1
|
Kassimu KR, Ali AM, Omolo JJ, Mdemu A, Machumi F, Ngasala B. The effect of an anti-malarial herbal remedy, Maytenus senegalensis, on electrocardiograms of healthy Tanzanian volunteers. Malar J 2024; 23:103. [PMID: 38609987 PMCID: PMC11015626 DOI: 10.1186/s12936-024-04935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The emergence of resistance to artemisinin-based combination therapy necessitates the search for new, more potent antiplasmodial compounds, including herbal remedies. The whole extract of Maytenus senegalensis has been scientifically investigated for potential biological activities both in vitro and in vivo, demonstrating strong antimalarial activity. However, there is a lack of data on the electrocardiographic effects of M. senegalensis in humans, which is a crucial aspect in the investigation of malaria treatment. Assessing the electrocardiographic effects of M. senegalensis is essential, as many anti-malarial drugs can inadvertently prolong the QT interval on electrocardiograms. Therefore, the study's objective was to evaluate the electrocardiographic effects of M. senegalensis in healthy adult volunteers. METHODS This study is a secondary analysis of an open-label single-arm dose escalation. Twelve healthy eligible Tanzanian males, aged 18 to 45, were enrolled in four study dose groups. A single 12-lead electrocardiogram (ECG) was performed at baseline and on days 3, 7, 14, 28, and 56. RESULTS No QTcF adverse events occurred with any drug dose. Only one volunteer who received the highest dose (800 mg) of M. senegalensis experienced a moderate transient change (△QTcF > 30 ms; specifically, the value was 37 ms) from baseline on day 28. There was no difference in maximum QTcF and maximum △QTcF between volunteers in all four study dose groups. CONCLUSIONS A four-day regimen of 800 mg every 8 h of M. senegalensis did not impact the electrocardiographic parameters in healthy volunteers. This study suggests that M. senegalensis could be a valuable addition to malaria treatment, providing a safer alternative and potentially aiding in the battle against artemisinin-resistant malaria. The results of this study support both the traditional use and the modern therapeutic potential of M. senegalensis. They also set the stage for future research involving larger and more diverse populations to explore the safety profile of M. senegalensis in different demographic groups. This is especially important considering the potential use of M. senegalensis as a therapeutic agent and its widespread utilization as traditional medicine. Trial registration ClinicalTrials.gov, NCT04944966. Registered 30 June 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04944966?term=kamaka&draw=2&rank=1.
Collapse
Affiliation(s)
- Kamaka R Kassimu
- Bagamoyo Clinical Trial Facility, Ifakara Health Institute, 74, Bagamoyo, Tanzania.
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, 65001, Dar es Salaam, Tanzania.
| | - Ali M Ali
- Bagamoyo Clinical Trial Facility, Ifakara Health Institute, 74, Bagamoyo, Tanzania
| | - Justin J Omolo
- Traditional Medicine Research and Development Center, National Institute for Medical Research, 9653, Dar es Salaam, Tanzania
| | - Abel Mdemu
- Traditional Medicine Research and Development Center, National Institute for Medical Research, 9653, Dar es Salaam, Tanzania
| | - Francis Machumi
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, 65001, Dar es Salaam, Tanzania
| | - Billy Ngasala
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, 65001, Dar es Salaam, Tanzania
| |
Collapse
|
2
|
Saadeh K, Nantha Kumar N, Fazmin IT, Edling CE, Jeevaratnam K. Anti-malarial drugs: Mechanisms underlying their proarrhythmic effects. Br J Pharmacol 2022; 179:5237-5258. [PMID: 36165125 PMCID: PMC9828855 DOI: 10.1111/bph.15959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 01/12/2023] Open
Abstract
Malaria remains the leading cause of parasitic death in the world. Artemisinin resistance is an emerging threat indicating an imminent need for novel combination therapy. Given the key role of mass drug administration, it is pivotal that the safety of anti-malarial drugs is investigated thoroughly prior to widespread use. Cardiotoxicity, most prominently arrhythmic risk, has been a concern for anti-malarial drugs. We clarify the likely underlying mechanisms by which anti-malarial drugs predispose to arrhythmias. These relate to disruption of (1) action potential upstroke due to effects on the sodium currents, (2) action potential repolarisation due to effects on the potassium currents, (3) cellular calcium homeostasis, (4) mitochondrial function and reactive oxygen species production and (5) cardiac fibrosis. Together, these alterations promote arrhythmic triggers and substrates. Understanding these mechanisms is essential to assess the safety of these drugs, stratify patients based on arrhythmic risk and guide future anti-malarial drug development.
