1
|
Okwu DG, Manego RZ, Duparc S, Kremsner PG, Ramharter M, Mombo-Ngoma G. The non-artemisinin antimalarial drugs under development: a review. Clin Microbiol Infect 2025:S1198-743X(25)00127-2. [PMID: 40120754 DOI: 10.1016/j.cmi.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND In 2022, malaria caused approximately 249 million cases and 608000 deaths, primarily in Africa. Current treatments target asexual blood-stage parasites, gametocytes, and liver hypnozoites. Standard guidelines recommend a 3-day course of artemisinin-based combination therapies as first-line treatment of uncomplicated malaria and parenteral artesunate for severe malaria. However, emergence of partial resistance to artemisinin derivatives threatens the treatment efficacy, highlighting the urgent need for novel antimalarial drugs. OBJECTIVES This review summarizes recent progress in the clinical development of antimalarials particularly non-artemisinin compounds under target product profile (TPP)-1. SOURCES Data were gathered from the medicines for malaria venture (MMV) portfolio and clinical trial databases between 2020 and 2024. CONTENT Sixteen clinical trials were reviewed, including safety and efficacy studies involving healthy volunteers, experimentally infected volunteers, asymptomatic P. falciparum carriers, and malaria patients. Six trials evaluated the safety and tolerability of MMV533, ZY19489, INE963, GSK701/MMV367, and intravenous KAE609 in healthy volunteers. Efficacy trials involving experimentally infected volunteers assessed ZY19489 and GSK701/MMV367, while studies on asymptomatic carriers tested ZY19489/ferroquine and cabamiquine/pyronaridine. Trials on malaria patients investigated combinations of ganaplacide/lumefantrine-SDF, cabamiquine/pyronaridine, both oral and intravenous cipargamin, and INE963. IMPLICATIONS Although attrition remains a possibility, several promising candidate drugs with novel modes of action are advancing through clinical development. Many are expected to become available for treating uncomplicated and severe malaria within the next decade. These new antimalarials could significantly enhance malaria treatment, reduce resistance, and support global health effort toward malaria control, elimination, and, potentially, eradication.
Collapse
Affiliation(s)
- Dearie Glory Okwu
- Centre de Recherches Médicales de Lambaréné (CERMEL), B.P. 242, Lambaréné, Gabon; Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine & I Dep. of Medicine, University Medical Center Hamburg-Eppendorf, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Rella Zoleko Manego
- Centre de Recherches Médicales de Lambaréné (CERMEL), B.P. 242, Lambaréné, Gabon; German Center for Infection Research; Partner Site Hamburg-Lübeck-Borstel-Riems; Centre for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Dep. of Medicine, University Medical Center Hamburg-Eppendorf, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - Peter Gottfried Kremsner
- Centre de Recherches Médicales de Lambaréné (CERMEL), B.P. 242, Lambaréné, Gabon; Institut für Tropenmedizin, Universität Tübingen, und Deutsches Zentrum für Infektionsforschung, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné (CERMEL), B.P. 242, Lambaréné, Gabon; German Center for Infection Research; Partner Site Hamburg-Lübeck-Borstel-Riems; Centre for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Dep. of Medicine, University Medical Center Hamburg-Eppendorf, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné (CERMEL), B.P. 242, Lambaréné, Gabon; Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine & I Dep. of Medicine, University Medical Center Hamburg-Eppendorf, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany; German Center for Infection Research; Partner Site Hamburg-Lübeck-Borstel-Riems.
| |
Collapse
|
2
|
Ngouana V, Tsouh Fokou PV, Youbi Kamche A, Kemzeu R, Melogmo Dongmo YK, Tsakem Nangap MJ, Fekam Boyom F. Exploring the Antimalarial Potential of Entandrophragma Utile and Melochia Umbellata Extracts. Chem Biodivers 2025; 22:e202401314. [PMID: 39400962 DOI: 10.1002/cbdv.202401314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Resistance remains the fundamental problem with antiplasmodial treatments. The study investigated the antiplasmodial, cytotoxic, and antioxidant properties of two Cameroonian medicinal plants, Entandrophragma utile and Melochia umbellata. Antimalarial activity against Plasmodium falciparum strains 3D7 and Dd2 was assessed using the SYBR Green I assay. Cytotoxicity was assessed against Raw and Vero cells using the resazurin assay, and against red blood cells using a hemoglobin release quantification assay. Antioxidant potential was determined using DPPH (2, 2-diphenyl-1-picrylhydrazine), ABTS (2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), and FRAP (ferric-reducing antioxidant power) assays. The most bioactive extract was further analyzed using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) to determine its phytochemical composition. Extracts from E. utile exhibited moderate anti-malarial activity against Plasmodium falciparum (IC50 =32.81-100 μg/mL), while M. umbellata leaf extract (MULAE) showed strong activity (IC50 =11.62 and 11.91 μg/mL). All extracts demonstrated antioxidant activity (9.22 to 135.8 μg/mL), were selective for Raw and Vero cells, and were not toxic to red blood cells. UHPLC-MS analysis annotated potential pyrimidones, phenolic compounds, and terpenoids in MULAE. MULAE exhibited better antiplasmodial activity, suggesting the presence of unique bioactive compounds. Further research, including in vivo investigations, is needed to develop safe and effective antiplasmodial therapies.
Collapse
Affiliation(s)
- Vincent Ngouana
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, P.O. Box 96, Dschang, Cameroon
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Bamenda,, Bambili, Bamenda, PO Box 39, Cameroon
- Advanced Research and Health Innovation Hub (ARHIH), Yaoundé, P.O. Box 20133, Cameroon
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Aubin Youbi Kamche
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Raoul Kemzeu
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Yanick Kevin Melogmo Dongmo
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | | | - Fabrice Fekam Boyom
- Advanced Research and Health Innovation Hub (ARHIH), Yaoundé, P.O. Box 20133, Cameroon
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
3
|
Achan J, Barry A, Leroy D, Kamara G, Duparc S, Kaszubska W, Gandhi P, Buffet B, Tshilab P, Ogutu B, Taylor T, Krishna S, Richardson N, Ramachandruni H, Rietveld H. Defining the next generation of severe malaria treatment: a target product profile. Malar J 2024; 23:174. [PMID: 38835069 DOI: 10.1186/s12936-024-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Severe malaria is a life-threatening infection, particularly affecting children under the age of 5 years in Africa. Current treatment with parenteral artemisinin derivatives is highly efficacious. However, artemisinin partial resistance is widespread in Southeast Asia, resulting in delayed parasite clearance after therapy, and has emerged independently in South America, Oceania, and Africa. Hence, new treatments for severe malaria are needed, and it is prudent to define their characteristics now. This manuscript focuses on the target product profile (TPP) for new treatments for severe malaria. It also highlights preparedness when considering ways of protecting the utility of artemisinin-based therapies. TARGET PRODUCT PROFILE Severe malaria treatments must be highly potent, with rapid onset of antiparasitic activity to clear the infection as quickly as possible to prevent complications. They should also have a low potential for drug resistance selection, given the high parasite burden in patients with severe malaria. Combination therapies are needed to deter resistance selection and dissemination. Partner drugs which are approved for uncomplicated malaria treatment would provide the most rapid development pathway for combinations, though new candidate molecules should be considered. Artemisinin combination approaches to severe malaria would extend the lifespan of current therapy, but ideally, completely novel, non-artemisinin-based combination therapies for severe malaria should be developed. These should be advanced to at least phase 2 clinical trials, enabling rapid progression to patient use should current treatment fail clinically. New drug combinations for severe malaria should be available as injectable formulations for rapid and effective treatment, or as rectal formulations for pre-referral intervention in resource-limited settings. CONCLUSION Defining the TPP is a key step to align responses across the community to proactively address the potential for clinical failure of artesunate in severe malaria. In the shorter term, artemisinin-based combination therapies should be developed using approved or novel drugs. In the longer term, novel combination treatments should be pursued. Thus, this TPP aims to direct efforts to preserve the efficacy of existing treatments while improving care and outcomes for individuals affected by this life-threatening disease.
Collapse
Affiliation(s)
| | - Aïssata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Didier Leroy
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - George Kamara
- Médecins Sans Frontières, Magburaka District Hospital, Freetown, Sierra Leone
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bénédicte Buffet
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Terrie Taylor
- Queen Elizabeth Central Hospital and Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sanjeev Krishna
- Institut Für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (Dzif), Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Clinical Academic Group, Institute for Infection and Immunity, St. George's University of London, London, UK
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| | - Hans Rietveld
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| |
Collapse
|
4
|
Rajendran V, Naveen NC. Identifying Fast and Slow-Acting Antimalarial Compounds of Pandemic Response Box Against Blood-Stage Culture of Plasmodium falciparum 3D7. Curr Microbiol 2024; 81:81. [PMID: 38289473 DOI: 10.1007/s00284-023-03601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
The evolving clinical resistance in Plasmodium falciparum and the spike in malarial cases after the COVID-19 outbreak has triggered a search for new antimalarials effective against multi-drug-resistant P. falciparum strains. In this study, we assessed the timing of action, either fast or slow-acting of 13 potent compounds of Pandemic Response Box (PRB) against blood-stage Pf3D7 strain by SYBR Green-I assay. The asynchronous culture of Pf3D7 was exposed to varying concentrations of 13 compounds, and IC50 values were determined at 12, 24, 48, 72, and 96 h. We identified four fast-acting compounds (MMV000008, MMV1593541, MMV020752, MMV396785) with rapid-growth inhibitory activity having IC50 values ≤ 0.3 µM at 12 and 24 h. Similarly, we determined nine slow-acting compounds (MMV159340, MMV1634492, MMV1581558, MMV689758, MMV1593540, MMV394033, MMV019724, MMV000725, MMV1557856) having IC50 values ≤ 0.5 µM at 72 and 96 h. Furthermore, the stage-specific action of the two most potent fast-acting compounds (MMV1593541 and MMV020752) against rings, trophozoites, and schizonts at 48 h of exposure revealed that ring-stage parasites showed reduced IC50 values compared to mature stage forms. Therefore, our study demonstrates for the first time the identification of the most potent fast and slow-acting compounds from PRB against blood-stage infection, suggesting its utility in clinics and considering it as a partner drug in combination therapies.
Collapse
Affiliation(s)
- Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| | | |
Collapse
|
5
|
Luo AP, Giannangelo C, Siddiqui G, Creek DJ. Promising antimalarial hits from phenotypic screens: a review of recently-described multi-stage actives and their modes of action. Front Cell Infect Microbiol 2023; 13:1308193. [PMID: 38162576 PMCID: PMC10757594 DOI: 10.3389/fcimb.2023.1308193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Over the last two decades, global malaria cases caused by Plasmodium falciparum have declined due to the implementation of effective treatments and the use of insecticides. However, the COVID-19 pandemic caused major disruption in the timely delivery of medical goods and diverted public health resources, impairing malaria control. The emergence of resistance to all existing frontline antimalarials underpins an urgent need for new antimalarials with novel mechanisms of action. Furthermore, the need to reduce malaria transmission and/or prevent malaria infection has shifted the focus of antimalarial research towards the discovery of compounds that act beyond the symptomatic blood stage and also impact other parasite life cycle stages. Phenotypic screening has been responsible for the majority of new antimalarial lead compounds discovered over the past 10 years. This review describes recently reported novel antimalarial hits that target multiple parasite stages and were discovered by phenotypic screening during the COVID-19 pandemic. Their modes of action and targets in blood stage parasites are also discussed.
