. Twenty-three of the NCI60 cell lines were inhibited with GI50 values <0.100 µM. In terms of potential mechanisms of action, the molecule demonstrated effect on the cell cycle as evidenced by the accumulation of cells with CONCLUSION This paper describes for the first time the anticancer activity of HLBT-100 isolated from T. recurvate (L.) L. The broad and selective anticancer activity of HLBT-100 as evidenced by its potent activity against IMR-32, CNS cancer cell line while not active against neuro-2a, a normal CNS cell line. The activity demonstrated by HLBT-100 in these studies makes the molecule a potential candidate for further development targeting especially those cancers that remain in the unmet need category such as glioblastoma multiforme and acute myeloid leukemia in addition to other cancers.
Collapse
Affiliation(s)
- Henry I. C. Lowe
- Bio-Tech R&D Institute, University of the West Indies, 6 St. Johns Close, Mona, Jamaica
- Educational & Scientific LLC, 725 W Lombard St, Baltimore, MD 21201 USA
- Institute of Human Virology, University of Maryland School of Medicine, 725 W Lombard St, Baltimore, MD USA
| | - Ngeh J. Toyang
- Educational & Scientific LLC, 725 W Lombard St, Baltimore, MD 21201 USA
- Institute of Human Virology, University of Maryland School of Medicine, 725 W Lombard St, Baltimore, MD USA
| | - Charah T. Watson
- Bio-Tech R&D Institute, University of the West Indies, 6 St. Johns Close, Mona, Jamaica
| | - Kenneth N. Ayeah
- Educational & Scientific LLC, 725 W Lombard St, Baltimore, MD 21201 USA
- Institute of Human Virology, University of Maryland School of Medicine, 725 W Lombard St, Baltimore, MD USA
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, 725 W Lombard St, Baltimore, MD USA
| |
Collapse
|
10
|
Bhandari J, Muhammad B, Thapa P, Shrestha BG. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:102. [PMID: 28178952 PMCID: PMC5299666 DOI: 10.1186/s12906-017-1622-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/03/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is growing interest in the use of plants for the treatment and prevention of cancer. Medicinal plants are currently being evaluated as source of promising anticancer agents. In this paper, we have investigated the anticancer potential of plant Allium wallichii, a plant native to Nepal and growing at elevations of 2300-4800 m. This is the first study of its kind for the plant mentioned. METHODS The dried plant was extracted in aqueous ethanol. Phytochemical screening, anti-microbial assay, anti-oxidant assay, cytotoxicity assay and the flow-cytometric analysis were done for analyzing different phytochemicals present, anti-microbial activity, anti-oxidant activity and anti-cancer properties of Allium wallichii. RESULTS We observed the presence of steroids, terpenoids, flavonoids, reducing sugars and glycosides in the plant extract and the plant showed moderate anti-microbial and anti-oxidant activity. The IC50 values of Allium wallichii in different cancer cell lines are 69.69 μg/ml for Prostate cancer (PC3) cell line, 55.29 μg/ml for Breast Cancer (MCF-7) cell line and 46.51 μg/ml for cervical cancer (HeLa) cell line as compared to Doxorubicin (0.85 μg/ml). The cell viability assay using FACS showed that the IC50value of Allium wallichii for Burkitt's lymphoma (B-Lymphoma) cell line was 3.817 ± 1.99 mg/ml. CONCLUSIONS Allium wallichii can be an important candidate to be used as an anticancer agent. Separation of pure compounds with bioassay guided extraction, spectrometric analysis and subsequent cytotoxicity assay of the pure bioactive compounds from Allium wallichii is highly recommended as the crude extract itself showed promising cytotoxicity.