Collapse
Affiliation(s)
- Khalil Saadeh
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK,School of Clinical Medicine, Addenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | | | - Ibrahim Talal Fazmin
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK,School of Clinical Medicine, Addenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | | | | |
Collapse
|
3
|
Yamada T, Fujii A, Park K, Furugen C, Takagi A, Ikawa T, Sajiki H. Catalytic Intramolecular Cyclization of Alkynyl Cyclic Acetals via Chemoselective Activation Leading to Phenanthrene Core. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akiko Fujii
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kwihwan Park
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Chikara Furugen
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akira Takagi
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Takashi Ikawa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
4
|
Usman SO, Oreagba IA, Busari A, Akinyede A, Adewumi O, Kadri MR, Hassan O, Fashina YA, Agbaje EO, Akanmu SA. Evaluation of cardiotoxicity and other adverse effects associated with concomitant administration of artemether/lumefantrine and atazanavir/ritonavir-based antiretroviral regimen in patients living with HIV. Saudi Pharm J 2022; 30:605-612. [PMID: 35693439 PMCID: PMC9177448 DOI: 10.1016/j.jsps.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
The interplay of artemether-lumefantrine (AL) and atazanavir-ritonavir (ATVr) with Cytochrome P (CYP) 3A4 isoenzyme and QTc-interval may spawn clinically significant drug interactions when administered concomitantly. Cardiotoxicity and other adverse effects associated with interaction between AL and ATVr were evaluated in patients with HIV infection and malaria comorbidity. In a two-arm parallel study design, six doses of AL 80/480 mg were administered to 20 participants [control-arm (n = 10) and ATVr-arm (n = 10)], having uncomplicated Falciparum malaria, at intervals of 0, 8, 24, 36, 48 and 60 h respectively. Participants in the control arm took only AL while those in ATVr-arm took both AL and ATVr-based ART regimen. Electrocardiography, adverse events monitoring and blood tests were carried out for each of them at pre and post doses of AL. Data obtained were analyzed. QTc-interval was significantly increased in the ATVr-arm (0.4079 ± 0.008 to 0.4215 ± 0.007 s, p = 0.008) but not in the control-arm (0.4016 ± 0.018 to 0.4024 ± 0.014 s, p = 0.962). All values were, however, within normal range [0.36 – 0.44 / 0.46 s (male/female)]. General body weakness and chest pain were new adverse events reported, at post-dose of AL, in the ATVr-arm but not in the control-arm. There was no significant change (p > 0.05) in the plasma levels of creatinine, alanine aminotransferase, aspartate aminotransferase and hemoglobin at post-dose compared to pre-dose of AL in both arms of study. Concomitant administration of artemether-lumefantrine with atazanavir-ritonavir-based regimen is potentially cardiotoxic but not associated with clinically significant renal, blood nor liver toxicities. They must be used with caution.
Collapse
Affiliation(s)
- Sikiru Olatunji Usman
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
- Corresponding author at: Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, LUTH compound, Idi-Araba, Lagos State, Nigeria.
| | - Ibrahim Adekunle Oreagba
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - AbdulWasiu Busari
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Akinwumi Akinyede
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Ololade Adewumi
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Michael Rotimi Kadri
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Olayinka Hassan
- Lagos University Teaching Hospital (LUTH), Idi-Araba, Lagos State, Nigeria
| | - Yinka Adeyemi Fashina
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Esther Oluwatoyin Agbaje
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Sulaimon Alani Akanmu
- Department of Haematology and Blood Transfusion, Faculty of Clinical Science, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
- APIN (Aids Prevention Initiatives in Nigeria) Clinic, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria
| |
Collapse
|
5
|
Täubel J, Lorch U, Ferber G, Spencer CS, Freier A, Coates S, El Gaaloul M, Donini C, Chughlay MF, Chalon S. Concentration-QT modelling of the novel DHFR inhibitor P218 in healthy male volunteers. Br J Clin Pharmacol 2022; 88:128-137. [PMID: 34075612 PMCID: PMC9292718 DOI: 10.1111/bcp.14933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS Given the increasing emergence of drug resistance in Plasmodium, new antimalarials are urgently required. P218 is an aminopyridine that inhibits dihydrofolate reductase being developed as a malaria chemoprotective drug. Assessing the effect of new compounds on cardiac intervals is key during early drug development to determine their cardiac safety. METHODS This double-blind, randomized, placebo-controlled, parallel group study evaluated the effect of P218 on electrocardiographic parameters following oral administration of seven single-ascending doses up to 1000 mg in 56 healthy volunteers. Participants were randomized to treatment or placebo at a 3:1 ratio. P218 was administered in the fasted state with standardized lunch served 4 hours after dosing. 12-lead ECGs were recorded in triplicate at regular intervals on the test day, and at 48, 72, 120, 168, 192 and 240 hours thereafter. Blood samples for pharmacokinetic evaluations were collected at similar time points. Concentration-effect modelling was used to assess the effect of P218 and its metabolites on cardiac intervals. RESULTS Concentration-effect analysis showed that P218 does not prolong the QTcF, J-Tpeak or TpTe interval at all doses tested. No significant changes in QRS or PR intervals were observed. Two-sided 90% confidence intervals of subinterval effects of P218 and its metabolites were consistently below the regulatory concern threshold for all doses. Study sensitivity was confirmed by significant shortening of QTcF after a meal. CONCLUSION Oral administration of P218 up to 1000 mg does not prolong QTcF and does not significantly change QRS or PR intervals, suggesting low risk for drug-induced proarrhythmia.
