1
|
Roux AT, Maharaj L, Oyegoke O, Akoniyon OP, Adeleke MA, Maharaj R, Okpeku M. Chloroquine and Sulfadoxine-Pyrimethamine Resistance in Sub-Saharan Africa-A Review. Front Genet 2021; 12:668574. [PMID: 34249090 PMCID: PMC8267899 DOI: 10.3389/fgene.2021.668574] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Malaria is a great concern for global health and accounts for a large amount of morbidity and mortality, particularly in Africa, with sub-Saharan Africa carrying the greatest burden of the disease. Malaria control tools such as insecticide-treated bed nets, indoor residual spraying, and antimalarial drugs have been relatively successful in reducing the burden of malaria; however, sub-Saharan African countries encounter great challenges, the greatest being antimalarial drug resistance. Chloroquine (CQ) was the first-line drug in the 20th century until it was replaced by sulfadoxine-pyrimethamine (SP) as a consequence of resistance. The extensive use of these antimalarials intensified the spread of resistance throughout sub-Saharan Africa, thus resulting in a loss of efficacy for the treatment of malaria. SP was replaced by artemisinin-based combination therapy (ACT) after the emergence of resistance toward SP; however, the use of ACTs is now threatened by the emergence of resistant parasites. The decreased selective pressure on CQ and SP allowed for the reintroduction of sensitivity toward those antimalarials in regions of sub-Saharan Africa where they were not the primary drug for treatment. Therefore, the emergence and spread of antimalarial drug resistance should be tracked to prevent further spread of the resistant parasites, and the re-emergence of sensitivity should be monitored to detect the possible reappearance of sensitivity in sub-Saharan Africa.
Collapse
Affiliation(s)
- Alexandra T. Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Olukunle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Oluwasegun P. Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
2
|
Kavishe RA, Kaaya RD, Nag S, Krogsgaard C, Notland JG, Kavishe AA, Ishengoma D, Roper C, Alifrangis M. Molecular monitoring of Plasmodium falciparum super-resistance to sulfadoxine-pyrimethamine in Tanzania. Malar J 2016; 15:335. [PMID: 27339129 PMCID: PMC4918075 DOI: 10.1186/s12936-016-1387-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/15/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Sulfadoxine-pyrimethamine (SP) is recommended for prophylactic treatment of malaria in pregnancy while artemisinin combination therapy is the recommended first-line anti-malarial treatment. Selection of SP resistance is ongoing since SP is readily available in health facilities and in private drug shops in sub-Saharan Africa. This study reports on the prevalence and distribution of Pfdhps mutations A540E and A581G in Tanzania. When found together, these mutations confer high-level SP resistance (sometimes referred to as 'super-resistance'), which is associated with loss in protective efficacy of SP-IPTp. METHODS DNA samples were extracted from malaria-positive blood samples on filter paper, used malaria rapid diagnostic test strips and whole blood collected from eight sites in seven administrative regions of Tanzania. PCR-RFLP and SSOP-ELISA techniques were used to genotype the A540E and A581G Pfdhps. Data were analysed using SPSS version 18 while Chi square and/or Fischer Exact tests were used to compare prevalence between regions. RESULTS A high inter-regional variation of Pfdhps-540E was observed (χ(2) = 76.8, p < 0.001). High inter-regional variation of 581G was observed (FE = 85.3, p < 0.001). Both Tanga and Kagera were found to have the highest levels of SP resistance. A high prevalence of Pfdhps-581G was observed in Tanga (56.6 %) in northeastern Tanzania and in Kagera (20.4 %) in northwestern Tanzania and the 540-581 EG haplotype was found at 54.5 and 19.4 %, respectively. Pfdhps-581G was not detected in Pwani and Lindi regions located south of Tanga region. CONCLUSIONS Selection of SP super-resistant Pfdhps A581G is highest in northern Tanzania. Variation in distribution of SP resistance is observed across the country: northeastern Tanga region and northwestern Kagera region have highest prevalence of SP super-resistance markers, while in Pwani and Lindi in the southeast the prevalence of super-resistance was zero. More studies should be conducted to understand the factors underlying the remarkable heterogeneity in SP resistance in the country.