Collapse
Affiliation(s)
| | | | - Ghizal Siddiqui
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Darren J. Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
6
|
Magwaza RN, Abubaker M, Hussain B, Haley M, Couper K, Freeman S, Nirmalan NJ. Evaluation of 4-Aminoquinoline Hydrazone Analogues as Potential Leads for Drug-Resistant Malaria. Molecules 2023; 28:6471. [PMID: 37764248 PMCID: PMC10534891 DOI: 10.3390/molecules28186471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of resistance to first-line antimalarial drugs calls for the development of new therapies for drug-resistant malaria. The efficacy of quinoline-based antimalarial drugs has prompted the development of novel quinolines. A panel of 4-aminoquinoline hydrazone analogues were tested on the multidrug-resistant K1 strain of Plasmodium falciparum: IC50 values after a 48 h cycle ranged from 0.60 to 49 µM, while the 72 h cycle ranged from 0.026 to 0.219 μM. Time-course assays were carried out to define the activity of the lead compounds, which inhibited over 50% growth in 24 h and 90% growth in 72 h. Cytotoxicity assays with HepG2 cells showed IC50 values of 0.87-11.1 μM, whereas in MDBK cells, IC50 values ranged from 1.66 to 11.7 μM. High selectivity indices were observed for the lead compounds screened at 72 h on P. falciparum. Analyses of stage specificity revealed that the ring stages of the parasite life cycle were most affected. Based on antimalarial efficacy and in vitro safety profiles, lead compound 4-(2-benzylidenehydrazinyl)-6-methoxy-2-methylquinoline 2 was progressed to drug combination studies for the detection of synergism, with a combinatory index of 0.599 at IC90 for the combination with artemether, indicating a synergistic antimalarial activity. Compound 2 was screened on different strains of P. falciparum (3D7, Dd2), which maintained similar activity to K1, suggesting no cross-resistance between multidrug resistance and sensitive parasite strains. In vivo analysis with 2 showed the suppression of parasitaemia with P. yoelii NL (non-lethal)-treated mice (20 mg/kg and 5 mg/kg).
Collapse
Affiliation(s)
- Rachael N. Magwaza
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester M13 9PT, UK;
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK;
| | - Muna Abubaker
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK;
| | - Buthaina Hussain
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan;
| | - Michael Haley
- School of Biological Sciences, Lydia Becker Institute of Immunology and Infection, University of Manchester, Manchester M13 9PT, UK; (M.H.); (K.C.)
| | - Kevin Couper
- School of Biological Sciences, Lydia Becker Institute of Immunology and Infection, University of Manchester, Manchester M13 9PT, UK; (M.H.); (K.C.)
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester M13 9PT, UK;
| | - Niroshini J. Nirmalan
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK;
| |
Collapse
|
7
|
Widada J, Damayanti E, Mustofa M, Dinoto A, Febriansah R, Hertiani T. Marine-Derived Streptomyces sennicomposti GMY01 with Anti-Plasmodial and Anticancer Activities: Genome Analysis, In Vitro Bioassay, Metabolite Profiling, and Molecular Docking. Microorganisms 2023; 11:1930. [PMID: 37630491 PMCID: PMC10458361 DOI: 10.3390/microorganisms11081930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
To discover novel antimalarial and anticancer compounds, we carried out a genome analysis, bioassay, metabolite profiling, and molecular docking of marine sediment actinobacteria strain GMY01. The whole-genome sequence analysis revealed that Streptomyces sp. GMY01 (7.9 Mbp) is most similar to Streptomyces sennicomposti strain RCPT1-4T with an average nucleotide identity (ANI) and ANI based on BLAST+ (ANIb) values of 98.09 and 97.33% (>95%). An in vitro bioassay of the GMY01 bioactive on Plasmodium falciparum FCR3, cervical carcinoma of HeLa cell and lung carcinoma of HTB cells exhibited moderate activity (IC50 value of 46.06; 27.31 and 33.75 µg/mL) with low toxicity on Vero cells as a normal cell (IC50 value of 823.3 µg/mL). Metabolite profiling by LC-MS/MS analysis revealed that the active fraction of GMY01 contained carbohydrate-based compounds, C17H29NO14 (471.15880 Da) as a major compound (97.50%) and mannotriose (C18H32O16; 504.16903 Da, 1.96%) as a minor compound. Molecular docking analysis showed that mannotriose has a binding affinity on glutathione reductase (GR) and glutathione-S-transferase (GST) of P. falciparum and on autophagy proteins (mTORC1 and mTORC2) of cancer cells. Streptomyces sennicomposti GMY01 is a potential bacterium producing carbohydrate-based bioactive compounds with anti-plasmodial and anticancer activities and with low toxicity to normal cells.
Collapse
Affiliation(s)
- Jaka Widada
- Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ema Damayanti
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul 55861, Indonesia;
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gajah Mada, Yogyakarta 55281, Indonesia;
| | - Achmad Dinoto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia;
| | - Rifki Febriansah
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah, Yogyakarta 55183, Indonesia;
| | - Triana Hertiani
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| |
Collapse
|
8
|
Calit J, Araújo JE, Deng B, Miura K, Gaitán XA, Araújo MDS, Medeiros JF, Long CA, Simeonov A, Eastman RT, Bargieri DY. Novel Transmission-Blocking Antimalarials Identified by High-Throughput Screening of Plasmodium berghei Ookluc. Antimicrob Agents Chemother 2023; 67:e0146522. [PMID: 36856421 PMCID: PMC10112123 DOI: 10.1128/aac.01465-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Safe and effective malaria transmission-blocking chemotherapeutics would allow a community-level approach to malaria control and eradication efforts by targeting the mosquito sexual stage of the parasite life cycle. However, only a single drug, primaquine, is currently approved for use in reducing transmission, and drug toxicity limits its widespread implementation. To address this limitation in antimalarial chemotherapeutics, we used a recently developed transgenic Plasmodium berghei line, Ookluc, to perform a series of high-throughput in vitro screens for compounds that inhibit parasite fertilization, the initial step of parasite development within the mosquito. Screens of antimalarial compounds, approved drug collections, and drug-like molecule libraries identified 185 compounds that inhibit parasite maturation to the zygote form. Seven compounds were further characterized to block gametocyte activation or to be cytotoxic to formed zygotes. These were further validated in mosquito membrane-feeding assays using Plasmodium falciparum and P. vivax. This work demonstrates that high-throughput screens using the Ookluc line can identify compounds that are active against the two most relevant human Plasmodium species and provides a list of compounds that can be explored for the development of new antimalarials to block transmission.
Collapse
Affiliation(s)
- Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jessica E. Araújo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Xiomara A. Gaitán
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maisa da Silva Araújo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Jansen F. Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Richard T. Eastman
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Daniel Y. Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Rao SPS, Manjunatha UH, Mikolajczak S, Ashigbie PG, Diagana TT. Drug discovery for parasitic diseases: powered by technology, enabled by pharmacology, informed by clinical science. Trends Parasitol 2023; 39:260-271. [PMID: 36803572 DOI: 10.1016/j.pt.2023.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023]
Abstract
While prevention is a bedrock of public health, innovative therapeutics are needed to complement the armamentarium of interventions required to achieve disease control and elimination targets for neglected diseases. Extraordinary advances in drug discovery technologies have occurred over the past decades, along with accumulation of scientific knowledge and experience in pharmacological and clinical sciences that are transforming many aspects of drug R&D across disciplines. We reflect on how these advances have propelled drug discovery for parasitic infections, focusing on malaria, kinetoplastid diseases, and cryptosporidiosis. We also discuss challenges and research priorities to accelerate discovery and development of urgently needed novel antiparasitic drugs.
Collapse
Affiliation(s)
| | | | | | - Paul G Ashigbie
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA.
| | | |
Collapse
|
10
|
Nekkab N, Malinga J, Braunack-Mayer L, Kelly SL, Miller RS, Penny MA. Modelling to inform next-generation medical interventions for malaria prevention and treatment. COMMUNICATIONS MEDICINE 2023; 3:41. [PMID: 36966272 PMCID: PMC10039673 DOI: 10.1038/s43856-023-00274-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023] Open
Abstract
Global progress against malaria has stagnated and novel medical interventions to prevent malaria are needed to fill gaps in existing tools and improve protection against infection and disease. Candidate selection for next-generation interventions should be supported by the best available evidence. Target product profiles and preferred product characteristics play a key role in setting selection criteria requirements and early endorsement by health authorities. While clinical evidence and expert opinion often inform product development decisions, integrating modelling evidence early and iteratively into this process provides an opportunity to link product characteristics with expected public health outcomes. Population models of malaria transmission can provide a better understanding of which, and at what magnitude, key intervention characteristics drive public health impact, and provide quantitative evidence to support selection of use-cases, transmission settings, and deployment strategies. We describe how modelling evidence can guide and accelerate development of new malaria vaccines, monoclonal antibodies, and chemoprevention.
Collapse
Affiliation(s)
- Narimane Nekkab
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Josephine Malinga
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lydia Braunack-Mayer
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sherrie L Kelly
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Melissa A Penny
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Recent approaches in the drug research and development of novel antimalarial drugs with new targets. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:1-27. [PMID: 36692468 DOI: 10.2478/acph-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.
Collapse
|
12
|
Pal K, Raza MK, Legac J, Rahman A, Manzoor S, Bhattacharjee S, Rosenthal PJ, Hoda N. Identification, in-vitro anti-plasmodial assessment and docking studies of series of tetrahydrobenzothieno[2,3-d]pyrimidine-acetamide molecular hybrids as potential antimalarial agents. Eur J Med Chem 2023; 248:115055. [PMID: 36621136 DOI: 10.1016/j.ejmech.2022.115055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Malaria is the most lethal parasitic infections in the world. To address the emergence of drug resistance to current antimalarials, here we report the design and synthesis of new series of tetrahydrobenzothieno[2,3-d]pyrimidine-acetamide hybrids by using multicomponent Petasis reaction as the key step and evaluated in vitro for their antimalarial effectiveness. The structure of all the compounds were confirmed by NMR Spectroscopy and mass spectrometry. Most of the compounds showed potent antimalarial activity against both CQ-sensitive (3D7) and CQ-resistant (W2) strains. A8, A5, and A4 are the most potent compounds that showed excellent anti-plasmodial activity against CQ-resistant strain in the nanomolar range with IC50 values 55.7 nM, 60.8 nM, and 68.0 nM respectively. To assess the parasite selectivity, the in vitro cytotoxicity of selected compounds (A3-A6, A8) was tested against HPL1D cells, demonstrating low cytotoxicity with high selectivity indices. Furthermore, these compounds were also evaluated on two additional human cancerous cell lines (A549 and MDA-MB-231), confirming their anticancer effectiveness. The in vitro hemolysis assay also showed the non-toxicity of these compounds on normal uninfected human RBCs. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The in silico ADMET profiling also revealed promising physicochemical and pharmacokinetic parameters for the most active hybrids, which provide strong vision for further development of potential antimalarials.
Collapse
Affiliation(s)
- Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
13
|
Cherkaoui‐Rbati MH, Andenmatten N, Burgert L, Egbelowo OF, Fendel R, Fornari C, Gabel M, Ward J, Möhrle JJ, Gobeau N. A pharmacokinetic-pharmacodynamic model for chemoprotective agents against malaria. CPT Pharmacometrics Syst Pharmacol 2022; 12:50-61. [PMID: 36412499 PMCID: PMC9835136 DOI: 10.1002/psp4.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/28/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Chemoprophylactics are a vital tool in the fight against malaria. They can be used to protect populations at risk, such as children younger than the age of 5 in areas of seasonal malaria transmission or pregnant women. Currently approved chemoprophylactics all present challenges. There are either concerns about unacceptable adverse effects such as neuropsychiatric sequalae (mefloquine), risks of hemolysis in patients with G6PD deficiency (8-aminoquinolines such as tafenoquine), or cost and daily dosing (atovaquone-proguanil). Therefore, there is a need to develop new chemoprophylactic agents to provide more affordable therapies with better compliance through improving properties such as pharmacokinetics to allow weekly, preferably monthly, dosing. Here we present a pharmacokinetic-pharmacodynamic (PKPD) model constructed using DSM265 (a dihydroorotate dehydrogenase inhibitor with activity against the liver schizonts of malaria, therefore, a prophylaxis candidate). The PKPD model mimics the parasite lifecycle by describing parasite dynamics and drug activity during the liver and blood stages. A major challenge is the estimation of model parameters, as only blood-stage parasites can be observed once they have reached a threshold. By combining qualitative and quantitative knowledge about the parasite from various sources, it has been shown that it is possible to infer information about liver-stage growth and its initial infection level. Furthermore, by integrating clinical data, the killing effect of the drug on liver- and blood-stage parasites can be included in the PKPD model, and a clinical outcome can be predicted. Despite multiple challenges, the presented model has the potential to help translation from preclinical to late development for new chemoprophylactic candidates.
