1
|
Yavasoglu SI, Wood MJ, Bull JC, Alkış N, Doğan E, Alkhaibari AM, Butt TM. Novo plant-based mosquito repellent shows promise for exclusion of Aedes mosquitoes from "window" entry. JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae137. [PMID: 39485014 DOI: 10.1093/jme/tjae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Mosquitoes threaten over half of the world's population through vectored diseases such as malaria, zika, yellow fever, dengue, and chikungunya. Mosquitoes have a highly developed olfactory system attuned to chemotaxis relating to host-seeking, mating, and oviposition behavior. In this study, we aimed to determine the spatial efficacy of 2 plant-based repellent blends (Blend3 and Blend4 that had previously been found to successfully repel Aedes, Anopheles and Culex mosquitoes in wind tunnel assays) in excluding Aedes aegypti from the window entry. A new cage system was developed for parallel "no-choice" and "choice" olfactometric assays. In the no-choice trial, Blends 3 and 4, as well as commercial products (N, N-diethyl-3-methylbenzamide, p-menthane-3,8-diol [PMD], 3-(N-n-butyl-N-acetyl)-amino-propionic acid ethyl ester, and 2-(2-hydroxyethyl)-1-methylpropylstyrene 1-piperidine carboxylate), were adsorbed into filter papers of different sizes and placed in a window created between 2 attached bug dorms. Then, the number of mosquitoes entering the window was counted through a 6-min period. In choice olfactometric assays, Blends 3, 4, and PMD were adsorbed into filter paper and the number of mosquitoes moving away from Blend 3 and PMD were compared. No-choice assays showed that Blend3 (P < 0.001) and Blend4 (P = 0.0012) were more repellent than the best commercial product PMD. Additionally, while Blend 4 was significantly more repellent than Blend 3 (P = 0.012) in the choice assay, overall, these 2 blends show promise as new repellents for the spatial exclusion of Aedes aegypti from window entry alone or as part of a "push-pull'' strategy.
Collapse
Affiliation(s)
- Sare I Yavasoglu
- Department of Biology, Faculty of Science, Aydın Adnan Menderes University, 09010 Aydın, Türkiye
| | - Martyn J Wood
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece
| | - James C Bull
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Nergis Alkış
- Department of Biology, Institute of Science, Aydın Adnan Menderes University, 09010 Aydın, Türkiye
| | - Emrecan Doğan
- Department of Biology, Institute of Science, Aydın Adnan Menderes University, 09010 Aydın, Türkiye
| | - Abeer M Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, Tabul 71491, Kingdom of Saudi Arabia
| | - Tariq M Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
2
|
Vajda ÉA, Ross A, Doum D, Fairbanks EL, Chitnis N, Hii J, Moore SJ, Richardson JH, Macdonald M, Sovannaroth S, Kimheng P, McIver DJ, Tatarsky A, Lobo NF. Field evaluation of a volatile pyrethroid spatial repellent and etofenprox treated clothing for outdoor protection against forest malaria vectors in Cambodia. Sci Rep 2024; 14:17348. [PMID: 39069597 PMCID: PMC11284218 DOI: 10.1038/s41598-024-67470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Cambodia's goal to eliminate malaria by 2025 is challenged by persistent transmission in forest and forest fringe areas, where people are exposed to Anopheles mosquito bites during the day and night. Volatile pyrethroid spatial repellents (VPSRs) and insecticide-treated clothing (ITC) could address these gaps. This study evaluated the outdoor application of one passive transfluthrin-based VPSR, four etofenprox-ITCs paired with a picaridin topical repellent, and a combination of VPSR and ITC against wild Anopheles landing in Cambodia. A 7 × 7 Latin-square study was conducted over 49 collection nights in temporary open structures in Mondulkiri Province. All interventions substantially reduced Anopheles landing, with protective efficacy ranging from 61 to 95%. Mathematical modeling showed significant reductions in vectoral capacity, especially with the combined ITC and VPSR and VPSR alone, albeit with decreased effectiveness over time. These interventions have the potential to reduce outdoor and daytime Anopheles biting, offering valuable contributions to malaria elimination efforts in Cambodia and the Greater Mekong Subregion, contingent upon achieving effective coverage and adherence.