Collapse
Affiliation(s)
- Jaya Bhandari
- Department of Biotechnology, Kathmandu University, Kathmandu, Nepal
| | - BushraTaj Muhammad
- Panjwani Centre for Molecular Medicine and Drug Research, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Pratiksha Thapa
- Department of Biotechnology, Kathmandu University, Kathmandu, Nepal
| | | |
Collapse
|
11
|
Zhu KC, Sun JM, Shen JG, Jin JZ, Liu F, Xu XL, Chen L, Liu LT, Lv JJ. Afzelin exhibits anti-cancer activity against androgen-sensitive LNCaP and androgen-independent PC-3 prostate cancer cells through the inhibition of LIM domain kinase 1. Oncol Lett 2015; 10:2359-2365. [PMID: 26622852 DOI: 10.3892/ol.2015.3619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 02/02/2015] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer presents high occurrence worldwide. Medicinal plants are a major source of novel and potentially therapeutic molecules; therefore, the aim of the present study was to investigate the possible anti-prostate cancer activity of afzelin, a flavonol glycoside that was previously isolated from Nymphaea odorata. The effect of afzelin on the proliferation of androgen-sensitive LNCaP and androgen-independent PC-3 cells was evaluated by performing a water soluble tetrazolium salt-1 assay. In addition, the effect of afzelin on the cell cycle of the LNCaP and PC-3 prostate cancer cell lines was evaluated. Western blot analysis was performed to evaluate the effect of afzelin on the kinases responsible for the regulation of actin organization. Afzelin was identified to inhibit the proliferation of LNCaP and PC3 cells, and block the cell cycle in the G0 phase. The anticancer activity of afzelin in these cells was determined to be due to inhibition of LIM domain kinase 1 expression. Thus, the in vitro efficacy of afzelin against prostate cancer is promising; however, additional studies on different animal models are required to substantiate its anticancer potential.
Collapse
Affiliation(s)
- Kai-Chang Zhu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China ; Department of Urology, Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai 201499, P.R. China
| | - Jian-Mei Sun
- Department of Neonatology, Tongji Hospital, Tongji University, Shanghai 200065, P.R. China
| | - Jian-Guo Shen
- Department of Urology, Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai 201499, P.R. China
| | - Ji-Zhong Jin
- Department of Urology, Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai 201499, P.R. China
| | - Feng Liu
- Department of Urology, Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai 201499, P.R. China
| | - Xiao-Lin Xu
- Department of Urology, Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai 201499, P.R. China
| | - Lin Chen
- Department of Urology, Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai 201499, P.R. China
| | - Lin-Tao Liu
- Department of Urology, Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai 201499, P.R. China
| | - Jia-Ju Lv
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
12
|
Abstract
INTRODUCTION Rho GTPases are master regulators of actomyosin structure and dynamics and play pivotal roles in a variety of cellular processes including cell morphology, gene transcription, cell cycle progression, and cell adhesion. Because aberrant Rho GTPase signaling activities are widely associated with human cancer, key components of Rho GTPase signaling pathways have attracted increasing interest as potential therapeutic targets. Similar to Ras, Rho GTPases themselves were, until recently, deemed "undruggable" because of structure-function considerations. Several approaches to interfere with Rho GTPase signaling have been explored and show promise as new ways for tackling cancer cells. AREAS COVERED This review focuses on the recent progress in targeting the signaling activities of three prototypical Rho GTPases, that is, RhoA, Rac1, and Cdc42. The authors describe the involvement of these Rho GTPases, their key regulators and effectors in cancer. Furthermore, the authors discuss the current approaches for rationally targeting aberrant Rho GTPases along their signaling cascades, upstream and downstream of Rho GTPases, and posttranslational modifications at a molecular level. EXPERT OPINION To date, while no clinically effective drugs targeting Rho GTPase signaling for cancer treatment are available, tool compounds and lead drugs that pharmacologically inhibit Rho GTPase pathways have shown promise. Small-molecule inhibitors targeting Rho GTPase signaling may add new treatment options for future precision cancer therapy, particularly in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- Yuan Lin