Collapse
Affiliation(s)
| | - Robert D Kaaya
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Sidsel Nag
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Krogsgaard
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Ginsbak Notland
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Deus Ishengoma
- National Institute for Medical Research, Tanga Centre, Tanzania
| | - Cally Roper
- London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
High levels of sulphadoxine-pyrimethamine resistance Pfdhfr-Pfdhps quintuple mutations: a cross sectional survey of six regions in Tanzania. Malar J 2014; 13:152. [PMID: 24751352 PMCID: PMC3998221 DOI: 10.1186/1475-2875-13-152] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/13/2014] [Indexed: 12/26/2022] Open
Abstract
Background In 2006, the first-line anti-malarial drug treatment in Tanzania was changed from sulphadoxine-pyrimethamine (SP) to artemether-lumefantrine (ALu), an artemisinin-based combination (ACT), since when the use of SP has been restricted for intermittent preventive treatment in pregnancy (IPTp). A number of Plasmodium falciparum mutations are known to be associated with resistance to SP, but it is not known if the prevalence of these mutations is increasing or decreasing under the conditions of reduced levels of SP use. This study reports on the current SP resistant quintuple Pfdhfr-Pfdhps mutations in six regions of Tanzania. Methods Finger-prick blood on filter paper and rapid diagnostic test strips from P. falciparum-positive individuals of all age groups attending health facilities in six regions of Tanzania between June 2010 and August 2011 were obtained. Using chelex-100 extracted DNA, genotyping was done for mutations on codons 51, 59 and 108 of Pfdhfr and 437 and 540 of Pfdhps genes using PCR-RFLP technique. Results A total of 802 malaria-positive samples were screened and genotyped. The prevalence of Pfdhfr 51I, Pfdhps 437G and 540E varied between the regions (p < 0.001) whereas Pfdhfr 59R (FE 10.79, p = 0.225) and 108 N (FE 10.61, p = 0.239) did not vary between the regions. The Pfdhfr triple mutant was above 84% and close to fixation levels in all regions, whereas the Pfdhps double mutation ranged from 43.8 to 97% between the regions. The quintuple mutant (IRNGE) was the most prevalent in all regions and it varied significantly from 37.5 to 90.2% (χ2 = 1.11, p <0.001). Conclusions There is evidence of persistent high levels of SP resistance markers in Tanzania with evidence of quintuple mutations that are likely to become fixed in the population. This threatens the future of SP not only in IPTp programmes, but as a combination drug for ACT. Continuous monitoring of SP-IPTp efficacy should be encouraged subsequent to searching for alternative drugs for IPTp in East Africa.
Collapse
|
4
|
Abdul-Ghani R, Farag HF, Allam AF, Shawky SM. Prevailing Plasmodium falciparum dihydrofolate reductase 108-asparagine in Hodeidah, Yemen: a questionable sulfadoxine-pyrimethamine partner within the artemisinin-based combination therapy. Acta Trop 2014; 132:39-44. [PMID: 24406851 DOI: 10.1016/j.actatropica.2013.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/22/2013] [Accepted: 12/26/2013] [Indexed: 11/17/2022]
Abstract
Given that the evolution and spread of resistance to sulfadoxine-pyrimethamine (SP) have been documented at a quick pace worldwide, the present study investigated the mutant Plasmodium falciparum dihydrofolate reductase 108-asparagine (dhfr 108 N) as a key marker of resistance to the combination among parasite isolates from Hodeidah. The association of parasitologic indices with the dhfr 108 N mutant allele was also studied. Ninety patients with microscopically confirmed P. falciparum infection from Hodeidah were included in the present study. Polymerase chain reaction-restriction fragment length polymorphism approach was adopted for the molecular detection of this marker. The dhfr 108 N was detected among about 61% of P. falciparum isolates, in its pure and mixed-type forms, from Hodeidah. Age, gender and residence of patients were not significant predictors for the presence of the mutant allele among parasite isolates. In contrast, a history of malaria and antimalarial drug intake in the year preceding the study as well as frequent antimalarial drug intake were significantly associated with this mutant allele. The high frequency of dhfr 108 N among parasites isolates makes the role of SP questionable as a partner with outstanding effectiveness within the ACT, at least, in the near future. SP plus artesunate should be monitored for its antimalarial efficacy at regular intervals, preferably through the molecular detection of resistance-associated mutations.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt; Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | - Hoda F Farag
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amal F Allam
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sherine M Shawky
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Sim S, Ramirez JL, Dimopoulos G. Molecular discrimination of mosquito vectors and their pathogens. Expert Rev Mol Diagn 2014; 9:757-65. [DOI: 10.1586/erm.09.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Mboera LE, Mazigo HD, Rumisha SF, Kramer RA. Towards malaria elimination and its implication for vector control, disease management and livelihoods in Tanzania. MALARIAWORLD JOURNAL 2013; 4:19. [PMID: 38828111 PMCID: PMC11138750 DOI: 10.5281/zenodo.10928325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Over the years, malaria has remained the number one cause of morbidity and mortality in Tanzania. Population based studies have indicated a decline in overall malaria prevalence among under-fives from 18.1% in 2008 to 9.7% in 2012. The decline of malaria infection has occurred in all geographical zones of the country. Malaria mortality and cumulative probability of deaths have also shown a marked decline from 2000 to 2010. During the same period, area specific studies in Muheza, Korogwe, Muleba and Mvomero have also reported a similar declining trend in malaria prevalence and incidence. The decline in malaria prevalence has been observed to coincide with a decline in transmission indices including anopheline mosquito densities. The decline in malaria prevalence has been attributed to a combination of factors including improved access to effective malaria treatment with artemisinin combination therapy and protection from mosquito bites by increased availability of insecticide treated bednets and indoor residual spraying. The objective of this paper was to review the changing landscape of malaria and its implication for disease management, vector control, and livelihoods in Tanzania. It seeks to examine the links within a broad framework that considers the different pathways given the multiplicity of interactions that can produce unexpected outcomes and trade-offs. Despite the remarkable decline in malaria burden, Tanzania is faced with a number of challenges. These include the development of resistance of malaria vectors to pyrethroids, changing mosquito behaviour and livelihood activities that increase mosquito productivity and exposure to mosquito bites. In addition, there are challenges related to health systems, community perceptions, community involvement and sustainability of funding to the national malaria control programme. This review indicates that malaria remains an important and challenging disease that illustrates the interactions among ecosystems, livelihoods, and health systems. Livelihoods and several sectoral development activities including construction, water resource development and agricultural practices contribute significantly to malaria mosquito productivity and transmission. Consequently, these situations require innovative and integrative re-thinking of the strategies to prevent and control malaria. In conclusion, to accelerate and sustain malaria control in Tanzania, the prevention strategies must go hand in hand with an intersectoral participation approach that takes into account ecosystems and livelihoods that have the potential to increase or decrease malaria transmission.