Collapse
Affiliation(s)
- Élodie A Vajda
- University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA.
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.
- University of Basel, Petersplatz 1, 2003, Basel, Switzerland.
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 2003, Basel, Switzerland
| | - Dyna Doum
- University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
- Health Forefront Organization, Phnom Penh, Cambodia
| | - Emma L Fairbanks
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 2003, Basel, Switzerland
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 2003, Basel, Switzerland
| | - Jeffrey Hii
- University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - Sarah J Moore
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 2003, Basel, Switzerland
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 74, Bagamoyo, Tanzania
| | - Jason H Richardson
- Innovative Vector Control Consortium, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, L3 5QA, UK
| | - Michael Macdonald
- Innovative Vector Control Consortium, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, L3 5QA, UK
| | - Siv Sovannaroth
- National Center for Parasitology, Entomology and Malaria Control, 477, Phnom Penh, Cambodia
| | - Pen Kimheng
- Department of Health of Mondulkiri, C5XX+CP4, 76, Krong Saen Monourom, Cambodia
| | - David J McIver
- University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - Allison Tatarsky
- University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - Neil F Lobo
- University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
- University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
3
|
Vajda ÉA, Saeung M, Ross A, McIver DJ, Tatarsky A, Moore SJ, Lobo NF, Chareonviriyaphap T. A semi-field evaluation in Thailand of the use of human landing catches (HLC) versus human-baited double net trap (HDN) for assessing the impact of a volatile pyrethroid spatial repellent and pyrethroid-treated clothing on Anopheles minimus landing. Malar J 2023; 22:202. [PMID: 37400831 PMCID: PMC10318828 DOI: 10.1186/s12936-023-04619-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/10/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The mosquito landing rate measured by human landing catches (HLC) is the conventional endpoint used to evaluate the impact of vector control interventions on human-vector exposure. Non-exposure based alternatives to the HLC are desirable to minimize the risk of accidental mosquito bites. One such alternative is the human-baited double net trap (HDN), but the estimated personal protection of interventions using the HDN has not been compared to the efficacy estimated using HLC. This semi-field study in Sai Yok District, Kanchanaburi Province, Thailand, evaluates the performance of the HLC and the HDN for estimating the effect on Anopheles minimus landing rates of two intervention types characterized by contrasting modes of action, a volatile pyrethroid spatial repellent (VSPR) and insecticide-treated clothing (ITC). METHODS Two experiments to evaluate the protective efficacy of (1) a VPSR and (2) ITC, were performed. A block randomized cross-over design over 32 nights was carried out with both the HLC or HDN. Eight replicates per combination of collection method and intervention or control arm were conducted. For each replicate, 100 An. minimus were released and were collected for 6 h. The odds ratio (OR) of the released An. minimus mosquitoes landing in the intervention compared to the control arm was estimated using logistic regression, including collection method, treatment, and experimental day as fixed effects. RESULTS For the VPSR, the protective efficacy was similar for the two methods: 99.3%, 95% CI (99.5-99.0) when measured by HLC, and 100% (100, Inf) when measured by HDN where no mosquitoes were caught (interaction test p = 0.99). For the ITC, the protective efficacy was 70% (60-77%) measured by HLC but there was no evidence of protection when measured by HDN [4% increase (15-27%)] (interaction test p < 0.001). CONCLUSIONS Interactions between mosquitoes, bite prevention tools and the sampling method may impact the estimated intervention protective efficacy. Consequently, the sampling method must be considered when evaluating these interventions. The HDN is a valid alternative trapping method (relative to the HLC) for evaluating the impact of bite prevention methods that affect mosquito behaviour at a distance (e.g. VPSR), but not for interventions that operate through tarsal contact (e.g., ITC).
Collapse
Affiliation(s)
- Élodie A Vajda
- Malaria Elimination Initiative, University of California, 550 16th street, San Francisco, CA, 94158, USA.