Collapse
Affiliation(s)
- Jӧrg Täubel
- Richmond Pharmacology LtdLondonUK
- Cardiovascular and Cell Sciences Research InstituteSt George's University of LondonLondonUK
| | | | | | | | - Anne Freier
- Richmond Research InstituteSt George's University of LondonLondonUK
| | | | | | | | | | | |
Collapse
|
6
|
Olanlokun JO, Abiodun WO, Ebenezer O, Koorbanally NA, Olorunsogo OO. Curcumin modulates multiple cell death, matrix metalloproteinase activation and cardiac protein release in susceptible and resistant Plasmodium berghei-infected mice. Biomed Pharmacother 2021; 146:112454. [PMID: 34894518 DOI: 10.1016/j.biopha.2021.112454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023] Open
Abstract
Pro-inflammatory signaling, cell death, and metalloproteinases activation are events in Plasmodium infection. However, it is not known if treatment with mefloquine (MF), and curcumin (CM) supplementation, will modulate these conditions. Malaria was induced in two different studies using susceptible (NK 65, study 1) and resistant (ANKA, study 2) strains of mouse malaria parasites (Plasmodium berghei) in thirty male Swiss mice (n = 5) in each study. Following confirmation of parasitemia, mice received 10 mL/kg distilled water (infected control), MF (10 mg/kg), MF and CM (25 mg/kg), MF and CM (50 mg/kg), CM (25 mg/kg) and CM (50 mg/kg). Five mice (not infected) were used as control. After treatment, the animals were sacrificed, serum obtained and liver mitochondria were isolated. Serum Tumour Necrosis Factor alpha (TNF-α), C-reactive protein (CRP), Interleukins-1 beta (IL-1β) and Interleukins-6 (IL-6) as well as caspases-3, 9 (C3 and C9), p53, serum troponin I (TI) and creatine kinase (CK), were assayed using ELISA techniques. Mitochondrial membrane permeability transition (mPT) pore opening, mitochondrial F0F1 ATPase activity, and lipid peroxidation (mLPO) were determined spectrophotometrically. Matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) expressions were determined using electrophoresis. CM supplementation (25 mg/kg) significantly decreased serum p53, TNF-α, CRP and IL-6 compared with MF. In the resistant model, CM prevented mPT pore opening, significantly decreased F0F1 ATPase activity and mLPO. MF activated caspase-3 while supplementation with CM significantly decreased this effect. Furthermore, MMP-2 and MMP-9 were selectively expressed in the susceptible model. Malarial treatment with mefloquine elicits different cell death responses while supplementation with curcumin decreased TI level and CK activities.
Collapse
Affiliation(s)
- John O Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria.
| | - Wisdom Oshireku Abiodun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Oluwakemi Ebenezer
- Faculty of Natural Science, Department of Chemistry, Mangosuthu University of Technology, 511 Mangosuthu Highway, Durban 4000, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
7
|
Wang G, Lu CJ, Trafford AW, Tian X, Flores HM, Maj P, Zhang K, Niu Y, Wang L, Du Y, Ji X, Xu Y, Wu L, Li D, Herring N, Paterson D, Huang CLH, Zhang H, Lei M, Hao G. Electrophysiological and Proarrhythmic Effects of Hydroxychloroquine Challenge in Guinea-Pig Hearts. ACS Pharmacol Transl Sci 2021; 4:1639-1653. [PMID: 34661080 PMCID: PMC8506600 DOI: 10.1021/acsptsci.1c00166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 12/27/2022]
Abstract
Hydroxychloroquine (HCQ), clinically established in antimalarial and autoimmune therapy, recently raised cardiac arrhythmogenic concerns when used alone or with azithromycin (HCQ+AZM) in Covid-19. We report complementary, experimental, studies of its electrophysiological effects. In patch clamped HEK293 cells expressing human cardiac ion channels, HCQ inhibited IKr and IK1 at a therapeutic concentrations (IC50s: 10 ± 0.6 and 34 ± 5.0 μM). INa and ICaL showed higher IC50s; Ito and IKs were unaffected. AZM slightly inhibited INa, ICaL, IKs, and IKr, sparing IK1 and Ito. (HCQ+AZM) inhibited IKr and IK1 (IC50s: 7.7 ± 0.8 and 30.4 ± 3.0 μM), sparing INa, ICaL, and Ito. Molecular induced-fit docking modeling confirmed potential HCQ-hERG but weak AZM-hERG binding. Effects of μM-HCQ were studied in isolated perfused guinea-pig hearts by multielectrode, optical RH237 voltage, and Rhod-2 mapping. These revealed reversibly reduced left atrial and ventricular action potential (AP) conduction velocities increasing their heterogeneities, increased AP durations (APDs), and increased durations and dispersions of intracellular [Ca2+] transients, respectively. Hearts also became bradycardic with increased electrocardiographic PR and QRS durations. The (HCQ+AZM) combination accentuated these effects. Contrastingly, (HCQ+AZM) and not HCQ alone disrupted AP propagation, inducing alternans and torsadogenic-like episodes on voltage mapping during forced pacing. O'Hara-Rudy modeling showed that the observed IKr and IK1 effects explained the APD alterations and the consequently prolonged Ca2+ transients. The latter might then downregulate INa, reducing AP conduction velocity through recently reported INa downregulation by cytosolic [Ca2+] in a novel scheme for drug action. The findings may thus prompt future investigations of HCQ's cardiac safety under particular, chronic and acute, clinical situations.