Collapse
Affiliation(s)
- Leonard E.G. Mboera
- National Institute for Medical Research, P.O. Box 9653, Dares Salaam, Tanzania
| | - Humphrey D. Mazigo
- Catholic University of Health and Allied Sciences-Bugando, P.O. Box 1464, Mwanza, Tanzania
| | - Susan F. Rumisha
- National Institute for Medical Research, P.O. Box 9653, Dares Salaam, Tanzania
| | - Randall A. Kramer
- Duke Global Health Institute, Duke University, Durham NC, United States of America
| |
Collapse
|
7
|
Mohammed A, Ndaro A, Kalinga A, Manjurano A, Mosha JF, Mosha DF, van Zwetselaar M, Koenderink JB, Mosha FW, Alifrangis M, Reyburn H, Roper C, Kavishe RA. Trends in chloroquine resistance marker, Pfcrt-K76T mutation ten years after chloroquine withdrawal in Tanzania. Malar J 2013; 12:415. [PMID: 24225406 PMCID: PMC3830541 DOI: 10.1186/1475-2875-12-415] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background Plasmodium falciparum resistance to anti-malarial drugs remains a major obstacle to the control of malaria. In 2001 Tanzania replaced chloroquine (CQ) with sulphadoxine-pyrimethamine (SP) as first-line drug, which in turn was replaced by artemisinin combination therapy in 2006. SP has however, continued to be used in intermittent preventive treatment of malaria in pregnancy (IPTp) despite reports of high levels of resistance to SP due to the lack of alternatives to SP for IPTp. Recent reports have indicated recovery of CQ-susceptibility in Malawi, Kenya, Mozambique, and Tanzania based on the prevalence of wild types at codon 76 of the Pfcrt gene in indigenous P. falciparum populations. The current prevalence of this Pfcrt-76 CQ resistance marker from six regions of Tanzania mainland is hereby reported. Methods DNA extracted from filter-paper dried blood spots and rapid diagnostics kit strips collected from finger-prick blood were used to genotype the Pfcrt-76 resistance marker using PCR-RFLP. Data from previously published studies were used to generate CQ susceptibility recovery trends using logistic regression model. Results Seven hundred and forty one (741) samples were genotyped. The current frequency of the CQ-susceptible Pfcrt-K76 was above 92% and did not differ between regions in Tanzania (χ2 = 2.37; p = 0.795). The K76 allelic prevalence was between 85.7 and 93% in regions (χ2 = 7.88, p = 0.163). The CQ resistance recovery trends showed regional variability that may be caused by differences in malaria transmission intensity, but overall the trends converge as the susceptibility levels in all regions approach >90%. Conclusions CQ withdrawal in Tanzania has resulted into >90% recovery of susceptibility in ten years of withdrawal. These findings are in support of the search for CQ-based combination drugs as a possible future alternative to SP for IPTp in places where full recovery of CQ-susceptibility will be evident.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Reginald A Kavishe
- Kilimanjaro Christian Medical University College and Kilimanjaro Clinical Research Institute, Moshi, Tanzania.
| |
Collapse
|
8
|
Tanabe K, Jombart T, Horibe S, Palacpac NMQ, Honma H, Tachibana SI, Nakamura M, Horii T, Kishino H, Mita T. Plasmodium falciparum mitochondrial genetic diversity exhibits isolation-by-distance patterns supporting a sub-Saharan African origin. Mitochondrion 2013; 13:630-6. [PMID: 24004956 DOI: 10.1016/j.mito.2013.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/13/2013] [Accepted: 08/26/2013] [Indexed: 01/31/2023]
Abstract
The geographical distribution of single nucleotide polymorphism (SNP) in the mitochondrial genome of the human malaria parasite Plasmodium falciparum was investigated. We identified 88 SNPs in 516 isolates from seven parasite populations in Africa, Southeast Asia and Oceania. Analysis of the SNPs postulated a sub-Saharan African origin and recovered a strong negative correlation between within-population SNP diversity and geographic distance from the putative African origin over Southeast Asia and Oceania. These results are consistent with those previously obtained for nuclear genome-encoded housekeeping genes, indicating that the pattern of inheritance does not substantially affect the geographical distribution of SNPs.