Collapse
Affiliation(s)
- Mohammed H. Cherkaoui‐Rbati
- Medicines for Malaria VentureGenevaSwitzerland,Present address:
Pharmaceutical Sciences, Pharma Research and Early DevelopmentHoffmann‐La RocheBaselSwitzerland
| | - Nicole Andenmatten
- Medicines for Malaria VentureGenevaSwitzerland,Present address:
Lonza AGVispSwitzerland
| | | | - Oluwaseun F. Egbelowo
- Division of Clinical Pharmacology, Department of MedicineThe University of Texas at AustinTexasAustinUSA
| | - Rolf Fendel
- Institute for Tropical MedicineUniversity of TübingenTübingenGermany
| | | | - Michael Gabel
- Center for Modelling and Simulation in the Biosciences, BioQuant‐CenterUniversity of HeidelbergHeidelbergGermany
| | - John Ward
- Department of Mathematical SciencesUniversity of LoughboroughLoughboroughUK
| | | | | |
Collapse
|
14
|
Activity-Based Protein Profiling of Human and Plasmodium Serine Hydrolases and Interrogation of Potential Antimalarial Targets. iScience 2022; 25:104996. [PMID: 36105595 PMCID: PMC9464883 DOI: 10.1016/j.isci.2022.104996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Malaria remains a global health issue requiring the identification of novel therapeutic targets to combat drug resistance. Metabolic serine hydrolases are druggable enzymes playing essential roles in lipid metabolism. However, very few have been investigated in malaria-causing parasites. Here, we used fluorophosphonate broad-spectrum activity-based probes and quantitative chemical proteomics to annotate and profile the activity of more than half of predicted serine hydrolases in P. falciparum across the erythrocytic cycle. Using conditional genetics, we demonstrate that the activities of four serine hydrolases, previously annotated as essential (or important) in genetic screens, are actually dispensable for parasite replication. Of importance, we also identified eight human serine hydrolases that are specifically activated at different developmental stages. Chemical inhibition of two of them blocks parasite replication. This strongly suggests that parasites co-opt the activity of host enzymes and that this opens a new drug development strategy against which the parasites are less likely to develop resistance. P. falciparum has 48 predicted metabolic SHs. Many react with the ABP, FP-N3 The activity of 25 PfSHs and 8 HsSHs was profiled throughout the asexual life cycle Catalytic mutants of 4 PfSHs (formerly held essential) had no parasite growth effect Selective inhibitors for 2 HsSHs (APEH and LPLA2) affected parasite growth
Collapse
|
15
|
Looker O, Dans MG, Bullen HE, Sleebs BE, Crabb BS, Gilson PR. The Medicines for Malaria Venture Malaria Box contains inhibitors of protein secretion in
Plasmodium falciparum
blood stage parasites. Traffic 2022; 23:442-461. [PMID: 36040075 PMCID: PMC9543830 DOI: 10.1111/tra.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum parasites which cause malaria, traffic hundreds of proteins into the red blood cells (RBCs) they infect. These exported proteins remodel their RBCs enabling host immune evasion through processes such as cytoadherence that greatly assist parasite survival. As resistance to all current antimalarial compounds is rising new compounds need to be identified and those that could inhibit parasite protein secretion and export would both rapidly reduce parasite virulence and ultimately lead to parasite death. To identify compounds that inhibit protein export we used transgenic parasites expressing an exported nanoluciferase reporter to screen the Medicines for Malaria Venture Malaria Box of 400 antimalarial compounds with mostly unknown targets. The most potent inhibitor identified in this screen was MMV396797 whose application led to export inhibition of both the reporter and endogenous exported proteins. MMV396797 mediated blockage of protein export and slowed the rigidification and cytoadherence of infected RBCs—modifications which are both mediated by parasite‐derived exported proteins. Overall, we have identified a new protein export inhibitor in P. falciparum whose target though unknown, could be developed into a future antimalarial that rapidly inhibits parasite virulence before eliminating parasites from the host.
Collapse
Affiliation(s)
| | - Madeline G. Dans
- Burnet Institute Melbourne Australia
- School of Medicine Deakin University Geelong Australia
| | - Hayley E. Bullen
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology The University of Melbourne Parkville Victoria Australia
| | - Brendan S. Crabb
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
- Department of Immunology and Pathology Monash University Melbourne Australia
| | - Paul R. Gilson
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| |
Collapse
|
16
|
Omagha R, Idowu ET, Alimba CG, Otubanjo OA, Oyibo WA, Agbaje EO. In vivo antiplasmodial activities and acute toxicity assessment of two plant cocktail extracts commonly used among Southwestern Nigerians. J Parasit Dis 2022; 46:343-353. [PMID: 35692481 PMCID: PMC9177911 DOI: 10.1007/s12639-021-01450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
Discovering and developing the desired antimalarials continue to be a necessity especially due to treatment failures, drug resistance, limited availability and affordability of antimalarial drugs and costs especially in poor malarial endemic countries. This study investigated the efficacies of two plant cocktails; CtA and CtB, selected based on their traditional usage. Efficacies of the cocktail extracts, chloroquine and pyrimethamine against Plasmodium berghei berghei were evaluated in mice using the suppressive, curative and prophylactic test models, after oral and intraperitoneal acute toxicity determination of the plant cocktails in accordance with Lorke's method. Data was analyzed using SPSS software version 23.0 with level of significance set at P < 0.05. The median lethal dose was determined to be higher than 5000 mg/kg body weight orally for both CtA and CtB; and 316.23 mg/kg body weight intraperitoneally for CtA. Each cocktail exhibited high dose dependent Plasmodium berghei berghei inhibition which was 96.95% and 99.13% in the CtA800 mg/kg and CtB800 mg/kg doses in the curative groups respectively, 96.46% and 78.62% for CtA800mg/kg and CtB800mg/kg doses in the suppressive groups respectively, as well as 65.05% and 88.80% for CtA800mg/kg and CtB800mg/kg doses in the prophylactic groups respectively. Throughout the observation periods, the standard drugs, chloroquine phosphate and pyrimethamine maintained higher inhibitions up to 100%. These findings demonstrate that CtA and CtB possess good antimalarial abilities and calls for their development and standardization as effective and readily available antimalarial options. The acute toxicity results obtained underscore the importance of obtaining information on toxicities of medicinal plant remedies before their administration in both humans and animals.
Collapse
Affiliation(s)
- Rachel Omagha
- Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | | | | | | | - Wellington Aghoghovwia Oyibo
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria
| | - Esther Oluwatoyin Agbaje
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria
| |
Collapse
|
17
|
Population Pharmacokinetics of Antimalarial Naphthoquine in Combination with Artemisinin in Tanzanian Children and Adults: Dose Optimization. Antimicrob Agents Chemother 2022; 66:e0169621. [PMID: 35465706 PMCID: PMC9112936 DOI: 10.1128/aac.01696-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The combination antimalarial therapy of artemisinin-naphthoquine (ART-NQ) was developed as a single-dose therapy, aiming to improve adherence relative to the multiday schedules of other artemisinin combination therapies. The pharmacokinetics of ART-NQ has not been well characterized, especially in children. A pharmacokinetic study was conducted in adults and children over 5 years of age (6 to 10, 11 to 17, and ≥18 years of age) with uncomplicated malaria in Tanzania. The median weights for the three age groups were 20, 37.5, and 55 kg, respectively. Twenty-nine patients received single doses of 20 mg/kg of body weight for artemisinin and 8 mg/kg for naphthoquine, and plasma drug concentrations were assessed at 13 time points over 42 days from treatment. We used nonlinear mixed-effects modeling to interpret the data, and allometric scaling was employed to adjust for the effect of body size. The pharmacokinetics of artemisinin was best described by one-compartment model and that of naphthoquine by a two-compartment disposition model. Clearance values for a typical patient (55-kg body weight and 44.3-kg fat-free mass) were estimated as 66.7 L/h (95% confidence interval [CI], 57.3 to 78.5 L/h) for artemisinin and 44.2 L/h (95% CI, 37.9 to 50.6 L/h) for naphthoquine. Nevertheless, we show via simulation that patients weighing ≥70 kg achieve on average a 30% lower day 7 concentration compared to a 48-kg reference patient at the doses tested, suggesting dose increases may be warranted to ensure adequate exposure. (This study has been registered at ClinicalTrials.gov under identifier NCT01930331.).
Collapse
|
18
|
Dong Y, Sonawane Y, Maher SP, Zeeman AM, Chaumeau V, Vantaux A, Cooper CA, Chiu FCK, Ryan E, McLaren J, Chen G, Wittlin S, Witkowski B, Nosten F, Sriraghavan K, Kyle DE, Kocken CHM, Charman SA, Vennerstrom JL. Metabolic, Pharmacokinetic, and Activity Profile of the Liver Stage Antimalarial (RC-12). ACS OMEGA 2022; 7:12401-12411. [PMID: 35449901 PMCID: PMC9016807 DOI: 10.1021/acsomega.2c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The catechol derivative RC-12 (WR 27653) (1) is one of the few non-8-aminoquinolines with good activity against hypnozoites in the gold-standard Plasmodium cynomolgi-rhesus monkey (Macaca mulatta) model, but in a small clinical trial, it had no efficacy against Plasmodium vivax hypnozoites. In an attempt to better understand the pharmacokinetic and pharmacodynamic profile of 1 and to identify potential active metabolites, we now describe the phase I metabolism, rat pharmacokinetics, and in vitro liver-stage activity of 1 and its metabolites. Compound 1 had a distinct metabolic profile in human vs monkey liver microsomes, and the data suggested that the O-desmethyl, combined O-desmethyl/N-desethyl, and N,N-didesethyl metabolites (or a combination thereof) could potentially account for the superior liver stage antimalarial efficacy of 1 in rhesus monkeys vs that seen in humans. Indeed, the rate of metabolism was considerably lower in human liver microsomes in comparison to rhesus monkey microsomes, as was the formation of the combined O-desmethyl/N-desethyl metabolite, which was the only metabolite tested that had any activity against liver-stage P. vivax; however, it was not consistently active against liver-stage P. cynomolgi. As 1 and all but one of its identified Phase I metabolites had no in vitro activity against P. vivax or P. cynomolgi liver-stage malaria parasites, we suggest that there may be additional unidentified active metabolites of 1 or that the exposure of 1 achieved in the reported unsuccessful clinical trial of this drug candidate was insufficient to kill the P. vivax hypnozoites.
Collapse
Affiliation(s)
- Yuxiang Dong
- College
of Pharmacy, University of Nebraska Medical
Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yogesh Sonawane
- College
of Pharmacy, University of Nebraska Medical
Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Steven P. Maher
- Center
for Tropical and Emerging Global Diseases, University of Georgia, 370 Coverdell
Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Anne-Marie Zeeman
- Department
of Parasitology, Biomedical Primate Research
Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Victor Chaumeau
- Shoklo
Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit,
Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Road, Mae Sot, Tak 63110, Thailand
- Centre for
Tropical Medicine and Global Health, Nuffield Department of Medicine
Research building, University of Oxford
Old Road Campus, Oxford OX3 7DQ, U.K.
| | - Amélie Vantaux
- Malaria
Molecular Epidemiology Unit, Institut Pasteur
du Cambodge, 5 Boulevard Monivong, P.O. Box 983, Phnom
Penh 120 210, Cambodia
| | - Caitlin A. Cooper
- Center
for Tropical and Emerging Global Diseases, University of Georgia, 370 Coverdell
Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Francis C. K. Chiu
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Eileen Ryan
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jenna McLaren
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Gong Chen
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sergio Wittlin
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
| | - Benoît Witkowski
- Malaria
Molecular Epidemiology Unit, Institut Pasteur
du Cambodge, 5 Boulevard Monivong, P.O. Box 983, Phnom
Penh 120 210, Cambodia
| | - François Nosten
- Shoklo
Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit,
Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Road, Mae Sot, Tak 63110, Thailand
- Centre for
Tropical Medicine and Global Health, Nuffield Department of Medicine
Research building, University of Oxford
Old Road Campus, Oxford OX3 7DQ, U.K.
| | - Kamaraj Sriraghavan
- College
of Pharmacy, University of Nebraska Medical
Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Dennis E. Kyle
- Center
for Tropical and Emerging Global Diseases, University of Georgia, 370 Coverdell
Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Clemens H. M. Kocken
- Department
of Parasitology, Biomedical Primate Research
Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Susan A. Charman
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jonathan L. Vennerstrom
- College
of Pharmacy, University of Nebraska Medical
Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
19
|
Moehrle JJ. Development of New Strategies for Malaria Chemoprophylaxis: From Monoclonal Antibodies to Long-Acting Injectable Drugs. Trop Med Infect Dis 2022; 7:tropicalmed7040058. [PMID: 35448833 PMCID: PMC9024890 DOI: 10.3390/tropicalmed7040058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Drug discovery for malaria has traditionally focused on orally available drugs that kill the abundant, parasitic blood stage. Recently, there has also been an interest in injectable medicines, in the form of monoclonal antibodies (mAbs) with long-lasting plasma half-lives or long-lasting depot formulations of small molecules. These could act as prophylactic drugs, targeting the sporozoites and other earlier parasitic stages in the liver, when the parasites are less numerous, or as another intervention strategy targeting the formation of infectious gametocytes. Generally speaking, the development of mAbs is less risky (costly) than small-molecule drugs, and they have an excellent safety profile with few or no off-target effects. Therefore, populations who are the most vulnerable to malaria, i.e., pregnant women and young children would have access to such new treatments much faster than is presently the case for new antimalarials. An analysis of mAbs that were successfully developed for oncology illustrates some of the feasibility aspects, and their potential as affordable drugs in low- and middle-income countries.