Collapse
Affiliation(s)
- Gongxin Wang
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
| | - Chieh-Ju Lu
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
| | - Andrew W. Trafford
- Unit
of Cardiac Physiology, Institute of Cardiovascular Sciences, Manchester
Academic Health Sciences Centre, The University
of Manchester, Manchester M13 9PL, U.K.
| | - Xiaohui Tian
- Department
of Pharmacy, Huaihe Hospital and College of Medicine, Henan University, Kaifeng 475000, China
| | - Hannali M Flores
- Biological
Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K.
| | - Piotr Maj
- Department
of Pharmacology, University of Oxford, Oxford OX1 2JD, U.K.
| | - Kevin Zhang
- School of
Medicine, Imperial College of London, London SW7 2AZ, U.K.
| | - Yanhong Niu
- Fuwai
Central China Cardiovascular Hospital, Zhengzhou 450003, China
| | - Luxi Wang
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
| | - Yimei Du
- Department
of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinying Ji
- Department
of Pharmacy, Huaihe Hospital and College of Medicine, Henan University, Kaifeng 475000, China
| | - Yanfang Xu
- Department
of Pharmacology, Hebei Medical University, Shijiazhuang City 050017, China
| | - Lin Wu
- Department
of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Dan Li
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| | - Neil Herring
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| | - David Paterson
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| | - Christopher L.-H. Huang
- Physiological
Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, U.K.
- Key
Laboratory of Medical Electrophysiology of the Ministry of Education
and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Henggui Zhang
- Biological
Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K.
- Peng
Cheng Laboratory, Shenzhen 518066, China
- Key
Laboratory of Medical Electrophysiology of the Ministry of Education
and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Ming Lei
- Department
of Pharmacology, University of Oxford, Oxford OX1 2JD, U.K.
- Key
Laboratory of Medical Electrophysiology of the Ministry of Education
and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Guoliang Hao
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| |
Collapse
|
8
|
Chan XHS, Haeusler IL, Win YN, Pike J, Hanboonkunupakarn B, Hanafiah M, Lee SJ, Djimdé A, Fanello CI, Kiechel JR, Lacerda MVG, Ogutu B, Onyamboko MA, Siqueira AM, Ashley EA, Taylor WRJ, White NJ. The cardiovascular effects of amodiaquine and structurally related antimalarials: An individual patient data meta-analysis. PLoS Med 2021; 18:e1003766. [PMID: 34492005 PMCID: PMC8454971 DOI: 10.1371/journal.pmed.1003766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/21/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Amodiaquine is a 4-aminoquinoline antimalarial similar to chloroquine that is used extensively for the treatment and prevention of malaria. Data on the cardiovascular effects of amodiaquine are scarce, although transient effects on cardiac electrophysiology (electrocardiographic QT interval prolongation and sinus bradycardia) have been observed. We conducted an individual patient data meta-analysis to characterise the cardiovascular effects of amodiaquine and thereby support development of risk minimisation measures to improve the safety of this important antimalarial. METHODS AND FINDINGS Studies of amodiaquine for the treatment or prevention of malaria were identified from a systematic review. Heart rates and QT intervals with study-specific heart rate correction (QTcS) were compared within studies and individual patient data pooled for multivariable linear mixed effects regression. The meta-analysis included 2,681 patients from 4 randomised controlled trials evaluating artemisinin-based combination therapies (ACTs) containing amodiaquine (n = 725), lumefantrine (n = 499), piperaquine (n = 716), and pyronaridine (n = 566), as well as monotherapy with chloroquine (n = 175) for uncomplicated malaria. Amodiaquine prolonged QTcS (mean = 16.9 ms, 95% CI: 15.0 to 18.8) less than chloroquine (21.9 ms, 18.3 to 25.6, p = 0.0069) and piperaquine (19.2 ms, 15.8 to 20.5, p = 0.0495), but more than lumefantrine (5.6 ms, 2.9 to 8.2, p < 0.001) and pyronaridine (-1.2 ms, -3.6 to +1.3, p < 0.001). In individuals aged ≥12 years, amodiaquine