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, CH-2003, Basel, Switzerland.
| | - Manop Saeung
- Kasetsart University, 50 Thanon Ngamwongwan, Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Amanda Ross
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, CH-2003, Basel, Switzerland
| | - David J McIver
- Malaria Elimination Initiative, University of California, 550 16th street, San Francisco, CA, 94158, USA
| | - Allison Tatarsky
- Malaria Elimination Initiative, University of California, 550 16th street, San Francisco, CA, 94158, USA
| | - Sarah J Moore
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, CH-2003, Basel, Switzerland
- Vector Control Product Testing Unit, Department of Environmental and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| | - Neil F Lobo
- Malaria Elimination Initiative, University of California, 550 16th street, San Francisco, CA, 94158, USA
- University of Notre Dame, Notre Dame, IN, 46556, USA
| | | |
Collapse
|
4
|
Tambwe MM, Saddler A, Kibondo UA, Mashauri R, Kreppel KS, Govella NJ, Moore SJ. Semi-field evaluation of the exposure-free mosquito electrocuting trap and BG-Sentinel trap as an alternative to the human landing catch for measuring the efficacy of transfluthrin emanators against Aedes aegypti. Parasit Vectors 2021; 14:265. [PMID: 34016149 PMCID: PMC8138975 DOI: 10.1186/s13071-021-04754-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human landing catch (HLC) measures human exposure to mosquito bites and evaluates the efficacy of vector control tools. However, it may expose volunteers to potentially infected mosquitoes. The mosquito electrocuting trap (MET) and BG-Sentinel traps (BGS) represent alternative, exposure-free methods for sampling host-seeking mosquitoes. This study investigates whether these methods can be effectively used as alternatives to HLC for measuring the efficacy of transfluthrin emanator against Aedes aegypti. METHODS The protective efficacy (PE) of freestanding passive transfluthrin emanators (FTPEs), measured by HLC, MET and BGS, was compared in no-choice and choice tests. The collection methods were conducted 2 m from an experimental hut with FTPEs positioned at 3 m on either side of them. For the choice experiment, a competitor HLC was included 10 m from the first collection point. One hundred laboratory-reared Ae. aegypti mosquitoes were released and collected for 3 consecutive h. RESULTS In the no-choice test, each method measured similar PE: HLC: 66% (95% confidence interval [CI]: 50-82), MET: 55% (95% CI: 48-63) and BGS: 64% (95% CI: 54-73). The proportion of mosquitoes recaptured was consistent between methods (20-24%) in treatment and varied (47-71%) in the control. However, in choice tests, the PE measured by each method varied: HLC: 37% (95% CI: 25-50%), MET: 76% (95% CI: 61-92) and BGS trap: 0% (95% CI: 0-100). Recaptured mosquitoes were no longer consistent between methods in treatment (2-26%) and remained variable in the control (7-42%). FTPE provided 50% PE to the second HLC 10 m away. In the control, the MET and the BGS were less efficacious in collecting mosquitoes in the presence of a second HLC. CONCLUSIONS Measuring the PE in isolation was fairly consistent for HLC, MET and BGS. Because HLC is not advisable, it is reasonable to use either MET or BGS as a proxy for HLC for testing volatile pyrethroid (VP) in areas of active arbovirus-endemic areas. The presence of a human host in close proximity invalidated the PE estimates from BGS and METs. Findings also indicated that transfluthrin can protect multiple people in the peridomestic area and that at short range mosquitoes select humans over the BGS.