Collapse
Affiliation(s)
- Joerg J Moehrle
- Integrated Sciences, R&D, Medicines for Malaria Venture, Route de Pré Bois 20, CH-1215 Geneva 15, Switzerland
| |
Collapse
|
20
|
An innovative study design with intermittent dosing to generate a GLP-regulatory package in preclinical species for long lasting molecule M5717, inhibitor of Plasmodium eukaryotic translation elongation factor 2. Toxicol Appl Pharmacol 2022; 443:116006. [DOI: 10.1016/j.taap.2022.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022]
|
21
|
Jiatsa Mbouna CD, Tchatat Tali BM, Tsouh Fokou PV, Madiesse Kemgne EA, Keumoe R, Toghueo Kouipou RM, Yamthe Tchokouaha LR, Tchuente Tchuenmogne MA, Kenou DK, Sahal D, Boyom FF. Specific sub fractions from Terminalia mantaly (H. Perrier) extracts potently inhibit Plasmodium falciparum rings, merozoite egress and invasion. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114909. [PMID: 34902534 DOI: 10.1016/j.jep.2021.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia mantaly (H. Perrier) and Terminalia superba (Engl. & Diels) are sources of treatment for various diseases, including malaria and/or related symptoms in parts of Southwestern Cameroon. However, there is limited information on the extent of the antiplasmodial potential of their extracts. AIM OF THE STUDY The present study was designed to investigate the antiplasmodial potential of chromatographic sub fractions (SFs) from promising fractions of Terminalia mantaly (Tm) [TmsbwChl, the chloroform fraction from water extract of Tm, IC50 (μg/mL) PfINDO: 0.56, Pf3D7: 1.12; SI > 357 (HEK/PfINDO) & 178 (HEK/Pf3D7)] and Terminalia superba (Ts) [TsrmEA, the ethyl acetate fraction from methanolic extract of Ts, IC50 (μg/mL) PfINDO: 1.82, Pf3D7: 1.65; SI > 109 (HEK/PfINDO) & 121 (HEK/Pf3D7)] obtained from previous studies. The SFs were tested against Plasmodium falciparum 3D7 (Pf3D7-chloroquine sensitive) and INDO (PfINDO-chloroquine resistant) strains in culture. Also, the phytochemical profile of potent SFs was determined and finally, the inhibition of the asexual blood stages of Plasmodium falciparum by the SFs with the highest promise was assessed. MATERIAL AND METHODS Selected SFs were submitted to a second bio-guided fractionation using silica gel column chromatography. The partial phytochemical composition of potent antiplasmodial SFs was determined using gas chromatography coupled to mass spectrometry (GC-MS). The SYBR Green I-based fluorescence microtiter plate assay was used to monitor the growth of Plasmodium falciparum parasites in culture in the presence or absence of extracts. Microscopy and flow cytometry counting was used to assess the Plasmodium falciparum stage-specific inhibition and post-drug exposure growth suppression by highly potent extracts. RESULTS Twenty-one of the 39 SFs afforded from TmsbwChl showed activity (IC50: 0.29-4.74 μg/mL) against both Pf3D7 and PfINDO strains. Of note, eight SFs namely, Tm25, Tm28-30, Tm34-36 and Tm38, exerted highly potent antiplasmodial activity (IC50 < 1 μg/mL) with IC50PfINDO: 0.41-0.84 μg/mL and IC50Pf3D7: 0.29-0.68 μg/mL. They also displayed very high selectivity (50 < SIPfINDO, SIPf3D7 > 344) on the two Plasmodial strains. On the other hand, 7 SFs (SFs Ts03, Ts04, Ts06, Ts09, Ts10, Ts12 and Ts13) from TsrmEA showed promising inhibitory potential against both parasite strains (IC50: 2.01-5.14 μg/mL). Sub fraction Tm36 (IC50PfINDO: 0.41 μg/mL, SIPfINDO > 243; IC50Pf3D7: 0.29 μg/mL, SIPf3D7 > 344) showed the highest promise. The GC-MS analysis of the 8 selected SFs led to the identification of 99 phytometabolites, with D-limonene (2), benzaldehyde (12), carvone (13), caryophyllene (35), hexadecanoic acid, methyl ester (74) and 9-octadecenoic acid, methyl ester (82) being the main constituents. Sub fractions Tm28, Tm29, Tm30, Tm36 and Tm38 inhibited all the three intraerythrocytic stages of P. falciparum, with strong potency against ring stage development, merozoite egress and invasion processes. CONCLUSIONS This study has identified highly potent antiplasmodial SFs from Terminalia mantaly with significant activity on the intraerythrocytic development of Plasmodium falciparum. These SFs qualify as promising sources of novel antiplasmodial lead compounds. Further purification and characterization studies are expected to unravel molecular targets in rings and merozoites.
Collapse
Affiliation(s)
- Cedric Derick Jiatsa Mbouna
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Brice Mariscal Tchatat Tali
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Department of Biochemistry, Faculty of Sciences, University of Bamenda, PO Box 39, Bambili, Cameroon
| | - Eugenie Aimee Madiesse Kemgne
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Rodrigue Keumoe
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Rufin Marie Toghueo Kouipou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Lauve Rachel Yamthe Tchokouaha
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Institute for Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, P.O. Box 6163, Yaoundé, Cameroon
| | - Marthe Aimée Tchuente Tchuenmogne
- Laboratory of Natural Products and Organic Synthesis, Department of Organic Chemistry,Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Donald Kagho Kenou
- Laboratory of Natural Products and Organic Synthesis, Department of Organic Chemistry,Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, New Delhi -110067, India.
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
22
|
Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies. Pharmaceutics 2021; 13:pharmaceutics13122189. [PMID: 34959470 PMCID: PMC8706932 DOI: 10.3390/pharmaceutics13122189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs' target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them.
Collapse
|
23
|
McCarthy JS, Yalkinoglu Ö, Odedra A, Webster R, Oeuvray C, Tappert A, Bezuidenhout D, Giddins MJ, Dhingra SK, Fidock DA, Marquart L, Webb L, Yin X, Khandelwal A, Bagchus WM. Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study. THE LANCET. INFECTIOUS DISEASES 2021; 21:1713-1724. [PMID: 34715032 PMCID: PMC8612936 DOI: 10.1016/s1473-3099(21)00252-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND M5717 is the first plasmodium translation elongation factor 2 inhibitor to reach clinical development as an antimalarial. We aimed to characterise the safety, pharmacokinetics, and antimalarial activity of M5717 in healthy volunteers. METHODS This first-in-human study was a two-part, single-centre clinical trial done in Brisbane, QLD, Australia. Part one was a double-blind, randomised, placebo-controlled, single ascending dose study in which participants were enrolled into one of nine dose cohorts (50, 100, 200, 400, 600, 1000, 1250, 1800, or 2100 mg) and randomly assigned (3:1) to M5717 or placebo. A sentinel dosing strategy was used for each dose cohort whereby two participants (one assigned to M5717 and one assigned to placebo) were initially randomised and dosed. Randomisation schedules were generated electronically by independent, unblinded statisticians. Part two was an open-label, non-randomised volunteer infection study using the Plasmodium falciparum induced blood-stage malaria model in which participants were enrolled into three dose cohorts. Healthy men and women of non-childbearing potential aged 18-55 years were eligible for inclusion; individuals in the volunteer infection study were required to be malaria naive. Safety and tolerability (primary outcome of the single ascending dose study and secondary outcome of the volunteer infection study) were assessed by frequency and severity of adverse events. The pharmacokinetic profile of M5717 was also characterised (primary outcome of the volunteer infection study and secondary outcome of the single ascending dose study). Parasite clearance kinetics (primary outcome of the volunteer infection study) were assessed by the parasite reduction ratio and the corresponding parasite clearance half-life; the incidence of recrudescence up to day 28 was determined (secondary outcome of the volunteer infection study). Recrudescent parasites were tested for genetic mutations (exploratory outcome). The trial is registered with ClinicalTrials.gov (NCT03261401). FINDINGS Between Aug 28, 2017, and June 14, 2019, 221 individuals were assessed for eligibility, of whom 66 men were enrolled in the single ascending dose study (eight per cohort for 50-1800 mg cohorts, randomised three M5717 to one placebo, and two in the 2100 mg cohort, randomised one M5717 to one placebo) and 22 men were enrolled in the volunteer infection study (six in the 150 mg cohort and eight each in the 400 mg and 800 mg cohorts). No adverse event was serious; all M5717-related adverse events were mild or moderate in severity and transient, with increased frequency observed at doses above 1250 mg. In the single ascending dose study, treatment-related adverse events occurred in three of 17 individuals in the placebo group; no individual in the 50 mg, 100 mg, or 200 mg groups; one of six individuals in each of the 400 mg, 1000 mg, and 1250 mg groups; two of six individuals in the 600 mg group; and in all individuals in the 1800 mg and 2100 mg groups. In the volunteer infection study, M5717-related adverse events occurred in no participants in the 150 mg or 800 mg groups and in one of eight participants in the 400 mg group. Transient oral hypoesthesia (in three participants) and blurred vision (in four participants) were observed in the 1800 mg or 2100 mg groups and constituted an unknown risk; thus, further dosing was suspended after dosing of the two sentinel individuals in the 2100 mg cohort. Maximum blood concentrations occurred 1-7 h after dosing, and a long half-life was observed (146-193 h at doses ≥200 mg). Parasite clearance occurred in all participants and was biphasic, characterised by initial slow clearance lasting 35-55 h (half-life 231·1 h [95% CI 40·9 to not reached] for 150 mg, 60·4 h [38·6 to 138·6] for 400 mg, and 24·7 h [20·4 to 31·3] for 800 mg), followed by rapid clearance (half-life 3·5 h [3·1 to 4·0] for 150 mg, 3·9 h [3·3 to 4·8] for 400 mg, and 5·5 h [4·8 to 6·4] for 800 mg). Recrudescence occurred in three (50%) of six individuals dosed with 150 mg and two (25%) of eight individuals dosed with 400 mg. Genetic mutations associated with resistance were detected in four cases of parasite recrudescence (two individuals dosed with 150 mg and two dosed with 400 mg). INTERPRETATION The safety, pharmacokinetics, and antimalarial activity of M5717 support its development as a component of a single-dose antimalarial combination therapy or for malaria prophylaxis. FUNDING Wellcome Trust and the healthcare business of Merck KGaA, Darmstadt, Germany.
Collapse
Affiliation(s)
- James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and the Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Claude Oeuvray
- The Global Health Institute of Merck (an affiliate of Merck KGaA), Eysin, Switzerland
| | - Aliona Tappert
- the healthcare business of Merck KGaA, Darmstadt, Germany
| | | | - Marla J Giddins
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiaoyan Yin
- Global Statistics for NDD, Immunology, Endocrinology, Fertility & Others, EMD Serono, Billerica, MA, USA
| | | | | |
Collapse
|
24
|
The Novel bis-1,2,4-Triazine MIPS-0004373 Demonstrates Rapid and Potent Activity against All Blood Stages of the Malaria Parasite. Antimicrob Agents Chemother 2021; 65:e0031121. [PMID: 34460304 DOI: 10.1128/aac.00311-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel bis-1,2,4-triazine compounds with potent in vitro activity against Plasmodium falciparum parasites were recently identified. The bis-1,2,4-triazines represent a unique antimalarial pharmacophore and are proposed to act by a novel but as-yet-unknown mechanism of action. This study investigated the activity of the bis-1,2,4-triazine MIPS-0004373 across the mammalian life cycle stages of the parasite and profiled the kinetics of activity against blood and transmission stage parasites in vitro and in vivo. MIPS-0004373 demonstrated rapid and potent activity against P. falciparum, with excellent in vitro activity against all asexual blood stages. Prolonged in vitro drug exposure failed to generate stable resistance de novo, suggesting a low propensity for the emergence of resistance. Excellent activity was observed against sexually committed ring stage parasites, but activity against mature gametocytes was limited to inhibiting male gametogenesis. Assessment of liver stage activity demonstrated good activity in an in vitro P. berghei model but no activity against Plasmodium cynomolgi hypnozoites or liver schizonts. The bis-1,2,4-triazine MIPS-0004373 efficiently cleared an established P. berghei infection in vivo, with efficacy similar to that of artesunate and chloroquine and a recrudescence profile comparable to that of chloroquine. This study demonstrates the suitability of bis-1,2,4-triazines for further development toward a novel treatment for acute malaria.