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| |
Collapse
|
13
|
The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration. Cancer Lett 2015; 361:185-96. [DOI: 10.1016/j.canlet.2015.03.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022]
|
14
|
Gechev TS, Hille J, Woerdenbag HJ, Benina M, Mehterov N, Toneva V, Fernie AR, Mueller-Roeber B. Natural products from resurrection plants: Potential for medical applications. Biotechnol Adv 2014; 32:1091-101. [DOI: 10.1016/j.biotechadv.2014.03.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/25/2023]
|
15
|
Prudnikova TY, Rawat SJ, Chernoff J. Molecular pathways: targeting the kinase effectors of RHO-family GTPases. Clin Cancer Res 2014; 21:24-9. [PMID: 25336694 DOI: 10.1158/1078-0432.ccr-14-0827] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RHO GTPases, members of the RAS superfamily of small GTPases, are adhesion and growth factor-activated molecular switches that play important roles in tumor development and progression. When activated, RHO-family GTPases such as RAC1, CDC42, and RHOA, transmit signals by recruiting a variety of effector proteins, including the protein kinases PAK, ACK, MLK, MRCK, and ROCK. Genetically induced loss of RHO function impedes transformation by a number of oncogenic stimuli, leading to an interest in developing small-molecule inhibitors that either target RHO GTPases directly, or that target their downstream protein kinase effectors. Although inhibitors of RHO GTPases and their downstream signaling kinases have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to facilitate pharmaceutical research and development and is a promising therapeutic strategy.
Collapse
Affiliation(s)
| | - Sonali J Rawat
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania. Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Lowe HIC, Toyang NJ, Watson CT, Bryant J. Synthesis of Substituted 1,3-Diesters of Glycerol Using Wittig Chemistry. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
1,3-di-O-Cinnamoyl-glycerol is a natural compound isolated from a Jamaican medicinal plant commonly referred to as Ball moss (Tillandsia recurvata). The synthesis of this compound was achieved via a Wittig chemistry process. The synthetic approach started with acylation of a di-protected glycerol with cinnamoyl chloride, deprotection of the glycerol moiety, reaction of the primary alcohol with bromo acetylbromide followed by treatment with triphenyl phosphine to give the corresponding phosphonium bromide. The phosphonium bromide was then converted in situ to the Wittig reagent which is the basis for a novel route to 1,3-di-O-cinnamoyl glycerol. Four analogs were also synthesized, three of which are new and are being reported in this article for the first time. The new compounds include 3-(3,4-diemthoxy-phenyl)-acrylic acid 2-hydroxy-3-(3-ptolyl-acryloyloxy)-propyl ester (3), 2-acetoxy-5-((E)-3-(3-((E’)-3-(3,4-dimethoxyphenyl)acryloyloxy)-2-hydropropoxy)-3-oxoprop-1-enyl)benzoic acid (4) and 4-((E)-3-(3-((E)-3-(3,4-dimethoxyphenyl)acryloyloxy)-2-hydropropoxy)-3-oxoprop-1-enyl)benzoic acid (5). The compounds showed no activity in our anticancer assay.
Collapse
Affiliation(s)
- Henry IC Lowe
- Bio-Tech R & D Institute, Kingston, Jamaica
- Educational/Scientific Corporation, Wellington, FL, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ngeh J. Toyang
- Educational/Scientific Corporation, Wellington, FL, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Unbekandt M, Olson MF. The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer. J Mol Med (Berl) 2014; 92:217-25. [PMID: 24553779 PMCID: PMC3940853 DOI: 10.1007/s00109-014-1133-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/27/2022]
Abstract
The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer.
Collapse
Affiliation(s)
- Mathieu Unbekandt
- Cancer Research UK Beatson Institute, Switchback Road, Garscube Estate, Glasgow, UK G61 1BD
| | - Michael F. Olson
- Cancer Research UK Beatson Institute, Switchback Road, Garscube Estate, Glasgow, UK G61 1BD
| |
Collapse
|