Collapse
Affiliation(s)
- Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abdul-Ghani R, Farag HF, Allam AF. Sulfadoxine-pyrimethamine resistance in Plasmodium falciparum: a zoomed image at the molecular level within a geographic context. Acta Trop 2013; 125:163-90. [PMID: 23131424 DOI: 10.1016/j.actatropica.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
Antimalarial chemotherapy is one of the main pillars in the prevention and control of malaria. Following widespread resistance of Plasmodium falciparum to chloroquine, sulfadoxine-pyrimethamine came to the scene as an alternative to the cheap and well-tolerated chloroquine. However, widespread resistance to sulfadoxine-pyrimethamine has been documented. In vivo efficacy tests are the gold standard for assessing drug resistance and treatment failure. However, they have many disadvantages, such as influence of host immunity and drug pharmacokinetics. In vitro tests of antimalarial drug efficacy also have many technical difficulties. Molecular markers of resistance have emerged as epidemiologic tools to investigate antimalarial drug resistance even before becoming clinically evident. Mutations in P. falciparum dihydrofolate reductase and dihydrofolate synthase have been extensively studied as molecular markers for resistance to pyrimethamine and sulfadoxine, respectively. This review highlights the resistance of P. falciparum at the molecular level presenting both supporting and opposing studies on the utility of molecular markers.
Collapse
|
10
|
Kamugisha E, Bujila I, Lahdo M, Pello-Esso S, Minde M, Kongola G, Naiwumbwe H, Kiwuwa S, Kaddumukasa M, Kironde F, Swedberg G. Large differences in prevalence of Pfcrt and Pfmdr1 mutations between Mwanza, Tanzania and Iganga, Uganda-a reflection of differences in policies regarding withdrawal of chloroquine? Acta Trop 2012; 121:148-51. [PMID: 22118982 DOI: 10.1016/j.actatropica.2011.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Malaria is still a major public health problem in the world and sub-Saharan Africa is one of the most affected areas. Efforts to control malaria are highly affected by drug resistance to commonly used antimalarials. The introduction of artemisinin based combination therapy (ACT) as a first line drug seems to be a major step in treatment of uncomplicated malaria, though search for drugs to combine with artemisinins still continues. There have been reports on increased prevalence of the wild type markers Pfcrt 76K and Pfmdr1 86N in some African countries and ideas of using chloroquine (CQ) in intermittent presumptive treatment for adults (IPTa) is coming up. The common combination of artemether and lumefantrine even selects for parasites that are wild type at these positions. This study is comparing prevalence of mutation at these two positions in two East African countries with ACT as their first line drug but following somewhat different drug policies regarding CQ. In Tanzania CQ was stopped in 2001 but in Uganda CQ was retained in combination with sulfadoxine-pyrimethamine (SP) and used in home based management of fever for some time. SP is still used in IPT for pregnant women. METHODS Blood smears and dried blood spots on Whatman filter papers were collected from 100 patients with uncomplicated malaria in Mwanza, Tanzania and 100 patients from Iganga, Uganda. DNA was extracted from all samples using Tris EDTA method. PCR and RFLP were performed and sequencing done on Pfcrt amplification products. RESULTS The prevalence of K76T mutations at Pfcrt in samples from Mwanza, Tanzania was 40.5% (34/84) and 100% (100/100) in samples from Iganga, Uganda. Prevalence of N86Y mutations in Pfmdr1 was 16.9% (13/77) and 77.7% (63/81) in samples from Mwanza and Iganga, respectively. The re-emergence of CQ sensitive isolates in Mwanza, Tanzania showed the haplotype CVMNK typical for wild type isolates. CONCLUSIONS The prevalence of CQ resistant parasites in Mwanza, Tanzania is low compared to the existing high level of resistant parasites in Iganga, Uganda. This could be an indication that CQ may become useful in the future in Tanzania. This study shows clearly that there is a difference in mutations at these positions in these two countries implementing similar but somewhat different drug policies. In Uganda the drug resistance has reached fixation while in Tanzania the prevalence is going down.
Collapse
Affiliation(s)
- Erasmus Kamugisha
- Department of Biochemistry, Bugando University College of Health Sciences, Mwanza, Tanzania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Scaling up of intermittent preventive treatment of malaria in pregnancy using sulphadoxine-pyrimethamine: prospects and challenges. Matern Child Health J 2011; 15:542-52. [PMID: 20425139 DOI: 10.1007/s10995-010-0608-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intermittent preventive treatment of malaria during pregnancy with sulphadoxine-pyrimethamine (IPTpSP) is one of the major strategies of malaria control in most African countries where malaria is endemic. The use of sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment of malaria during pregnancy was adopted when proof of its superiority to weekly prophylactic dosing with either chloroquine or pyrimethamine became evident from studies in different malaria endemic countries. The administration of 2 and 3 treatment doses of SP for HIV-negative and HIV-positive pregnant women respectively, given after quickening and at an interval not less than 4 weeks was recommended. The prospects of this control strategy lies on the efficacy of SP, convenient treatment dose and high compliance rate. However, the implementation of this strategy and the efficacy of SP are faced with challenges such as: timing of SP administration, rising levels of parasite resistance to SP in the general population, effect of folate supplementation, adequacy of the recommended doses with regards to malaria endemicity and HIV status, interactions between SP and antiretroviral drugs and low coverage in the bid to scale-up its use. This review highlights the prospects and challenges of scaling up IPTp-SP.