reduced heart rate (mean reduction = 15.2 beats per minute [bpm], 95% CI: 13.4 to 17.0) more than piperaquine (10.5 bpm, 7.7 to 13.3, p = 0.0013), lumefantrine (9.3 bpm, 6.4 to 12.2, p < 0.001), pyronaridine (6.6 bpm, 4.0 to 9.3, p < 0.001), and chloroquine (5.9 bpm, 3.2 to 8.5, p < 0.001) and was associated with a higher risk of potentially symptomatic sinus bradycardia (≤50 bpm) than lumefantrine (risk difference: 14.8%, 95% CI: 5.4 to 24.3, p = 0.0021) and chloroquine (risk difference: 8.0%, 95% CI: 4.0 to 12.0, p < 0.001). The effect of amodiaquine on the heart rate of children aged <12 years compared with other antimalarials was not clinically significant. Study limitations include the unavailability of individual patient-level adverse event data for most included participants, but no serious complications were documented. CONCLUSIONS While caution is advised in the use of amodiaquine in patients aged ≥12 years with concomitant use of heart rate-reducing medications, serious cardiac conduction disorders, or risk factors for torsade de pointes, there have been no serious cardiovascular events reported after amodiaquine in widespread use over 7 decades. Amodiaquine and structurally related antimalarials in the World Health Organization (WHO)-recommended dose regimens alone or in ACTs are safe for the treatment and prevention of malaria.
Collapse
Affiliation(s)
- Xin Hui S. Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ilsa L. Haeusler
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Yan Naung Win
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Health and Diseases Control Unit, Naypyidaw, Myanmar
| | - James Pike
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - Maryam Hanafiah
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sue J. Lee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Abdoulaye Djimdé
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Caterina I. Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Fundacão Oswaldo Cruz, Manaus, Brazil
| | | | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - André M. Siqueira
- Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Fundacão Oswaldo Cruz, Manaus, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Elizabeth A. Ashley
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Walter RJ Taylor
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Warda AEA, Tammam M, El-Gazar RA, Sarhan RM, Gaber S. Hydroxychloroquine and Azithromycin Combination in The Management of COVID-19 Infection: Safety and Effectiveness Challenges. Curr Drug Saf 2021; 17:143-151. [PMID: 34315385 DOI: 10.2174/1574886316666210727152609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The treatment of COVID-19 disease remains a dilemma so far because there is no approved therapy for it. This study aimed to evaluate the use of hydroxychloroquine and azithromycin combination in treatment. OBJECTIVE This study was carried out to determine the safety and effectiveness of hydroxychloroquine and azithromycin combination in COVID 19 patients. METHODS This study included 90 adult COVID 19 patients. Treatment of all patients followed Egyptian Ministry of Health COVID-19 protocols, receiving a combination of hydroxychloroquine 400mg twice on day 1, then 200 mg twice daily in addition to azithromycin 500mg/day for 5 days. ECG findings especially the QTc interval was assessed before and after 5 days from the administration. RESULTS All patients showed a statistically significant higher post-treatment QTc readings (433.6 ± 37.2) compared to baseline QTc (402.4 ± 31.3) at p<0.005 with a median QTc prolongation by 26 mSec and IQR (17.8-41.3), but without serious clinical complications. Only 5.6% of patients showed QTc more than 500 mSec and no torsade de points or cardiac arrest. Geriatric patients were at higher risk for QTc prolongation compared to patients aged less than 65 years but without a significant difference as regards the median max QTc difference p˂0.65. The expected therapeutic effectiveness was 82.5% for moderate patients compared to 26% in severe patients (P<0.005). CONCLUSION In a modest safety profile, we support the evidence that HQ/AZ therapy can be used to treat Covid-19 infection with more effectiveness in moderate rather than severe cases, which might be a reflection to the time of administration in the disease course.