Collapse
|
25
|
Forte B, Ottilie S, Plater A, Campo B, Dechering KJ, Gamo FJ, Goldberg DE, Istvan ES, Lee M, Lukens AK, McNamara CW, Niles JC, Okombo J, Pasaje CFA, Siegel MG, Wirth D, Wyllie S, Fidock DA, Baragaña B, Winzeler EA, Gilbert IH. Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infect Dis 2021; 7:2764-2776. [PMID: 34523908 PMCID: PMC8608365 DOI: 10.1021/acsinfecdis.1c00322] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
There is a shift
in antimalarial drug discovery from phenotypic
screening toward target-based approaches, as more potential drug targets
are being validated in Plasmodium species. Given
the high attrition rate and high cost of drug discovery, it is important
to select the targets most likely to deliver progressible drug candidates.
In this paper, we describe the criteria that we consider important
for selecting targets for antimalarial drug discovery. We describe
the analysis of a number of drug targets in the Malaria Drug Accelerator
(MalDA) pipeline, which has allowed us to prioritize targets that
are ready to enter the drug discovery process. This selection process
has also highlighted where additional data are required to inform
target progression or deprioritization of other targets. Finally,
we comment on how additional drug targets may be identified.
Collapse
Affiliation(s)
- Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Andrew Plater
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Brice Campo
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | | | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Eva S. Istvan
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Marcus Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Amanda K. Lukens
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Case W. McNamara
- Calibr, a Division of The Scripps Research Institute, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge Massachusetts 02139-4307, United States
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Charisse Flerida A. Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge Massachusetts 02139-4307, United States
| | | | - Dyann Wirth
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Ian H. Gilbert
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
26
|
Erhunse N, Sahal D. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures. J Pharm Anal 2021; 11:541-554. [PMID: 34765267 PMCID: PMC8572664 DOI: 10.1016/j.jpha.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/01/2022] Open
Abstract
Having faced increased clinical treatment failures with dihydroartemisinin-piperaquine (DHA-PPQ), Cambodia swapped the first line artemisinin-based combination therapy (ACT) from DHA-PPQ to artesunate-mefloquine given that parasites resistant to piperaquine are susceptible to mefloquine. However, triple mutants have now emerged, suggesting that drug rotations may not be adequate to keep resistance at bay. There is, therefore, an urgent need for alternative treatment strategies to tackle resistance and prevent its spread. A proper understanding of all contributors to artemisinin resistance may help us identify novel strategies to keep artemisinins effective until new drugs become available for their replacement. This review highlights the role of the key players in artemisinin resistance, the current strategies to deal with it and suggests ways of protecting future antimalarial drugs from bowing to resistance as their predecessors did.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Edo-State, Nigeria
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
27
|
Kreutzfeld O, Rasmussen SA, Ramanathan AA, Tumwebaze PK, Byaruhanga O, Katairo T, Asua V, Okitwi M, Orena S, Legac J, Conrad MD, Nsobya SL, Aydemir O, Bailey J, Duffey M, Bayles BR, Vaidya AB, Cooper RA, Rosenthal PJ. Associations between Varied Susceptibilities to PfATP4 Inhibitors and Genotypes in Ugandan Plasmodium falciparum Isolates. Antimicrob Agents Chemother 2021; 65:e0077121. [PMID: 34339273 PMCID: PMC8448140 DOI: 10.1128/aac.00771-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Among novel compounds under recent investigation as potential new antimalarial drugs are three independently developed inhibitors of the Plasmodium falciparum P-type ATPase (PfATP4): KAE609 (cipargamin), PA92, and SJ733. We assessed ex vivo susceptibilities to these compounds of 374 fresh P. falciparum isolates collected in Tororo and Busia districts, Uganda, from 2016 to 2019. Median IC50s were 65 nM for SJ733, 9.1 nM for PA92, and 0.5 nM for KAE609. Sequencing of pfatp4 for 218 of these isolates demonstrated many nonsynonymous single nucleotide polymorphisms; the most frequent mutations were G1128R (69% of isolates mixed or mutant), Q1081K/R (68%), G223S (25%), N1045K (16%), and D1116G/N/Y (16%). The G223S mutation was associated with decreased susceptibility to SJ733, PA92, and KAE609. The D1116G/N/Y mutations were associated with decreased susceptibility to SJ733, and the presence of mutations at both codons 223 and 1116 was associated with decreased susceptibility to PA92 and SJ733. In all of these cases, absolute differences in susceptibilities of wild-type (WT) and mutant parasites were modest. Analysis of clones separated from mixed field isolates consistently identified mutant clones as less susceptible than WT. Analysis of isolates from other sites demonstrated the presence of the G223S and D1116G/N/Y mutations across Uganda. Our results indicate that malaria parasites circulating in Uganda have a number of polymorphisms in PfATP4 and that modestly decreased susceptibility to PfATP4 inhibitors is associated with some mutations now present in Ugandan parasites.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- Department of Medicine, University of California, San Francisco, California, USA
| | | | - Aarti A. Ramanathan
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jennifer Legac
- Department of Medicine, University of California, San Francisco, California, USA
| | - Melissa D. Conrad
- Department of Medicine, University of California, San Francisco, California, USA
| | | | | | | | | | - Brett R. Bayles
- Dominican University of California, San Rafael, California, USA
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
28
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
29
|
de L Paula LA, Cândido ACBB, Santos MFC, Caffrey CR, Bastos JK, Ambrósio SR, Magalhães LG. Antiparasitic Properties of Propolis Extracts and Their Compounds. Chem Biodivers 2021; 18:e2100310. [PMID: 34231306 DOI: 10.1002/cbdv.202100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022]
Abstract
Propolis is a bee product that has been used in medicine since ancient times. Although its anti-inflammatory, antioxidant, antimicrobial, antitumor, and immunomodulatory activities have been investigated, its anti-parasitic properties remain poorly explored, especially regarding helminths. This review surveys the results obtained with propolis around the world against human parasites. Regarding protozoa, studies carried out with the protozoa Trypanosoma spp. and Leishmania spp. have demonstrated promising results in vitro and in vivo. However, there are fewer studies for Plasmodium spp., the etiological agent of malaria and less so for helminths, particularly for Fasciola spp. and Schistosoma spp. Despite the favorable in vitro results with propolis, helminth assays need to be further investigated. However, propolis has shown itself to be an excellent natural product for parasitology, thus opening new paths and approaches in its activity against protozoa and helminths.
Collapse
Affiliation(s)
- Lucas A de L Paula
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Ana C B B Cândido
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Mario F C Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14.040-903, Ribeirão Preto, SP, Brazil
| | - Sérgio R Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil.,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Dini S, Zaloumis SG, Price DJ, Gobeau N, Kümmel A, Cherkaoui M, Moehrle JJ, McCarthy JS, Simpson JA. Seeking an optimal dosing regimen for OZ439/DSM265 combination therapy for treating uncomplicated falciparum malaria. J Antimicrob Chemother 2021; 76:2325-2334. [PMID: 34179977 DOI: 10.1093/jac/dkab181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/02/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The efficacy of artemisinin-based combination therapies (ACTs), the first-line treatments for uncomplicated falciparum malaria, has been declining in malaria-endemic countries due to the emergence of malaria parasites resistant to these compounds. Novel alternative therapies are needed urgently to prevent the likely surge in morbidity and mortality due to failing ACTs. OBJECTIVES This study investigates the efficacy of the combination of two novel drugs, OZ439 and DSM265, using a biologically informed within-host mathematical model. METHODS A within-host model was developed, which accounts for the differential killing of these compounds against different stages of the parasite's life cycle and accommodates the pharmacodynamic interaction between the drugs. Data of healthy volunteers infected with falciparum malaria collected from four trials (three that administered OZ439 and DSM265 alone, and the fourth a combination of OZ439 and DSM265) were analysed. Model parameters were estimated in a hierarchical Bayesian framework. RESULTS The posterior predictive simulations of our model predicted that 800 mg of OZ439 combined with 450 mg of DSM265, which are within the safe and tolerable dose range, can provide above 90% cure rates 42 days after drug administration. CONCLUSIONS Our results show that the combination of OZ439 and DSM265 can be a promising alternative to replace ACTs. Our model can be used to inform future Phase 2 and 3 clinical trials of OZ439/DSM265, fast-tracking the deployment of this combination therapy in the regions where ACTs are failing. The dosing regimens that are shown to be efficacious and within safe and tolerable limits are suggested for future investigations.
Collapse
Affiliation(s)
- Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - David J Price
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia.,Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | - James S McCarthy
- Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
31
|
White NJ, Nosten FH. SERCAP: is the perfect the enemy of the good? Malar J 2021; 20:281. [PMID: 34167536 PMCID: PMC8223304 DOI: 10.1186/s12936-021-03821-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Single Encounter Radical Cure and Prophylaxis (SERCAP) describes an ideal anti-malarial drug that cures all malaria in a single dose. This target product profile has dominated anti-malarial drug discovery and development over the past decade. The operational advantage of a single encounter has to be balanced against the need for a high dose, reliable absorption, little variability in pharmacokinetic properties, slow elimination (to ensure curative drug exposures in all patients) and a very low rate of vomiting. The demanding aspirational target may have hindered anti-malarial drug development. Aiming for three-day regimens, as in current anti-malarial treatments, would be better.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - François H Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.,Shoklo Malaria Research Unit, MORU, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| |
Collapse
|
32
|
Melis DR, Barnett CB, Wiesner L, Nordlander E, Smith GS. Quinoline-triazole half-sandwich iridium(III) complexes: synthesis, antiplasmodial activity and preliminary transfer hydrogenation studies. Dalton Trans 2021; 49:11543-11555. [PMID: 32697227 DOI: 10.1039/d0dt01935f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iridium(iii) half-sandwich complexes containing 7-chloroquinoline-1,2,3-triazole hybrid ligands were synthesised and their inhibitory activities evaluated against the Plasmodium falciparum malaria parasite. Supporting computational analysis revealed that metal coordination to the quinoline nitrogen occurs first, forming a kinetic product that, upon heating over time, forms a more stable cyclometallated thermodynamic product. Single crystal X-ray diffraction confirmed the proposed molecular structures of both isolated kinetic and thermodynamic products. Complexation with iridium significantly enhances the in vitro activity of selected ligands against the chloroquine-sensitive (NF54) Plasmodium falciparum strain, with selected complexes being over one hundred times more active than their respective ligands. No cross-resistance was observed in the chloroquine-resistant (K1) strain. No cytotoxicity was observed for selected complexes tested against the mammalian Chinese Hamster Ovarian (CHO) cell line. In addition, speed-of-action assays and β-haematin inhibition studies were performed. Through preliminary qualitative and quantitative cell-free experiments, it was found that the two most active neutral, cyclometallated complexes can act as transfer hydrogenation catalysts, by reducing β-nicotinamide adenine dinucleotide (NAD+) to NADH in the presence of a hydrogen source, sodium formate.