Collapse
|
12
|
Frosch AEP, Venkatesan M, Laufer MK. Patterns of chloroquine use and resistance in sub-Saharan Africa: a systematic review of household survey and molecular data. Malar J 2011; 10:116. [PMID: 21554692 PMCID: PMC3112453 DOI: 10.1186/1475-2875-10-116] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a result of widespread chloroquine and sulphadoxine-pyrimethamine (SP) resistance, 90% of sub-Saharan African countries had adopted policies of artemisinin-based combination therapy (ACT) for treatment of uncomplicated malaria by 2007. In Malawi, cessation of chloroquine use was followed by the re-emergence of chloroquine-susceptible malaria. It was expected that introduction of ACT would lead to a return in chloroquine susceptibility throughout Africa, but this has not yet widely occurred. This observation suggests that there is continuing use of ineffective anti-malarials in Africa and that persistent chloroquine-resistant malaria is due to ongoing drug pressure despite national policy changes. METHODS To estimate drug use on a national level, 2006-2007 Demographic Health Survey and Multiple Indicator Cluster Survey data from 21 African countries were analysed. Resistance data were compiled by systematic review of the published literature on the prevalence of the Plasmodium falciparum chloroquine resistance transporter polymorphism at codon 76, which causes chloroquine resistance. RESULTS Chloroquine was the most common anti-malarial used according to surveys from 14 of 21 countries analysed, predominantly in West Africa. SP was most commonly reported in two of 21 countries. Among eight countries with longitudinal molecular resistance data, the four countries where the highest proportion of children treated for fever received chloroquine (Uganda, Burkina Faso, Guinea Bissau, and Mali) also showed no significant declines in the prevalence of chloroquine-resistant infections. The three countries with low or decreasing chloroquine use among children who reported fever treatment (Malawi, Kenya, and Tanzania) had statistically significant declines in the prevalence of chloroquine resistance. CONCLUSIONS This study demonstrates that in 2006-2007, chloroquine and SP continued to be used at high rates in many African countries. In countries reporting sustained chloroquine use, chloroquine-resistant malaria persists. In contrast, a low level of estimated chloroquine use is associated with a declining prevalence of chloroquine resistance.
Collapse
Affiliation(s)
- Anne E P Frosch
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, USA
| | | | | |
Collapse
|
13
|
Bin Dajem SM, Al-Sheikh AAH, Bohol MF, Alhawi M, Al-Ahdal MN, Al-Qahtani A. Detecting mutations in PfCRT and PfMDR1 genes among Plasmodium falciparum isolates from Saudi Arabia by pyrosequencing. Parasitol Res 2011; 109:291-6. [PMID: 21350795 DOI: 10.1007/s00436-011-2251-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 01/11/2011] [Indexed: 11/26/2022]
Abstract
The emergence of chloroquine resistance in Plasmodium falciparum is a significant public health problem where malaria is endemic. We aimed to evaluate the efficacy of pyrosequencing to assess chloroquine resistance among P. falciparum isolates from the southwestern region of Saudi Arabia by analyzing the K76T and N86Y mutations in the P. falciparum chloroquine resistance transporter (PfCRT) and P. falciparum multidrug resistance 1 (PfMDR1) genes, respectively. Blood samples (n = 121) from microscopically positive P. falciparum cases were collected. DNA was extracted, and fragments from each of the genes were amplified by PCR using new sets of primers. The amplicons were sequenced using a pyrosequencer. All of the 121 samples were amplified for assessment of the PfCRT K76T and PfMDR1 N86Y mutations. All of the samples amplified for the PfCRT 76T mutation harbored the ACA codon (121/121; 100%), indicating the presence of the 76T mutation. For the PfMDR1 N86Y mutation, 72/121 samples (59.5%) had the sequence AAT at that position, indicating the presence of the wild-type allele (86N). However, 49/121 samples (40.5%) had a TAT codon, indicating the mutant allele (Y) at position 86. This study shows that pyrosequencing could be useful as a high throughput, rapid, and sensitive assay for the detection of specific single nucleotide polymorphisms in drug-resistant P. falciparum strains. This will help health authorities in malaria-endemic regions to adopt new malaria control strategies that will be applicable for diagnostic and drug resistance assays for malaria and other life-threatening pathogens that are endemic in their respective countries.
Collapse
Affiliation(s)
- Saad M Bin Dajem
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
14
|
Porter-Kelley JM, Cofie J, Jean S, Brooks ME, Lassiter M, Mayer DCG. Acquired resistance of malarial parasites against artemisinin-based drugs: social and economic impacts. Infect Drug Resist 2010; 3:87-94. [PMID: 21694897 PMCID: PMC3108741 DOI: 10.2147/idr.s7454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Indexed: 11/23/2022] Open
Abstract
Malaria, a disease of poverty and high morbidity and mortality in the tropical world, has led to a worldwide search for control measures. To that end, good antimalarial chemotherapies have been difficult to find in the global market and those that seem to be most effective are rapidly becoming ineffective due to the emergence and spread of drug resistance. Artemisinin, a very effective yet expensive antimalarial, has quickly become the recommended drug of choice when all other possibilities fail. However, for all its promise as the next great antimalarial, the outlook is bleak. Resistance is developing to artemisinin while another effective antimalarial is not in sight. Malaria endemic areas which are mostly in developing countries must deal with the multifaceted process of changing and implementing new national malaria treatment guidelines. This requires complex interactions between several sectors of the affected society which in some cases take place within the context of political instability. Moreover, the cost associated with preventing and containing the spread of antimalarial resistance is detrimental to economic progress. This review addresses the impact of artemisinin resistance on the socioeconomic structure of malaria endemic countries.