Collapse
Affiliation(s)
- Mgeni M. Tambwe
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Adam Saddler
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Telethon Kids Institute, Perth, Australia
| | - Ummi Abdul Kibondo
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Rajabu Mashauri
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Katharina S. Kreppel
- Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| | - Nicodem J. Govella
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Sarah J. Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| |
Collapse
|
5
|
A low technology emanator treated with the volatile pyrethroid transfluthrin confers long term protection against outdoor biting vectors of lymphatic filariasis, arboviruses and malaria. PLoS Negl Trop Dis 2017; 11:e0005455. [PMID: 28388682 PMCID: PMC5384659 DOI: 10.1371/journal.pntd.0005455] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/03/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The vapor phase of the volatile pyrethroid transfluthrin incapacitates mosquitoes and prevents them from feeding. Although existing emanator products for delivering volatile pyrethroids protect against outdoor mosquito bites, they are too short-lived to be practical or affordable for routine use in low-income settings. New transfluthrin emanators, comprised simply of treated hessian fabric strips, have recently proven highly protective against outdoor-biting vectors of lymphatic filariasis, arboviruses and malaria, but their full protective lifespan, minimum dose requirements, and range of protection have not previously been assessed. METHODOLOGY The effects of transfluthrin-treated hessian strips upon mosquito biting exposure of users and nearby non-users, as well as dependence of protection upon treatment dose, were measured outdoors in rural Tanzania using human landing catches (HLC). PRINCIPAL FINDINGS Strips treated with 10ml of transfluthrin prevented at least three quarters (p < 0.001) of outdoor bites by Anopheles arabiensis, Culex spp. and Mansonia spp. mosquitoes, and >90% protection against bites on warmer nights with higher evaporation rates, for at least one year. Strips treated with this high dose also reduced biting exposure of non-users at a distance of up to 5m from the strips for An. arabiensis (p < 0.001) and up to 2m for Mansonia spp. (p = 0.008), but provided no protection to non-users against Culex spp. No evidence of increased risk for non-users, caused by diversion of mosquitoes to unprotected individuals, was found at any distance within an 80m radius. A dose of only 1ml provided equivalent protection to the 10ml dose against An. arabiensis, Culex spp. and Mansonia spp. mosquitoes over 6 months (p < 0.001). CONCLUSIONS/SIGNIFICANCE Transfluthrin-treated hessian emanators provide safe, affordable, long-term protection against several different pathogen-transmitting mosquito taxa that attack humans outdoors, where they are usually active and cannot be protected by bed nets or residual sprays with conventional, solid-phase insecticides.
Collapse
|
6
|
Kiware SS, Russell TL, Mtema ZJ, Malishee AD, Chaki P, Lwetoijera D, Chanda J, Chinula D, Majambere S, Gimnig JE, Smith TA, Killeen GF. A generic schema and data collection forms applicable to diverse entomological studies of mosquitoes. SOURCE CODE FOR BIOLOGY AND MEDICINE 2016; 11:4. [PMID: 27022408 PMCID: PMC4809029 DOI: 10.1186/s13029-016-0050-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/17/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Standardized schemas, databases, and public data repositories are needed for the studies of malaria vectors that encompass a remarkably diverse array of designs and rapidly generate large data volumes, often in resource-limited tropical settings lacking specialized software or informatics support. RESULTS Data from the majority of mosquito studies conformed to a generic schema, with data collection forms recording the experimental design, sorting of collections, details of sample pooling or subdivision, and additional observations. Generically applicable forms with standardized attribute definitions enabled rigorous, consistent data and sample management with generic software and minimal expertise. Forms use now includes 20 experiments, 8 projects, and 15 users at 3 research and control institutes in 3 African countries, resulting in 11 peer-reviewed publications. CONCLUSION We have designed generic data schema that can be used to develop paper or electronic based data collection forms depending on the availability of resources. We have developed paper-based data collection forms that can be used to collect data from majority of entomological studies across multiple study areas using standardized data formats. Data recorded on these forms with standardized formats can be entered and linked with any relational database software. These informatics tools are recommended because they ensure that medical entomologists save time, improve data quality, and data collected and shared across multiple studies is in standardized formats hence increasing research outputs.