Collapse
Affiliation(s)
- Diana R Melis
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Christopher B Barnett
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| |
Collapse
|
33
|
Ullah I, Sharma R, Mete A, Biagini GA, Wetzel DM, Horrocks PD. The relative rate of kill of the MMV Malaria Box compounds provides links to the mode of antimalarial action and highlights scaffolds of medicinal chemistry interest. J Antimicrob Chemother 2021; 75:362-370. [PMID: 31665424 DOI: 10.1093/jac/dkz443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Rapid rate-of-kill (RoK) is a key parameter in the target candidate profile 1 (TCP1) for the next-generation antimalarial drugs for uncomplicated malaria, termed Single Encounter Radical Cure and Prophylaxis (SERCaP). TCP1 aims to rapidly eliminate the initial parasite burden, ideally as fast as artesunate, but minimally as fast as chloroquine. Here we explore whether the relative RoK of the Medicine for Malaria Venture (MMV) Malaria Box compounds is linked to their mode of action (MoA) and identify scaffolds of medicinal chemistry interest. METHODS We used a bioluminescence relative RoK (BRRoK) assay over 6 and 48 h, with exposure to equipotent IC50 concentrations, to compare the cytocidal effects of Malaria Box compounds with those of benchmark antimalarials. RESULTS BRRoK assay data demonstrate the following relative RoKs, from fast to slow: inhibitors of PfATP4>parasite haemoglobin catabolism>dihydrofolate reductase-thymidylate synthase (DHFR-TS)>dihydroorotate dehydrogenase (DHODH)>bc1 complex. Core-scaffold clustering analyses revealed intrinsic rapid cytocidal action for diamino-glycerols and 2-(aminomethyl)phenol, but slow action for 2-phenylbenz-imidazoles, 8-hydroxyquinolines and triazolopyrimidines. CONCLUSIONS This study provides proof of principle that a compound's RoK is related to its MoA and that the target's intrinsic RoK is also modified by factors affecting a drug's access to it. Our findings highlight that as we use medicinal chemistry to improve potency, we can also improve the RoK for some scaffolds. Our BRRoK assay provides the necessary throughput for drug discovery and a critical decision-making tool to support development campaigns. Finally, two scaffolds, diamino-glycerols and 2-phenylbenzimidazoles, exhibit fast cytocidal action, inviting medicinal chemistry improvements towards TCP1 candidates.
Collapse
Affiliation(s)
- Imran Ullah
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Raman Sharma
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Antonio Mete
- Medsyndesign Ltd, Advanced Technology Innovation Centre, 5 Oakwood Drive, Loughborough, UK
| | - Giancarlo A Biagini
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Dawn M Wetzel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Paul D Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
34
|
Monastyrskyi A, Brockmeyer F, LaCrue AN, Zhao Y, Maher SP, Maignan JR, Padin-Irizarry V, Sakhno YI, Parvatkar PT, Asakawa AH, Huang L, Casandra D, Mashkouri S, Kyle DE, Manetsch R. Aminoalkoxycarbonyloxymethyl Ether Prodrugs with a pH-Triggered Release Mechanism: A Case Study Improving the Solubility, Bioavailability, and Efficacy of Antimalarial 4(1 H)-Quinolones with Single Dose Cures. J Med Chem 2021; 64:6581-6595. [PMID: 33979164 DOI: 10.1021/acs.jmedchem.0c01104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Preclinical and clinical development of numerous small molecules is prevented by their poor aqueous solubility, limited absorption, and oral bioavailability. Herein, we disclose a general prodrug approach that converts promising lead compounds into aminoalkoxycarbonyloxymethyl (amino AOCOM) ether-substituted analogues that display significantly improved aqueous solubility and enhanced oral bioavailability, restoring key requirements typical for drug candidate profiles. The prodrug is completely independent of biotransformations and animal-independent because it becomes an active compound via a pH-triggered intramolecular cyclization-elimination reaction. As a proof-of-concept, the utility of this novel amino AOCOM ether prodrug approach was demonstrated on an antimalarial compound series representing a variety of antimalarial 4(1H)-quinolones, which entered and failed preclinical development over the last decade. With the amino AOCOM ether prodrug moiety, the 3-aryl-4(1H)-quinolone preclinical candidate was shown to provide single-dose cures in a rodent malaria model at an oral dose of 3 mg/kg, without the use of an advanced formulation technique.
Collapse
Affiliation(s)
- Andrii Monastyrskyi
- Department of Chemistry, University of South Florida, CHE 205, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Fabian Brockmeyer
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, Massachusetts 02115, United States
| | - Alexis N LaCrue
- Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 304, Tampa, Florida 33612, United States
| | - Yingzhao Zhao
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, Massachusetts 02115, United States
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Coverdell Center, Rm 370B, 500 DW Brooks Drive, Athens, Georgia 30602, United States
| | - Jordany R Maignan
- Department of Chemistry, University of South Florida, CHE 205, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Vivian Padin-Irizarry
- Department of Biology, Clayton State University, 2000 Clayton State Boulevard, Morrow, Georgia 30260, United States.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Coverdell Center, Rm 370B, 500 DW Brooks Drive, Athens, Georgia 30602, United States
| | - Yana I Sakhno
- Department of Chemistry, University of South Florida, CHE 205, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Prakash T Parvatkar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, Massachusetts 02115, United States
| | - Ami H Asakawa
- Department of Pharmaceutical Sciences, Northeastern University, 102 Hurtig Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Lili Huang
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, Massachusetts 02115, United States
| | - Debora Casandra
- Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 304, Tampa, Florida 33612, United States
| | - Sherwin Mashkouri
- Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 304, Tampa, Florida 33612, United States
| | - Dennis E Kyle
- Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 304, Tampa, Florida 33612, United States.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Coverdell Center, Rm 370B, 500 DW Brooks Drive, Athens, Georgia 30602, United States
| | - Roman Manetsch
- Department of Chemistry, University of South Florida, CHE 205, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States.,Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, Massachusetts 02115, United States.,Department of Pharmaceutical Sciences, Northeastern University, 102 Hurtig Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
35
|
Zhou M, Varol A, Efferth T. Multi-omics approaches to improve malaria therapy. Pharmacol Res 2021; 167:105570. [PMID: 33766628 DOI: 10.1016/j.phrs.2021.105570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
Malaria contributes to the most widespread infectious diseases worldwide. Even though current drugs are commercially available, the ever-increasing drug resistance problem by malaria parasites poses new challenges in malaria therapy. Hence, searching for efficient therapeutic strategies is of high priority in malaria control. In recent years, multi-omics technologies have been extensively applied to provide a more holistic view of functional principles and dynamics of biological mechanisms. We briefly review multi-omics technologies and focus on recent malaria progress conducted with the help of various omics methods. Then, we present up-to-date advances for multi-omics approaches in malaria. Next, we describe resistance phenomena to established antimalarial drugs and underlying mechanisms. Finally, we provide insight into novel multi-omics approaches, new drugs and vaccine developments and analyze current gaps in multi-omics research. Although multi-omics approaches have been successfully used in malaria studies, they are still limited. Many gaps need to be filled to bridge the gap between basic research and treatment of malaria patients. Multi-omics approaches will foster a better understanding of the molecular mechanisms of Plasmodium that are essential for the development of novel drugs and vaccines to fight this disastrous disease.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
36
|
Gezelle J, Saggu G, Desai SA. Promises and Pitfalls of Parasite Patch-clamp. Trends Parasitol 2021; 37:414-429. [PMID: 33640269 DOI: 10.1016/j.pt.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
Protozoan parasites acquire essential ions, nutrients, and other solutes from their insect and vertebrate hosts by transmembrane uptake. For intracellular stages, these solutes must cross additional membranous barriers. At each step, ion channels and transporters mediate not only this uptake but also the removal of waste products. These transport proteins are best isolated and studied with patch-clamp, but these methods remain accessible to only a few parasitologists due to specialized instrumentation and the required training in both theory and practice. Here, we provide an overview of patch-clamp, describing the advantages and limitations of the technology and highlighting issues that may lead to incorrect conclusions. We aim to help non-experts understand and critically assess patch-clamp data in basic research studies.
Collapse
Affiliation(s)
- Jeanine Gezelle
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Gagandeep Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
37
|
Marinho JA, Martins Guimarães DS, Glanzmann N, de Almeida Pimentel G, Karine da Costa Nunes I, Gualberto Pereira HM, Navarro M, de Pilla Varotti F, David da Silva A, Abramo C. In vitro and in vivo antiplasmodial activity of novel quinoline derivative compounds by molecular hybridization. Eur J Med Chem 2021; 215:113271. [PMID: 33596489 DOI: 10.1016/j.ejmech.2021.113271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
Chloroquine (CQ) has been the main treatment for malaria in regions where there are no resistant strains. Molecular hybridization techniques have been used as a tool in the search for new drugs and was implemented in the present study in an attempt to produce compound candidates to treat malarial infections by CQ-resistant strains. Two groups of molecules were produced from the 4-aminoquinoline ring in conjugation to hydrazones (HQ) and imines (IQ). Physicochemical and pharmacokinetic properties were found to be favorable when analyzed in silico and cytotoxicity and antiplasmodial activity were assayed in vitro and in vivo showing low cytotoxicity and selectiveness to the parasites. Candidates IQ5 and IQ6 showed important values of parasite growth inhibition in vivo on the 5th day after infection (IQ5 15 mg/kg = 72.64% and IQ6 15 mg/kg = 71.15% and 25 mg/kg = 93.7%). IQ6 also showed interaction with ferriprotoporphyrin IX similarly to CQ. The process of applying condensation reactions to yield imines is promising and capable of producing molecules with antiplasmodial activity.
Collapse
Affiliation(s)
- Juliane Aparecida Marinho
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| | - Daniel Silqueira Martins Guimarães
- Núcleo de Pesquisa Em Química Biológica, Universidade Federal de São João Del Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG, 35501-296, Brazil.
| | - Nícolas Glanzmann
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| | - Giovana de Almeida Pimentel
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| | - Izabelle Karine da Costa Nunes
- Laboratório de Apoio Ao Desenvolvimento Tecnológico, LADETEC/IQ, Universidade Federal Do Rio de Janeiro, Av. Horácio Macedo, 1281 - Polo de Química, Cidade Universitária, Ilha Do Fundão, RJ, 21941-598, Brazil.
| | - Henrique Marcelo Gualberto Pereira
- Laboratório de Apoio Ao Desenvolvimento Tecnológico, LADETEC/IQ, Universidade Federal Do Rio de Janeiro, Av. Horácio Macedo, 1281 - Polo de Química, Cidade Universitária, Ilha Do Fundão, RJ, 21941-598, Brazil.
| | - Maribel Navarro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| | - Fernando de Pilla Varotti
- Núcleo de Pesquisa Em Química Biológica, Universidade Federal de São João Del Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG, 35501-296, Brazil.
| | - Adilson David da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| | - Clarice Abramo
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| |
Collapse
|
38
|
Melis DR, Hsiao CY, Combrinck JM, Wiesner L, Smith GS. Subcellular Localisation of a Quinoline-Containing Fluorescent Cyclometallated Ir III Complex in Plasmodium falciparum. Chembiochem 2021; 22:1568-1572. [PMID: 33453069 DOI: 10.1002/cbic.202000847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Indexed: 11/06/2022]
Abstract
A fluorescent analogue of a previously synthesised N,N-chelated IrIII complex was prepared by coordination of the organic ligand to an extrinsic bis(2-phenylpyridine)iridium(III) fluorophore. This cyclometallated IrIII complex in itself displays good, micromolar activity against the chloroquine-sensitive NF54 strain of Plasmodium falciparum. Live-cell confocal microscopy found negligible localisation of the fluorescent complex within the digestive vacuole of the parasite. This eliminated the haem detoxification pathway as a potential mechanism of action. Similarly, no localisation of the complex within the parasitic nucleus was found, thus suggesting that this complex probably does not interfere with the DNA replication process. A substantial saturation of fluorescence from the complex was found near phospholipid structures such as the plasma and nuclear membranes but not in neutral lipid bodies. This indicates that an association with these membranes, or organelles such as the endoplasmic reticulum or branched mitochondrion, could be essential to the efficacies of these types of antimalarial compounds.