Collapse
Affiliation(s)
| | - Joann Cofie
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sophonie Jean
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Mark E Brooks
- Life Sciences Department, Winston-Salem State University, Winston Salem, NC, USA
| | - Mia Lassiter
- Life Sciences Department, Winston-Salem State University, Winston Salem, NC, USA
| | - DC Ghislaine Mayer
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
15
|
Regulation of CD8+ T cell responses to infection with parasitic protozoa. Exp Parasitol 2010; 126:318-25. [PMID: 20493842 DOI: 10.1016/j.exppara.2010.05.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 04/05/2010] [Accepted: 05/15/2010] [Indexed: 11/24/2022]
Abstract
There are over 10,000 species of parasitic protozoa, a subset of which can cause considerable disease in humans. Here we examine in detail the complex immune response generated during infection with a subset of these parasites: Trypanosoma cruzi, Leishmania sp., Toxoplasma gondii, and Plasmodium sp. While these particular species perhaps represent the most studied parasites in terms of understanding how T cells function during infection, it is clear that the lessons learned from this body of work are also relevant to the other protozoa known to induce a CD8(+) T cell response. This review will highlight some of the key studies that established that CD8(+) T cells play a major role in protective immunity to protozoa, the factors that promote the generation as well as maintenance of the CD8(+) T cell response during these infections, and draw attention to some of the gaps in our knowledge. Moreover, the development of new tools, including MHC-Class I tetramer reagents and the use of TCR transgenic mice or genetically modified parasites, has provided a better appreciation of how parasite specific CD8(+) T cell responses are initiated and new insights into their phenotypic plasticity.
Collapse
|
16
|
Bacon DJ, Tang D, Salas C, Roncal N, Lucas C, Gerena L, Tapia L, Llanos-Cuentas AA, Garcia C, Solari L, Kyle D, Magill AJ. Effects of point mutations in Plasmodium falciparum dihydrofolate reductase and dihydropterate synthase genes on clinical outcomes and in vitro susceptibility to sulfadoxine and pyrimethamine. PLoS One 2009; 4:e6762. [PMID: 19707564 PMCID: PMC2728505 DOI: 10.1371/journal.pone.0006762] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 04/02/2009] [Indexed: 11/18/2022] Open
Abstract
Background Sulfadoxine-pyrimethamine was a common first line drug therapy to treat uncomplicated falciparum malaria, but increasing therapeutic failures associated with the development of significant levels of resistance worldwide has prompted change to alternative treatment regimes in many national malaria control programs. Methodology and Finding We conducted an in vivo therapeutic efficacy trial of sulfadoxine-pyrimethamine at two locations in the Peruvian Amazon enrolling 99 patients of which, 86 patients completed the protocol specified 28 day follow up. Our objective was to correlate the presence of polymorphisms in P. falciparum dihydrofolate reductase and dihydropteroate synthase to in vitro parasite susceptibility to sulfadoxine and pyrimethamine and to in vivo treatment outcomes. Inhibitory concentration 50 values of isolates increased with numbers of mutations (single [108N], sextuplet [BR/51I/108N/164L and 437G/581G]) and septuplet (BR/51I/108N/164L and 437G/540E/581G) with geometric means of 76 nM (35–166 nM), 582 nM (49-6890- nM) and 4909 (3575–6741 nM) nM for sulfadoxine and 33 nM (22–51 nM), 81 nM (19–345 nM), and 215 nM (176–262 nM) for pyrimethamine. A single mutation present in the isolate obtained at the time of enrollment from either dihydrofolate reductase (164L) or dihydropteroate synthase (540E) predicted treatment failure as well as any other single gene alone or in combination. Patients with the dihydrofolate reductase 164L mutation were 3.6 times as likely to be treatment failures [failures 85.4% (164L) vs 23.7% (I164); relative risk = 3.61; 95% CI: 2.14 – 6.64] while patients with the dihydropteroate synthase 540E were 2.6 times as likely to fail treatment (96.7% (540E) vs 37.5% (K540); relative risk = 2.58; 95% CI: 1.88 – 3.73). Patients with both dihydrofolate reductase 164L and dihydropteroate synthase 540E mutations were 4.1 times as likely to be treatment failures [96.7% vs 23.7%; RR = 4.08; 95% CI: 2.45 – 7.46] compared to patients having both wild forms (I164 and K540). Conclusions In this part of the Amazon basin, it may be possible to predict treatment failure with sulfadoxine-pyrimethamine equally well by determination of either of the single mutations dihydrofolate reductase 164L or dihydropteroate synthase 540E. Trial Registration ClinicalTrials.gov NCT00951106 NCT00951106
Collapse
Affiliation(s)
- David J Bacon
- Parasitology Program, Naval Medical Research Center Detachment, Lima, Peru.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bridges DJ, Molyneux M, Nkhoma S. Low level genotypic chloroquine resistance near Malawi's northern border with Tanzania. Trop Med Int Health 2009; 14:1093-6. [PMID: 19624477 DOI: 10.1111/j.1365-3156.2009.02340.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We conducted a prevalence study of mutations in Plasmodium falciparum that are associated with antimalarial drug resistance at a rural site in Karonga near Malawi's northern border with Tanzania. We found a higher prevalence of the key chloroquine resistance-conferring mutation in the pfcrt gene (K76T) at this site in comparison with the prevalence in Blantyre, a city in the south of Malawi, far from an international border (9%vs. 0%; P < 0.0005). In contrast we found a lower prevalence of the quintuple dhfr/dhps mutation, which is highly predictive of SP treatment failure, at the Karonga site compared to Blantyre (76%vs. 88%; P < 0.005). The prevalence of the K76T pfcrt mutation at two Tanzanian sites close to the border with Malawi was recently reported to be over 50%. Our findings suggest a considerable 'leakage' of parasite antimalarial drug resistance across the border between two countries with different national malaria control policies and with different levels of resistance. Neighbouring countries should consider implementing common regional rather than national malaria treatment policies to prevent the spread of antimalarial drug resistance alleles across their borders.