Collapse
Affiliation(s)
- Samson S. Kiware
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- />Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI 53201-1881 USA
| | - Tanya L. Russell
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- />Pacific Malaria Initiative Support Centre, School of Population Health, University of Queensland, Brisbane, 4006 Australia
| | - Zacharia J. Mtema
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Alpha D. Malishee
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Prosper Chaki
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Dickson Lwetoijera
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Javan Chanda
- />National Malaria Control Centre, Lusaka, Zambia
| | | | - Silas Majambere
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - John E. Gimnig
- />Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Thomas A. Smith
- />Department of Public Health and Epidemiology, Swiss Tropical Institute, Socinstrasse 57, Basel, CH 4002 Switzerland
| | - Gerry F. Killeen
- />Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- />Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
7
|
Sangoro O, Lweitojera D, Simfukwe E, Ngonyani H, Mbeyela E, Lugiko D, Kihonda J, Maia M, Moore S. Use of a semi-field system to evaluate the efficacy of topical repellents under user conditions provides a disease exposure free technique comparable with field data. Malar J 2014; 13:159. [PMID: 24767458 PMCID: PMC4006452 DOI: 10.1186/1475-2875-13-159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Before topical repellents can be employed as interventions against arthropod bites, their efficacy must be established. Currently, laboratory or field tests, using human volunteers, are the main methods used for assessing the efficacy of topical repellents. However, laboratory tests are not representative of real life conditions under which repellents are used and field-testing potentially exposes human volunteers to disease. There is, therefore, a need to develop methods to test efficacy of repellents under real life conditions while minimizing volunteer exposure to disease. METHODS A lotion-based, 15% N, N-Diethyl-3-methylbenzamide (DEET) repellent and 15% DEET in ethanol were compared to a placebo lotion in a 200 sq m (10 m × 20 m) semi-field system (SFS) against laboratory-reared Anopheles arabiensis mosquitoes and in full field settings against wild malaria vectors and nuisance-biting mosquitoes. The average percentage protection against biting mosquitoes over four hours in the SFS and field setting was determined. A Poisson regression model was then used to determine relative risk of being bitten when wearing either of these repellents compared to the placebo. RESULTS Average percentage protection of the lotion-based 15% DEET repellent after four hours of mosquito collection was 82.13% (95% CI 75.94-88.82) in the semi-field experiments and 85.10% (95% CI 78.97-91.70) in the field experiments. Average percentage protection of 15% DEET in ethanol after four hours was 71.29% (CI 61.77-82.28) in the semi-field system and 88.24% (84.45-92.20) in the field. CONCLUSIONS Semi-field evaluation results were comparable to full-field evaluations, indicating that such systems could be satisfactorily used in measuring efficacy of topically applied mosquito repellents, thereby avoiding risks of exposure to mosquito-borne pathogens, associated with field testing.
Collapse
|
8
|
Yoon JK, Kim KC, Cho YD, Cho HS, Lee YW, Choi BK, Oh YK, Kim YB. Development and evaluation of a semifield test for repellent efficacy testing. JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:182-188. [PMID: 24605468 DOI: 10.1603/me13081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Estimation of the efficacy of mosquito repellents requires both laboratory and field tests. The results of field tests are more meaningful, but the safety of volunteers in such tests may be a significant concern. In the current study, we compared tests of mosquito repellent efficacy under semifield conditions in an outdoor enclosure with those under laboratory and field conditions. In this study, we assessed the efficacy of N,N-diethyl-meta-toluamide under laboratory conditions with human volunteers and under semifield and field conditions with Centers for Disease Control and Prevention traps and experimental mice. A semifield test may be a suitable replacement for the more difficult field test for assessment of mosquito repellent efficacy. Semifield tests should be considered when developing new guidelines for testing.