Collapse
Affiliation(s)
- Diana R Melis
- Department of Chemistry, University of Cape Town, PD Hahn, Chemistry Mall, Rondebosch, 7701, Cape Town, South Africa
| | - Chiao-Yu Hsiao
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Jill M Combrinck
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, PD Hahn, Chemistry Mall, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
39
|
Peric M, Pešić D, Alihodžić S, Fajdetić A, Herreros E, Gamo FJ, Angulo-Barturen I, Jiménez-Díaz MB, Ferrer-Bazaga S, Martínez MS, Gargallo-Viola D, Mathis A, Kessler A, Banjanac M, Padovan J, Bencetić Mihaljević V, Munic Kos V, Bukvić M, Eraković Haber V, Spaventi R. A novel class of fast-acting antimalarial agents: Substituted 15-membered azalides. Br J Pharmacol 2020; 178:363-377. [PMID: 33085774 PMCID: PMC9328652 DOI: 10.1111/bph.15292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose Efficacy of current antimalarial treatments is declining as a result of increasing antimalarial drug resistance, so new and potent antimalarial drugs are urgently needed. Azithromycin, an azalide antibiotic, was found useful in malaria therapy, but its efficacy in humans is low. Experimental Approach Four compounds belonging to structurally different azalide classes were tested and their activities compared to azithromycin and chloroquine. in vitro evaluation included testing against sensitive and resistant Plasmodium falciparum, cytotoxicity against HepG2 cells, accumulation and retention in human erythrocytes, antibacterial activity, and mode of action studies (delayed death phenotype and haem polymerization). in vivo assessment enabled determination of pharmacokinetic profiles in mice, rats, dogs, and monkeys and in vivo efficacy in a humanized mouse model. Key Results Novel fast‐acting azalides were highly active in vitro against P. falciparum strains exhibiting various resistance patterns, including chloroquine‐resistant strains. Excellent antimalarial activity was confirmed in a P. falciparum murine model by strong inhibition of haemozoin‐containing trophozoites and quick clearance of parasites from the blood. Pharmacokinetic analysis revealed that compounds are metabolically stable and have moderate oral bioavailability, long half‐lives, low clearance, and substantial exposures, with blood cells as the preferred compartment, especially infected erythrocytes. Fast anti‐plasmodial action is achieved by the high accumulation into infected erythrocytes and interference with parasite haem polymerization, a mode of action different from slow‐acting azithromycin. Conclusion and Implications The hybrid derivatives described here represent excellent antimalarial drug candidates with the potential for clinical use in malaria therapy.
Collapse
Affiliation(s)
- Mihaela Peric
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Center for Translational and Clinical Research, Department for Intercellular Communication, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dijana Pešić
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Sulejman Alihodžić
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Andrea Fajdetić
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Esperanza Herreros
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain.,Medicines for Malaria Venture, Geneva 15, Switzerland
| | - Francisco Javier Gamo
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain
| | - Iñigo Angulo-Barturen
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain.,The Art of Discovery, Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain.,The Art of Discovery, Bizkaia, Basque Country, Spain
| | - Santiago Ferrer-Bazaga
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain
| | - María S Martínez
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain
| | - Domingo Gargallo-Viola
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain.,ABAC Therapeutics, Barcelona, Spain
| | - Amanda Mathis
- GlaxoSmithKline, Research Triangle Park, North Carolina, USA.,BioCryst Pharmaceuticals, Durham, North Carolina, USA
| | - Albane Kessler
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos (Madrid), Spain
| | - Mihailo Banjanac
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Jasna Padovan
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | | | - Vesna Munic Kos
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mirjana Bukvić
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Vesna Eraković Haber
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Fidelta Ltd., Zagreb, Croatia
| | - Radan Spaventi
- GlaxoSmithKline Research Centre Zagreb Ltd., Zagreb, Croatia.,Triadelta Partners Ltd, Zagreb, Croatia
| |
Collapse
|
40
|
Butler JH, Baptista RP, Valenciano AL, Zhou B, Kissinger JC, Tumwebaze PK, Rosenthal PJ, Cooper RA, Yue JM, Cassera MB. Resistance to Some But Not Other Dimeric Lindenane Sesquiterpenoid Esters Is Mediated by Mutations in a Plasmodium falciparum Esterase. ACS Infect Dis 2020; 6:2994-3003. [PMID: 32970404 PMCID: PMC11075783 DOI: 10.1021/acsinfecdis.0c00487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unique lindenane sesquiterpenoid dimers from Chloranthecae spp. were recently identified with promising in vitro antiplasmodial activity and potentially novel mechanisms of action. To gain mechanistic insights to this new class of natural products, in vitro selection of Plasmodium falciparum resistance to the most active antiplasmodial compound, chlorajaponilide C, was explored. In all selected resistant clones, the half-maximal effective concentration (EC50) of chlorajaponilide C increased >250-fold, and whole genome sequencing revealed mutations in the recently discovered P. falciparum prodrug activation and resistance esterase (PfPARE). Chlorajaponilide C was highly potent (mean EC50 = 1.6 nM, n = 34) against fresh Ugandan P. falciparum isolates. The analysis of the structure-resistance relationships revealed that in vitro potency of a subset of lindenane sesquiterpenoid dimers was not mediated by PfPARE mutations. Thus, chlorajaponilide C, but not some related compounds, required parasite esterase activity for in vitro potency, and those compounds serve as the foundation for development of potent and selective antimalarials.
Collapse
Affiliation(s)
- Joshua H Butler
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, United States
| | - Rodrigo P Baptista
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, United States
| | - Ana L Valenciano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, United States
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, United States
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, California 94110, United States
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Maria B Cassera
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
41
|
Mahindra A, Janha O, Mapesa K, Sanchez-Azqueta A, Alam MM, Amambua-Ngwa A, Nwakanma DC, Tobin AB, Jamieson AG. Development of Potent PfCLK3 Inhibitors Based on TCMDC-135051 as a New Class of Antimalarials. J Med Chem 2020; 63:9300-9315. [PMID: 32787140 PMCID: PMC7497403 DOI: 10.1021/acs.jmedchem.0c00451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 12/20/2022]
Abstract
The protein kinase PfCLK3 plays a critical role in the regulation of malarial parasite RNA splicing and is essential for the survival of blood stage Plasmodium falciparum. We recently validated PfCLK3 as a drug target in malaria that offers prophylactic, transmission blocking, and curative potential. Herein, we describe the synthesis of our initial hit TCMDC-135051 (1) and efforts to establish a structure-activity relationship with a 7-azaindole-based series. A total of 14 analogues were assessed in a time-resolved fluorescence energy transfer assay against the full-length recombinant protein kinase PfCLK3, and 11 analogues were further assessed in asexual 3D7 (chloroquine-sensitive) strains of P. falciparum parasites. SAR relating to rings A and B was established. These data together with analysis of activity against parasites collected from patients in the field suggest that TCMDC-135051 (1) is a promising lead compound for the development of new antimalarials with a novel mechanism of action targeting PfCLK3.
Collapse
Affiliation(s)
- Amit Mahindra
- School
of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| | - Omar Janha
- Centre
for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, U.K.
| | - Kopano Mapesa
- School
of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| | - Ana Sanchez-Azqueta
- Centre
for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, U.K.
| | - Mahmood M. Alam
- Wellcome
Centre for Integrative Parasitology and Centre for Translational Pharmacology,
Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Alfred Amambua-Ngwa
- MRC
Unit The Gambia at LSHTM, Atlantic Boulevard,
Fajara, P. O. Box 273, Banjul, The Gambia
| | - Davis C. Nwakanma
- MRC
Unit The Gambia at LSHTM, Atlantic Boulevard,
Fajara, P. O. Box 273, Banjul, The Gambia
| | - Andrew B. Tobin
- Centre
for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, U.K.
| | - Andrew G. Jamieson
- School
of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| |
Collapse
|
42
|
Hassan IA, Adegbola AJ, Soyinka JO, Onyeji CO, Bolaji OO. Post-Marketing Surveillance of Quality of Artemether Injection Marketed in Southwest Nigeria. Am J Trop Med Hyg 2020; 103:1258-1265. [PMID: 32588802 PMCID: PMC7470523 DOI: 10.4269/ajtmh.20-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 11/07/2022] Open
Abstract
Access to good-quality medicines remains a contentious issue in developing countries. This development is worrisome, particularly in a setting with a high incidence of malaria. Monitoring of antimalarial drugs in the commercial domain becomes necessary; thus, we evaluated the quality of artemether injection marketed in Southwest Nigeria. A cross-sectional survey was conducted to obtain 22 different brands of artemether injections within Southwest Nigeria. The samples were examined for their sources, lot numbers, containers for injection, oil base used for preparation, and dates of expiration. Further analysis involved visual inspection, assessment of extractable volume, identity tests, and an assay of active pharmaceutical ingredient. The pharmaceutical quality of each sample was determined according to the criteria set in the International Pharmacopoeia 2019. None of the products had any particulate matter, but there were certain irregularities in their presentation. Eighteen of the 22 products (81.7%) were packaged in plain instead of amber-colored ampoules, and 77.3% (17/22) did not indicate the oil base used as the vehicle on the label as against the pharmacopoeial standard. Sixteen products (72.7%) passed the extractable volume test, although the remaining 22.3% did not conform to the extractable volume per unit dose. Artemether was present in all the samples, although only 40.9% (9/22) met the recommended percentage content of 90-110% of artemether. The study revealed the presence of a high percentage of substandard artemether injection products marketed in Nigeria. Further surveillance is warranted to confirm the quality of artemether injection circulated in other regions within Nigeria.
Collapse
Affiliation(s)
- Ibrahim A. Hassan
- Department of Pharmacy, Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Nigeria
| | - Adebanjo J. Adegbola
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Julius O. Soyinka
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Cyprian O. Onyeji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Oluseye O. Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| |
Collapse
|
43
|
Mäder P, Kattner L. Sulfoximines as Rising Stars in Modern Drug Discovery? Current Status and Perspective on an Emerging Functional Group in Medicinal Chemistry. J Med Chem 2020; 63:14243-14275. [DOI: 10.1021/acs.jmedchem.0c00960] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick Mäder
- Endotherm GmbH, Science Park 2, 66123 Saarbruecken, Germany
| | - Lars Kattner
- Endotherm GmbH, Science Park 2, 66123 Saarbruecken, Germany
| |
Collapse
|
44
|
Computational Chemogenomics Drug Repositioning Strategy Enables the Discovery of Epirubicin as a New Repurposed Hit for Plasmodium falciparum and P. vivax. Antimicrob Agents Chemother 2020; 64:AAC.02041-19. [PMID: 32601162 PMCID: PMC7449180 DOI: 10.1128/aac.02041-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.
Collapse
|
45
|
Dembele L, Gupta DK, Dutta B, Chua ACY, Sze SK, Bifani P. Quantitative Proteomic Analysis of Simian Primary Hepatocytes Reveals Candidate Molecular Markers for Permissiveness to Relapsing Malaria Plasmodium cynomolgi. Proteomics 2020; 19:e1900021. [PMID: 31444903 DOI: 10.1002/pmic.201900021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/07/2019] [Indexed: 12/11/2022]
Abstract
A major obstacle impeding malaria research is the lack of an in vitro system capable of supporting infection through the entire liver stage cycle of the parasite, including that of the dormant forms known as hypnozoites. Primary hepatocytes lose their liver specific functions in long-term in vitro culture. The malaria parasite Plasmodium initiates infection in hepatocyte. This corresponds to the first step of clinically silent infection and development of malaria parasite Plasmodium in the liver. Thus, the liver stage is an ideal target for development of novel antimalarial interventions and vaccines. However, drug discovery against Plasmodium liver stage is severely hampered by the poor understanding of host-parasite interactions during the liver stage infection and development. In this study, tandem mass tag labeling based quantitative proteomic analysis is performed in simian primary hepatocytes cultured in three different systems of susceptibility to Plasmodium infection. The results display potential candidate molecular markers, including asialoglycoprotein receptor, apolipoproteins, squalene synthase, and scavenger receptor B1 (SR-BI) that facilitate productive infection and full development in relapsing Plasmodium species. The identification of these candidate proteins required for constructive infection and development of hepatic malaria liver stages paves the way to explore them as therapeutic targets.