Collapse
Affiliation(s)
| | | | - Rabab Ahmed El-Gazar
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Rania Mohammad Sarhan
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| | - Sayed Gaber
- Critical Care Medicine Department, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Memvanga PB, Nkanga CI. Liposomes for malaria management: the evolution from 1980 to 2020. Malar J 2021; 20:327. [PMID: 34315484 PMCID: PMC8313885 DOI: 10.1186/s12936-021-03858-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Malaria is one of the most prevalent parasitic diseases and the foremost cause of morbidity in the tropical regions of the world. Strategies for the efficient management of this parasitic infection include adequate treatment with anti-malarial therapeutics and vaccination. However, the emergence and spread of resistant strains of malaria parasites to the majority of presently used anti-malarial medications, on the other hand, complicates malaria treatment. Other shortcomings of anti-malarial drugs include poor aqueous solubility, low permeability, poor bioavailability, and non-specific targeting of intracellular parasites, resulting in high dose requirements and toxic side effects. To address these limitations, liposome-based nanotechnology has been extensively explored as a new solution in malaria management. Liposome technology improves anti-malarial drug encapsulation, bioavailability, target delivery, and controlled release, resulting in increased effectiveness, reduced resistance progression, and fewer adverse effects. Furthermore, liposomes are exploited as immunological adjuvants and antigen carriers to boost the preventive effectiveness of malaria vaccine candidates. The present review discusses the findings from studies conducted over the last 40 years (1980-2020) using in vitro and in vivo settings to assess the prophylactic and curative anti-malarial potential of liposomes containing anti-malarial agents or antigens. This paper and the discussion herein provide a useful resource for further complementary investigations and may pave the way for the research and development of several available and affordable anti-malarial-based liposomes and liposomal malaria vaccines by allowing a thorough evaluation of liposomes developed to date for the management of malaria.
Collapse
Affiliation(s)
- Patrick B Memvanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo.
| | - Christian I Nkanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| |
Collapse
|
11
|
Wang B, Zhong JL, Li HZ, Wu B, Sun DF, Jiang N, Shang J, Chen YF, Xu XH, Lu HD. Diagnostic and therapeutic values of PMEPA1 and its correlation with tumor immunity in pan-cancer. Life Sci 2021; 277:119452. [PMID: 33831430 DOI: 10.1016/j.lfs.2021.119452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022]
Abstract
AIMS The prostate transmembrane protein, androgen induced 1 (PMEPA1) is differentially expressed in pan-cancer. However, PMEPA1 specific role in cancers has not been fully clarified. This study aims to explore the potential role of Pmepa1 in pan-cancer and specific cancer, with a view to deepening the research on the pathological mechanism of cancer. MAIN METHODS The Perl language and R language were used to identify the correlation between PMEPA1 expression level and clinical indicators, prognosis values, tumor microenvironment, immune cells' infiltration, immune checkpoint genes, TMB and MSI. The Therapeutic Target Database was used for identifying potential therapeutic drugs that target the pathways that are significantly affected by PMEPA1 expression. KEY FINDINGS PMEPA1 differential expression significantly correlated with patients' age, race, tumors' stage and status. PMEPA1 high expression was closely correlated with poor prognosis in many cancer types, excluding prostate adenocarcinoma. PMEPA1 expression was closely related to tumor cells and the immune microenvironment in stromal and immune cells' level, immune cells' infiltration, immune checkpoint genes, tumor mutational burden and microsatellite instability. We also found that the activity of the olfactory transduction pathway was closely related to PMEPA1 expression. In pan-cancer, Trifluoperazine and Halofantrine have the potential to reduce PMEPA1 expression. SIGNIFICANCE This study integrated existing data to explore PMEPA1 potential function in cancers, provided insights for the future cancer-related studies.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Jun-Long Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Hui-Zi Li
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Di-Fang Sun
- Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Ning Jiang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Jie Shang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Yu-Feng Chen
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Xiang-He Xu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| | - Hua-Ding Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| |
Collapse
|
12
|
Usman SO, Oreagba IA, Kadri MR, Adewumi OO, Akinyede A, Agbaje EO, Abideen G, Busari AA, Hassan OO, Akinleye MO, Akanmu AS. Evaluation of the effects of atazanavir-ritonavir on the pharmacokinetics of lumefantrine in patients living with HIV in Lagos University Teaching Hospital, South-Western Nigeria. Eur J Clin Pharmacol 2021; 77:1341-1348. [PMID: 33755736 DOI: 10.1007/s00228-021-03116-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Atazanavir-ritonavir (ATVr)-based antiretroviral therapy and artemether-lumefantrine (AL) are commonly used drugs for the treatment of human immune deficiency virus (HIV) infection and malaria respectively. However, interaction of both drugs, with Cytochrome P 3A4 (CYP 3A4) isoenzyme, may spawn clinically significant pharmacokinetic interactions. This study evaluated the effects of atazanavir-ritonavir on the pharmacokinetics of lumefantrine. METHOD In a case-control study, twenty participants having Plasmodium falciparum malaria were recruited and divided into two groups (ATVr-arm, n=10; and control-arm, n= 10). All the participants were administered six oral doses of AL 80-480 mg (Coartem). Thereafter, their blood samples were collected at different time intervals over seven days. The concentration of lumefantrine in each sample was quantified with high-performance liquid chromatography (HPLC) and used to determine its pharmacokinetic parameters which were compared between the test and control groups. RESULTS ATVr increased the mean day 7 concentration of lumefantrine (ATVr 3847.09 ± 893.35 ng/mL, control 1374.53 ± 265.55 ng/mL, p = 0.016) and the area under its plasma concentration-time curve (ATVr 670529.57 ± 157172.93 ng.h/mL, control 447976.28 ± 80886.99 ng.h/mL, p = 0.224) by 179.88 % and 49.68 %, respectively, but decreased its mean maximum plasma drug concentration (Cmax) (ATVr 13725.70 ± 2658.44 ng/mL, control 15380.48 ± 2332.62 ng/mL, p = 0.645) by 10.76 %. CONCLUSION ATVr increased drug exposure and day 7 plasma concentration of lumefantrine. AL is therefore considered effective for the treatment of malaria in patients taking ATVr-based regimen. However, the safety associated with the interaction requires further elucidation. TRIAL REGISTRATION Clin ClinicalTrials.gov Identifier: NCT04531072, August 27, 2020. "Retrospectively registered".