Collapse
Affiliation(s)
- Jong Kwang Yoon
- Department of Bio-industrial Technologies, Konkuk University, Seoul 143-701, South Korea
| | - Kang-Chang Kim
- Department of Bio-industrial Technologies, Konkuk University, Seoul 143-701, South Korea
| | - Yeon Dong Cho
- Department of Bio-industrial Technologies, Konkuk University, Seoul 143-701, South Korea
| | - Han Sam Cho
- Department of Bio-industrial Technologies, Konkuk University, Seoul 143-701, South Korea
| | - Yang-Won Lee
- Department of Dermatology, Konkuk University Hospital, Seoul 143-729, South Korea
| | - Bo-Kyung Choi
- Cosmetics Research Team, Department of Pharmaceutical and Medical Device Research, Ministry of Food and Drug Safety, Chungcheongbuk-do 363-700, South Korea
| | - Yu-Kyoung Oh
- Department of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Young Bong Kim
- Department of Bio-industrial Technologies, Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
9
|
Diabaté A, Bilgo E, Dabiré RK, Tripet F. Environmentally friendly tool to control mosquito populations without risk of insecticide resistance: the Lehmann's funnel entry trap. Malar J 2013; 12:196. [PMID: 23758904 PMCID: PMC3701513 DOI: 10.1186/1475-2875-12-196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current malaria control strategies have cut down the malaria burden in many endemic areas, however the emergence and rapid spread of insecticide and drug resistance undermine the success of these efforts. There is growing concern that malaria eradication will not be achieved without the introduction of novel control tools. One approach that has been developed in the last few years is based on house screening to reduce indoor mosquito vector densities and consequently decrease malaria transmission. Here screening and trapping were combined in one tool to control mosquito populations. The trap does not require an insecticide or even an attractant, yet it effectively collects incoming resistant and susceptible mosquitoes and kills them. RESULTS Performance of the funnel entry trap was tested in low and high malaria vector density areas. An overall reduction of 70 to 80% of mosquito density was seen in both. Species and molecular forms of Anopheles gambiae identification indicated no variation in the number of Anopheles arabiensis and the molecular forms of An. gambiae between houses and traps. Mosquitoes collected in the traps and in houses were highly resistant to pyrethroids (0.9 kdr-based mechanism). CONCLUSION There is a global consensus that new intervention tools are needed to cross the last miles in malaria elimination/eradication. The funnel entry trap showed excellent promise in suppressing mosquito densities even in area of high insecticide resistance. It requires no chemicals and is self-operated.
Collapse
Affiliation(s)
- Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso.
| | | | | | | |
Collapse
|
10
|
Pezeshki Z, Tafazzoli-Shadpour M, Mansourian A, Eshrati B, Omidi E, Nejadqoli I. Model of cholera dissemination using geographic information systems and fuzzy clustering means: case study, Chabahar, Iran. Public Health 2012; 126:881-7. [PMID: 22884859 DOI: 10.1016/j.puhe.2012.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/27/2012] [Accepted: 07/04/2012] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Cholera is spread by drinking water or eating food that is contaminated by bacteria, and is related to climate changes. Several epidemics have occurred in Iran, the most recent of which was in 2005 with 1133 cases and 12 deaths. This study investigated the incidence of cholera over a 10-year period in Chabahar district, a region with one of the highest incidence rates of cholera in Iran. STUDY DESIGN Descriptive retrospective study on data of patients with Eltor and NAG cholera reported to the Iranian Centre of Disease Control between 1997 and 2006. METHODS Data on the prevalence of cholera were gathered through a surveillance system, and a spatial database was developed using geographic information systems (GIS) to describe the relation of spatial and climate variables to cholera incidences. Fuzzy clustering (fuzzy C) method and statistical analysis based on logistic regression were used to develop a model of cholera dissemination. The variables were demographic characteristics, specifications of cholera infection, climate conditions and some geographical parameters. RESULTS The incidence of cholera was found to be significantly related to higher temperature and humidity, lower precipitation, shorter distance to the eastern border of Iran and local health centres, and longer distance to the district health centre. The fuzzy C means algorithm showed that clusters were geographically distributed in distinct regions. CONCLUSION In order to plan, manage and monitor any public health programme, GIS provide ideal platforms for the convergence of disease-specific information, analysis and computation of new data for statistical analysis.