Collapse
Affiliation(s)
- Laurent Dembele
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670.,Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), MRTC-DEAP-Faculty of Pharmacy, Point G, P.O. Box: 1805, Bamako, Mali
| | - Devendra Kumar Gupta
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670.,Novartis Institute for Tropical Diseases, 5300 Chiron way, Emeryville, CA, 94608, USA
| | - Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Adeline C Y Chua
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670.,Singapore Immunology Network (SIgN), A*STAR 8A Biomedical Grove, Immunos Building, Singapore, 138648
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Pablo Bifani
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670.,Singapore Immunology Network (SIgN), A*STAR 8A Biomedical Grove, Immunos Building, Singapore, 138648.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077.,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
46
|
Bouwman SA, Zoleko-Manego R, Renner KC, Schmitt EK, Mombo-Ngoma G, Grobusch MP. The early preclinical and clinical development of cipargamin (KAE609), a novel antimalarial compound. Travel Med Infect Dis 2020; 36:101765. [PMID: 32561392 DOI: 10.1016/j.tmaid.2020.101765] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cipargamin (KAE609) is a novel spiroindolone class drug for the treatment of malaria, currently undergoing phase 2 clinical development. This review provides an overview and interpretation of the pre-clinical and clinical data of this possible next-generation antimalarial drug published to date. METHODS We systematically searched the literature for studies on the preclinical and clinical development of cipargamin. PubMed and Google Scholar databases were searched using the terms 'cipargamin', 'KAE609' or 'NITD609' in the English language; one additional article was identified during revision. Nineteen of these in total 43 papers identified reported original studies; 13 of those articles were on pre-clinical studies and 6 reported clinical trials. RESULTS A total of 20 studies addressing its preclinical and clinical development have been published on this compound at the time of writing. Cipargamin acts on the PfATP4, which is a P-type Na + ATPase disrupting the Na + homeostasis in the parasite. Cipargamin is a very fast-acting antimalarial, it is active against all intra-erythrocytic stages of the malaria parasite and exerts gametocytocidal activity, with transmission-blocking potential. It is currently undergoing phase 2 clinical trial to assess safety and efficacy, with a special focus on hepatic safety. CONCLUSION In the search for novel antimalarial drugs, cipargamin exhibits promising properties, exerting activity against multiple intra-erythrocytic stages of plasmodia, including gametocytes. It exhibits a favourable pharmacokinetic profile, possibly allowing for single-dose treatment with a suitable combination partner. According to the clinical results of the first studies in Asian malaria patients, a possible safety concern is hepatotoxicity.
Collapse
Affiliation(s)
- Suzan Am Bouwman
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, the Netherlands; Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Rella Zoleko-Manego
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Esther K Schmitt
- Novartis Pharma AG, Global Health Development Unit, Basel, Switzerland
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, the Netherlands; Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
47
|
A Phase II Pilot Trial to Evaluate CoBaT-Y017 Safety and Efficacy against Uncomplicated Falciparum Malaria versus Artemether-Lumefantrine in Benin Subjects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8715021. [PMID: 32215047 PMCID: PMC7048912 DOI: 10.1155/2020/8715021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/17/2019] [Accepted: 01/21/2020] [Indexed: 11/18/2022]
Abstract
Background Considering the promising results of Phase I clinical trials with herbal medicine CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017 compared with Artemether-Lumefantrine used as a positive control. Methods A single-blind randomized trial was conducted on 25 eligible males aged 18-40 years randomly assigned to two treatment groups: CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017 compared with Artemether-Lumefantrine used as a positive control. Methods. A single-blind randomized trial was conducted on 25 eligible males aged 18-40 years randomly assigned to two treatment groups: CoBaT-Y017 or Artemether-Lumefantrine. The first group received 35 ml of CoBaT-Y017 in 1.5 L mineral water administered daily for four consecutive days; the second group received oral Artemether-Lumefantrine, using WHO-recommended therapeutic dose regimens. For both drugs, efficacy for parasite clearance and safety were evaluated clinically, haematologically, and biochemically on days 1-4, 7, 14, 21, and 28. Clinical- and laboratory-adverse events (AEs) were recorded until day 28. Results 13 and 12 patients were randomized into CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017 compared with Artemether-Lumefantrine used as a positive control. Methods. A single-blind randomized trial was conducted on 25 eligible males aged 18-40 years randomly assigned to two treatment groups: CoBaT-Y017 or Artemether-Lumefantrine. The first group received 35 ml of CoBaT-Y017 in 1.5 L mineral water administered daily for four consecutive days; the second group received oral Artemether-Lumefantrine, using WHO-recommended therapeutic dose regimens. For both drugs, efficacy for parasite clearance and safety were evaluated clinically, haematologically, and biochemically on days 1-4, 7, 14, 21, and 28. Clinical- and laboratory-adverse events (AEs) were recorded until day 28. Results. 13 and 12 patients were randomized into CoBaT-Y017 arm and Artemether-Lumefantrine arm, respectively. In all patients, parasitaemia was adequately neutralized with CoBaT-Y017 group patients' parasite clearance lagging slightly behind that of Artemether-Lumefantrine's group, but without a statistically significant difference (HR = 1.08, 95% CI 0.47-2.51, P=0.85). Physical and laboratory examinations did not show any significant changes in vital signs, biochemical, and haematological parameters. In the Artemether-Lumefantrine arm, 100% (12/12) of patients experienced, at least, one adverse event versus 61.5% (8/13) in the CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017 compared with Artemether-Lumefantrine used as a positive control. Methods. A single-blind randomized trial was conducted on 25 eligible males aged 18-40 years randomly assigned to two treatment groups: CoBaT-Y017 or Artemether-Lumefantrine. The first group received 35 ml of CoBaT-Y017 in 1.5 L mineral water administered daily for four consecutive days; the second group received oral Artemether-Lumefantrine, using WHO-recommended therapeutic dose regimens. For both drugs, efficacy for parasite clearance and safety were evaluated clinically, haematologically, and biochemically on days 1-4, 7, 14, 21, and 28. Clinical- and laboratory-adverse events (AEs) were recorded until day 28. Results. 13 and 12 patients were randomized into CoBaT-Y017 arm and Artemether-Lumefantrine arm, respectively. In all patients, parasitaemia was adequately neutralized with CoBaT-Y017 group patients' parasite clearance lagging slightly behind that of Artemether-Lumefantrine's group, but without a statistically significant difference (HR = 1.08, 95% CI 0.47-2.51, P=0.85). Physical and laboratory examinations did not show any significant changes in vital signs, biochemical, and haematological parameters. In the Artemether-Lumefantrine arm, 100% (12/12) of patients experienced, at least, one adverse event versus 61.5% (8/13) in the CoBaT-Y017 arm. Conclusion CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017 compared with Artemether-Lumefantrine used as a positive control. Methods. A single-blind randomized trial was conducted on 25 eligible males aged 18-40 years randomly assigned to two treatment groups: CoBaT-Y017 or Artemether-Lumefantrine. The first group received 35 ml of CoBaT-Y017 in 1.5 L mineral water administered daily for four consecutive days; the second group received oral Artemether-Lumefantrine, using WHO-recommended therapeutic dose regimens. For both drugs, efficacy for parasite clearance and safety were evaluated clinically, haematologically, and biochemically on days 1-4, 7, 14, 21, and 28. Clinical- and laboratory-adverse events (AEs) were recorded until day 28. Results. 13 and 12 patients were randomized into CoBaT-Y017 arm and Artemether-Lumefantrine arm, respectively. In all patients, parasitaemia was adequately neutralized with CoBaT-Y017 group patients' parasite clearance lagging slightly behind that of Artemether-Lumefantrine's group, but without a statistically significant difference (HR = 1.08, 95% CI 0.47-2.51, P=0.85). Physical and laboratory examinations did not show any significant changes in vital signs, biochemical, and haematological parameters. In the Artemether-Lumefantrine arm, 100% (12/12) of patients experienced, at least, one adverse event versus 61.5% (8/13) in the CoBaT-Y017 arm. Conclusion. CoBaT-Y017 exhibited similar antimalarial efficacy against P. falciparum to that of Artemether-Lumefantrine, with good tolerability and safety.P. falciparum.
Collapse
|
48
|
Abstract
Malaria chemoprophylaxis has become increasingly prominent now that it is used for vulnerable populations in endemic regions in addition to nonimmune travelers to those regions. The objective would be a drug with > 95% efficacy and that is easily tolerated, including in children and pregnant women. For individuals who prefer weekly rather than daily drug administration, a further objective is a product that is administered weekly. The deficiencies of present agents are parasite resistance to chloroquine, neuropsychiatric liability of mefloquine, the need for daily dosing for atovaquone-proguanil, and daily dosing plus adverse reactions for doxycycline. A primaquine analogue, tafenoquine, has a 17-day half-life and was approved for weekly prophylaxis in the United States and in Australia in 2018. Weekly tafenoquine was equal to mefloquine in efficacy in nonimmunes. The tafenoquine label contains a contraindication for preexisting psychosis, but not for the broad number of other neuropsychiatric disorders which are listed as contraindications in the mefloquine label. As an 8-aminoquinoline, tafenoquine is contraindicated for glucose-6-phosphate dehydrogenase (G6PD)-deficient persons or in pregnancy if the fetus might be G6PD deficient. Other possible significant adverse reactions for tafenoquine are declines in hemoglobin levels reported in some G6PD-normal patients, asymptomatic elevations in methemoglobin, and minor psychiatric events. The lack of broad neuropsychiatric adverse reactions suggests that tafenoquine may have a role as the weekly prophylactic of choice for G6PD-normal persons.
Collapse
|
49
|
Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Southan C, Sharman JL, Campo B, Cavanagh DR, Alexander SPH, Davenport AP, Spedding M, Davies JA. The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Res 2020; 48:D1006-D1021. [PMID: 31691834 PMCID: PMC7145572 DOI: 10.1093/nar/gkz951] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/03/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
The IUPHAR/BPS Guide to PHARMACOLOGY (www.guidetopharmacology.org) is an open-access, expert-curated database of molecular interactions between ligands and their targets. We describe significant updates made over the seven releases during the last two years. The database is notably enhanced through the continued linking of relevant pharmacology with key immunological data types as part of the IUPHAR Guide to IMMUNOPHARMACOLOGY (www.guidetoimmunopharmacology.org) and by a major new extension, the IUPHAR/MMV Guide to Malaria PHARMACOLOGY (www.guidetomalariapharmacology.org). The latter has been constructed in partnership with the Medicines for Malaria Venture, an organization dedicated to identifying, developing and delivering new antimalarial therapies that are both effective and affordable. This is in response to the global challenge of over 200 million cases of malaria and 400 000 deaths worldwide, with the majority in the WHO Africa Region. It provides new pharmacological content, including molecular targets in the malaria parasite, interaction data for ligands with antimalarial activity, and establishes curation of data from screening assays, used routinely in antimalarial drug discovery, against the whole organism. A dedicated portal has been developed to provide quick and focused access to these new data.
Collapse
Affiliation(s)
- Jane F Armstrong
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Elena Faccenda
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Simon D Harding
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Adam J Pawson
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Christopher Southan
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Joanna L Sharman
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Brice Campo
- Medicines for Malaria Venture, Post Box 1826, 1215 Geneva 15, Switzerland
| | - David R Cavanagh
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
50
|
A Single-Dose Combination Study with the Experimental Antimalarials Artefenomel and DSM265 To Determine Safety and Antimalarial Activity against Blood-Stage Plasmodium falciparum in Healthy Volunteers. Antimicrob Agents Chemother 2019; 64:AAC.01371-19. [PMID: 31685476 PMCID: PMC7187626 DOI: 10.1128/aac.01371-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Artefenomel and DSM265 are two new compounds that have been shown to be well tolerated and effective when administered as monotherapy malaria treatment. This study aimed to determine the safety, pharmacokinetics, and pharmacodynamics of artefenomel and DSM265 administered in combination to healthy subjects in a volunteer infection study using the Plasmodium falciparum-induced blood-stage malaria model. Thirteen subjects were inoculated with parasite-infected erythrocytes on day 0 and received a single oral dose of artefenomel and DSM265 on day 7. Cohort 1 (n = 8) received 200 mg artefenomel plus 100 mg DSM265, and cohort 2 (n = 5) received 200 mg artefenomel plus 50 mg DSM265. Blood samples were collected to measure parasitemia, gametocytemia, and artefenomel-DSM265 plasma concentrations. There were no treatment-related adverse events. The pharmacokinetic profiles of artefenomel and DSM265 were similar to those of the compounds when administered as monotherapy, suggesting no pharmacokinetic interactions. A reduction in parasitemia occurred in all subjects following treatment (log10 parasite reduction ratios over 48 h [PRR48] of 2.80 for cohort 1 and 2.71 for cohort 2; parasite clearance half-lives of 5.17 h for cohort 1 and 5.33 h for cohort 2). Recrudescence occurred in 5/8 subjects in cohort 1 between days 19 and 28 and in 5/5 subjects in cohort 2 between days 15 and 22. Low-level gametocytemia (1 to 330 female gametocytes/ml) was detected in all subjects from day 14. The results of this single-dosing combination study support the further clinical development of the use of artefenomel and DSM265 in combination as a treatment for falciparum malaria. (This study has been registered at ClinicalTrials.gov under identifier NCT02389348.).
Collapse
|