Collapse
Affiliation(s)
- Sikiru Olatunji Usman
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria.
| | - Ibrahim Adekunle Oreagba
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Michael Rotimi Kadri
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Ololade Oluwatosin Adewumi
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Akinwumi Akinyede
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Esther Oluwatoyin Agbaje
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Ganiyu Abideen
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - AbdulWasiu Adeniyi Busari
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | | | - Moshood Olusola Akinleye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Alani Sulaimon Akanmu
- Department of Haematology and Blood Transfusion, Faculty of Clinical Science, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria.,Apin Clinic, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria
| |
Collapse
|
13
|
Randomized Controlled Trial of the Electrocardiographic Effects of Four Antimalarials for Pregnant Women with Uncomplicated Malaria on the Thailand-Myanmar Border. Antimicrob Agents Chemother 2021; 65:AAC.02473-20. [PMID: 33495217 PMCID: PMC8097415 DOI: 10.1128/aac.02473-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Quinoline antimalarials cause drug-induced electrocardiograph QT prolongation, a potential risk factor for torsade de pointes. The effects of currently used antimalarials on the electrocardiogram (ECG) were assessed in pregnant women with malaria. Quinoline antimalarials cause drug-induced electrocardiographic QT prolongation, a potential risk factor for torsade de pointes. The effects of currently used antimalarials on the electrocardiogram (ECG) were assessed in pregnant women with malaria. Pregnant women with microscopy-confirmed parasitemia of any malaria species were enrolled in an open-label randomized controlled trial on the Thailand-Myanmar border from 2010 to 2016. Patients were randomized to the standard regimen of dihydroartemisinin-piperaquine (DP) or artesunate-mefloquine (ASMQ) or an extended regimen of artemether-lumefantrine (AL+). Recurrent Plasmodium vivax infections were treated with chloroquine. Standard 12-lead electrocardiograms were assessed on day 0, 4 to 6 h following the last dose, and day 7. QT was corrected for the heart rate by a linear mixed-effects model-derived population-based correction formula (QTcP = QT/RR0.381). A total of 86 AL+, 82 ASMQ, 88 DP, and 21 chloroquine-treated episodes were included. No patients had an uncorrected QT interval nor QTcP of >480 ms at any time. QTcP corresponding to peak drug concentration was longer in the DP group (adjusted predicted mean difference, 17.84 ms; 95% confidence interval [CI], 11.58 to 24.10; P < 0.001) and chloroquine group (18.31 ms; 95% CI, 8.78 to 27.84; P < 0.001) than in the AL+ group, but not different in the ASMQ group (2.45 ms; 95% CI, −4.20 to 9.10; P = 0.47) by the multivariable linear mixed-effects model. There was no difference between DP and chloroquine (P = 0.91). QTc prolongation resulted mainly from widening of the JT interval. In pregnant women, none of the antimalarial drug treatments exceeded conventional thresholds for an increased risk of torsade de pointes.
Collapse
|
14
|
Eftekhar SP, Kazemi S, Barary M, Javanian M, Ebrahimpour S, Ziaei N. Effect of Hydroxychloroquine and Azithromycin on QT Interval Prolongation and Other Cardiac Arrhythmias in COVID-19 Confirmed Patients. Cardiovasc Ther 2021; 2021:6683098. [PMID: 33688374 PMCID: PMC7924072 DOI: 10.1155/2021/6683098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hydroxychloroquine with or without azithromycin was one of the common therapies at the beginning of the COVID-19 pandemic. They can prolong QT interval, cause torsade de pointes, and lead to sudden cardiac death. We aimed to assess QT interval prolongation and its risk factors in patients who received hydroxychloroquine with or without azithromycin. METHODS This study was a retrospective cohort study. One hundred seventy-two confirmed COVID-19 patients were included in this study, hospitalized at Babol University of Medical Sciences hospitals between March 5, 2020, and April 3, 2020. Patients were divided into two groups: hydroxychloroquine alone and hydroxychloroquine with azithromycin. Electrocardiograms were used for outcome assessment. RESULTS 83.1% of patients received hydroxychloroquine plus azithromycin vs. 16.9% of patients who received only hydroxychloroquine. The mean age of patients was 59.2 ± 15.4.The mean of posttreatment QTc interval in the monotherapy group was shorter than the mean of posttreatment QTc interval in the combination therapy group, but it had no significant statistical difference (462.5 ± 43.1 milliseconds vs. 464.3 ± 59.1 milliseconds; p = 0.488). Generally, 22.1% of patients had a prolonged QTc interval after treatment. Male gender, or baseline QTc ≥ 450 milliseconds, or high-risk Tisdale score increased the likelihood of prolonged QTc interval. Due to QTc prolongation, fourteen patients did not continue therapy after four days. CONCLUSIONS Hospitalized patients treated by hydroxychloroquine with or without azithromycin had no significant difference in prolongation of QT interval and outcome. The numbers of patients with prolonged QT intervals in this study emphasize careful cardiac monitoring during therapy, especially in high-risk patients.