Collapse
Affiliation(s)
- Z Pezeshki
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
11
|
Ng'habi KRN, Mwasheshi D, Knols BGJ, Ferguson HM. Establishment of a self-propagating population of the African malaria vector Anopheles arabiensis under semi-field conditions. Malar J 2010; 9:356. [PMID: 21143870 PMCID: PMC3017536 DOI: 10.1186/1475-2875-9-356] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/08/2010] [Indexed: 11/21/2022] Open
Abstract
Background The successful control of insect disease vectors relies on a thorough understanding of their ecology and behaviour. However, knowledge of the ecology of many human disease vectors lags behind that of agricultural pests. This is partially due to the paucity of experimental tools for investigating their ecology under natural conditions without risk of exposure to disease. Assessment of vector life-history and demographic traits under natural conditions has also been hindered by the inherent difficulty of sampling these seasonally and temporally varying populations with the limited range of currently available tools. Consequently much of our knowledge of vector biology comes from studies of laboratory colonies, which may not accurately represent the genetic and behavioural diversity of natural populations. Contained semi-field systems (SFS) have been proposed as more appropriate tools for the study of vector ecology. SFS are relatively large, netting-enclosed, mesocosms in which vectors can fly freely, feed on natural plant and vertebrate host sources, and access realistic resting and oviposition sites. Methods A self-replicating population of the malaria vector Anopheles arabiensis was established within a large field cage (21 × 9.1 × 7.1 m) at the Ifakara Health Institute, Tanzania that mimics the natural habitat features of the rural village environments where these vectors naturally occur. Offspring from wild females were used to establish this population whose life-history, behaviour and demography under semi-field conditions was monitored over 24 generations. Results This study reports the first successful establishment and maintenance of an African malaria vector population under SFS conditions for multiple generations (> 24). The host-seeking behaviour, time from blood feeding to oviposition, larval development, adult resting and swarming behaviour exhibited by An. arabiensis under SFS conditions were similar to those seen in nature. Conclusions This study presents proof-of-principle that populations of important African malaria vectors can be established within environmentally realistic, contained semi-field settings. Such SFS will be valuable tools for the experimental study of vector ecology and assessment of their short-term ecological and longer-term evolutionary responses to existing and new vector control interventions.
Collapse
Affiliation(s)
- Kija R N Ng'habi
- Biomedical and Environmental Thematic Group, Ifakara Health Institute, Box 53, Ifakara, Tanzania.
| | | | | | | |
Collapse
|
12
|
Okumu F, Biswaro L, Mbeleyela E, Killeen GF, Mukabana R, Moore SJ. Using nylon strips to dispense mosquito attractants for sampling the malaria vector Anopheles gambiae s.s. JOURNAL OF MEDICAL ENTOMOLOGY 2010; 47:274-282. [PMID: 20380310 DOI: 10.1603/me09114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Synthetic versions of human derived kairomones can be used as baits when trapping host seeking mosquitoes. The effectiveness of these lures depends not only on their attractiveness to the mosquitoes but also on the medium from which they are dispensed. We report on the development and evaluation of nylon strips as a method of dispensing odorants attractive to the malaria vector, Anopheles gambiae s.s. (Giles). When a synthetic blend of attractants was dispensed using this method, significantly more mosquitoes were trapped than when two previous methods, open glass vials or low density polyethylene sachets were used. We conclude that the nylon strips are suitable for dispensing odorants in mosquito trapping operations and can be adopted for use in rural and remote areas. The nylon material required is cheap and widely available and the strips can be prepared without specialized equipment or electricity.
Collapse
Affiliation(s)
- F Okumu
- Ifakara Health Institute, Box 53, Ifakara, Tanzania.
| | | | | | | | | | | |
Collapse
|
13
|
Faulde MK, Albiez G, Nehring O. Insecticidal, acaricidal and repellent effects of DEET- and IR3535-impregnated bed nets using a novel long-lasting polymer-coating technique. Parasitol Res 2010; 106:957-65. [PMID: 20162432 DOI: 10.1007/s00436-010-1749-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/13/2010] [Indexed: 11/30/2022]
Affiliation(s)
- Michael K Faulde
- Department of Medical Entomology/Zoology, Central Institute of the Bundeswehr Armed Forces Medical Service, Koblenz, Germany.
| | | | | |
Collapse
|