Collapse
Affiliation(s)
- Daniel J Bridges
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Chichiri, Malawi.
| | | | | |
Collapse
|
18
|
Bonizzoni M, Afrane Y, Baliraine FN, Amenya DA, Githeko AK, Yan G. Genetic structure of Plasmodium falciparum populations between lowland and highland sites and antimalarial drug resistance in Western Kenya. INFECTION GENETICS AND EVOLUTION 2009; 9:806-12. [PMID: 19398039 DOI: 10.1016/j.meegid.2009.04.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Human travel to malaria endemic lowlands from epidemic highlands has been shown to increase the risk of malaria infections in the highlands. In order to gain insight on the impact of human travel, we examined prevalence, genetic variability and population genetic structure of Plasmodium falciparum in asymptomatic children from one highland site and three surrounding malaria endemic lowland sites in Western Kenya, using multilocus microsatellite genotyping. We further analyzed the frequencies of mutations at the genes conferring resistance to chloroquine and sulfadoxine-pyrimethamine. We found a significant decrease in malaria prevalence in the highland site from 2006 to 2007, 1 year after the introduction of the artemisinin-based combination therapy as first-line treatment for uncomplicated malaria and the scale-up of insecticide-treated bed nets. Population genetic diversity, measured by the number of observed and effective microsatellite alleles and Nei's unbiased genetic diversity, was high and comparable for both highland and lowland populations. Analysis of molecular variance did not detect a significant genetic structure across highland and lowland regions. Similarly, mutations at key antimalarial-resistance codons of the pfcrt, pfmdr1, pfdhfr and pfdhps genes were found at comparable high frequencies in all four sites. High level of gene flow and lack of significant genetic structure in malaria parasites between highland and lowland areas suggest the importance of human travel in shaping parasite population structure.
Collapse
Affiliation(s)
- Mariangela Bonizzoni
- Program in Public Health, College of Health Sciences, University of California, Irvine 92697, USA.
| | | | | | | | | | | |
Collapse
|
19
|
High resistance of Plasmodium falciparum to sulphadoxine/pyrimethamine in northern Tanzania and the emergence of dhps resistance mutation at Codon 581. PLoS One 2009; 4:e4569. [PMID: 19238219 PMCID: PMC2644264 DOI: 10.1371/journal.pone.0004569] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 12/12/2008] [Indexed: 12/04/2022] Open
Abstract
Background Sulphadoxine-pyrimethamine (SP) a widely used treatment for uncomplicated malaria and recommended for intermittent preventive treatment of malaria in pregnancy, is being investigated for intermittent preventive treatment of malaria in infants (IPTi). High levels of drug resistance to SP have been reported from north-eastern Tanzania associated with mutations in parasite genes. This study compared the in vivo efficacy of SP in symptomatic 6–59 month children with uncomplicated malaria and in asymptomatic 2–10 month old infants. Methodology and Principal Findings An open label single arm (SP) standard 28 day in vivo WHO antimalarial efficacy protocol was used in 6 to 59 months old symptomatic children and a modified protocol used in 2 to 10 months old asymptomatic infants. Enrolment was stopped early (87 in the symptomatic and 25 in the asymptomatic studies) due to the high failure rate. Molecular markers were examined for recrudescence, re-infection and markers of drug resistance and a review of literature of studies looking for the 581G dhps mutation was carried out. In symptomatic children PCR-corrected early treatment failure was 38.8% (95% CI 26.8–50.8) and total failures by day 28 were 82.2% (95% CI 72.5–92.0). There was no significant difference in treatment failures between asymptomatic and symptomatic children. 96% of samples carried parasites with mutations at codons 51, 59 and 108 in the dhfr gene and 63% carried a double mutation at codons 437 and 540. 55% carried a third mutation with the addition of a mutation at codon 581 in the dhps gene. This triple: triple haplotype maybe associated with earlier treatment failure. Conclusion In northern Tanzania SP is a failed drug for treatment and its utility for prophylaxis is doubtful. The study found a new combination of parasite mutations that maybe associated with increased and earlier failure. Trial Registration ClinicalTrials.gov NCT00361114
Collapse
|
20
|
Oesterholt MJAM, Alifrangis M, Sutherland CJ, Omar SA, Sawa P, Howitt C, Gouagna LC, Sauerwein RW, Bousema T. Submicroscopic gametocytes and the transmission of antifolate-resistant Plasmodium falciparum in Western Kenya. PLoS One 2009; 4:e4364. [PMID: 19194499 PMCID: PMC2632751 DOI: 10.1371/journal.pone.0004364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 12/22/2008] [Indexed: 11/24/2022] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) in the dhfr and dhps genes are associated with sulphadoxine-pyrimethamine (SP) treatment failure and gametocyte carriage. This may result in enhanced transmission of mutant malaria parasites, as previously shown for chloroquine resistant parasites. In the present study, we determine the association between parasite mutations, submicroscopic P. falciparum gametocytemia and malaria transmission to mosquitoes. Methodology/Principal Findings Samples from children treated with SP alone or in combination with artesunate (AS) or amodiaquine were genotyped for SNPs in the dhfr and dhps genes. Gametocytemia was determined by microscopy and Pfs25 RNA–based quantitative nucleic acid sequence–based amplification (Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays. We observed no wild type infections, 66.5% (127/191) of the infections expressed mutations at all three dhfr codons prior to treatment. The presence of all three mutations was not related to higher Pfs25 QT-NASBA gametocyte prevalence or density during follow-up, compared to double mutant infections. The proportion of infected mosquitoes or oocyst burden was also not related to the number of mutations. Addition of AS to SP reduced gametocytemia and malaria transmission during follow-up. Conclusions/Significance In our study population where all infections had at least a double mutation in the dhfr gene, additional mutations were not related to increased submicroscopic gametocytemia or enhanced malaria transmission. The absence of wild-type infections is likely to have reduced our power to detect differences. Our data further support the use of ACT to reduce the transmission of drug-resistant malaria parasites.
Collapse
Affiliation(s)
- Mayke J. A. M. Oesterholt
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Michael Alifrangis
- Centre for Medical Parasitology at the Department of International Health, Immunology and Microbiology, University of Copenhagen, and at the Department of infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Colin J. Sutherland
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sabah A. Omar
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, Nairobi, Kenya
| | - Patrick Sawa
- Human Health Division, International Centre of Insect Physiology and Ecology, Mbita, Kenya
| | - Christina Howitt
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Louis C. Gouagna
- Human Health Division, International Centre of Insect Physiology and Ecology, Mbita, Kenya
- Institut de Recherche pour le Développement, Bobo Dioulasso, Burkina Faso
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
Lynch C, Pearce R, Pota H, Cox J, Abeku TA, Rwakimari J, Naidoo I, Tibenderana J, Roper C. Emergence of a dhfr mutation conferring high-level drug resistance in Plasmodium falciparum populations from southwest Uganda. J Infect Dis 2008; 197:1598-604. [PMID: 18471065 DOI: 10.1086/587845] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The S108N, C59R, and N51I mutations in the Plasmodium falciparum gene that encodes dihydrofolate reductase, dhfr, confer resistance to pyrimethamine and are common in Africa. However, the I164L mutation, which confers high-level resistance, is rarely seen. We found a 14% prevalence of the I164L mutation among a sample of 51 patients with malaria in Kabale District in southwest Uganda in 2005 and a 4% prevalence among 72 patients with malaria in the neighboring district of Rukungiri during the same year. Surveillance at 6 sites across Uganda during 2002-2004 reported a single case of infection involving an I164L mutant, also in the southwest, suggesting that this is a regional hot spot. The spatial clustering and increasing prevalence of the I164L mutation is indicative of local transmission of the mutant. Targeted surveillance is needed to confirm the extent of the spread of the I164L mutation and to monitor the impact of I164L on the efficacy of antifolates for intermittent preventive treatment of pregnant women and/or infants with falciparum malaria.
Collapse
Affiliation(s)
- Caroline Lynch
- Disease Control and Vector Biology Unit, Department of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Plasmodium falciparum strains harboring dihydrofolate reductase with the I164L mutation are absent in Malawi and Zambia even under antifolate drug pressure. Antimicrob Agents Chemother 2008; 52:3883-8. [PMID: 18725445 DOI: 10.1128/aac.00431-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum dihydrofolate reductase (PfDHFR) enzyme is the target of pyrimethamine, a component of the antimalarial pyrimethamine-sulfadoxine. Resistance to this drug is associated primarily with mutations in the Pfdhfr gene. The I164L mutant allele is of particular interest, because strains possessing this mutation are highly resistant to pyrimethamine and to chlorproguanil, a component of chlorproguanil-dapsone. A recent study from Malawi reported this mutation at a prevalence of 4.7% in parasites from human immunodeficiency virus-positive pregnant women by using a real-time PCR method. These observations have huge implications for the use of pyrimethamine-sulfadoxine, chlorproguanil-dapsone, and future antifolate-artemisinin combinations in Africa. It was imperative that this finding be rigorously tested. We identified a number of critical limitations in the original genotyping strategy. Using a refined and validated real-time PCR strategy, we report here that this mutation was absent in 158 isolates from Malawi and 42 isolates from Zambia collected between 2003 and 2005.
Collapse
|