Collapse
Affiliation(s)
- Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Barary
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Naghmeh Ziaei
- Department of Cardiology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
15
|
Oscanoa TJ, Vidal X, Kanters JK, Romero-Ortuno R. Frequency of Long QT in Patients with SARS-CoV-2 Infection Treated with Hydroxychloroquine: A Meta-analysis. Int J Antimicrob Agents 2020; 56:106212. [PMID: 33164789 PMCID: PMC7584880 DOI: 10.1016/j.ijantimicag.2020.106212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023]
Abstract
Introduction Hydroxychloroquine (HCQ) has been proposed as a SARS-CoV-2 treatment but the frequency of long QT (LQT) during use is unknown. Objective To conduct a meta-analysis of the frequency of LQT in patients with SARS-CoV-2 infection treated with HCQ. Data Sources PubMed, EMBASE, Google Scholar, the Cochrane Database of Systematic Reviews and preprint servers (medRxiv, Research Square) were searched for studies published between December 2019 and June 30, 2020. Methods Effect statistics were pooled using random effects. The quality of observational studies and randomized controlled trials was appraised with STROBE and the Cochrane Risk of Bias Assessment tools, respectively. Outcomes Critical LQT was defined as: (1) maximum QT corrected (QTc)≥500 ms (if QRS<120 ms) or QTc≥550 ms (if QRS≥120 ms), and (2) QTc increase ≥60 ms. Results In the 28 studies included (n=9124), the frequency of LQT during HCQ treatment was 6.7% (95% confidence interval [CI]: 3.7-10.2). In 20 studies (n=7825), patients were also taking other QT-prolonging drugs. The frequency of LQT in the other 8 studies (n=1299) was 1.7% (95% CI: 0.3-3.9). Twenty studies (n=6869) reported HCQ discontinuation due to LQT, with a frequency of 3.7% (95% CI: 1.5-6.6). The frequency of ventricular arrhythmias during HCQ treatment was 1.68% (127/7539) and that of arrhythmogenic death was 0.69% (39/5648). Torsades de Pointes occurred in 0.06% (3/5066). Patients aged >60 years were at highest risk of HCQ-associated LQT (P<0.001). Conclusions HCQ-associated cardiotoxicity in SARS-CoV-2 patients is uncommon but requires ECG monitoring, particularly in those aged >60 years and/or taking other QT-prolonging drugs.
Collapse
Affiliation(s)
- Teodoro J Oscanoa
- Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Drug Safety Research Center, Facultad de Medicina Humana, Universidad de San Martín de Porres. Hospital Almenara, ESSALUD, Lima, Perú.
| | - Xavier Vidal
- Clinical Pharmacology Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roman Romero-Ortuno
- Discipline of Medical Gerontology, Mercer's Institute for Successful Ageing, St James's Hospital, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Ireland
| |
Collapse
|
16
|
Milián A, García-García P, Pérez-Redondo A, Sanz R, Vaquero JJ, Fernández-Rodríguez MA. Selective Synthesis of Phenanthrenes and Dihydrophenanthrenes via Gold-Catalyzed Cycloisomerization of Biphenyl Embedded Trienynes. Org Lett 2020; 22:8464-8469. [PMID: 32969663 DOI: 10.1021/acs.orglett.0c03067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Readily available o'-alkenyl-o-alkynylbiaryls, a particular type of 1,7-enynes, undergo a selective cycloisomerization reaction in the presence of a gold(I) catalyst to give interesting phenanthrene and dihydrophenanthrene derivatives in high yields. The solvent used provokes a switch in the evolution of the gold intermediate and plays a key role in the reaction outcome.
Collapse
Affiliation(s)
- Ana Milián
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Patricia García-García
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Adrián Pérez-Redondo
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Roberto Sanz
- Área de Quı́mica Orgánica, Departamento de Quı́mica, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Juan J Vaquero
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Manuel A Fernández-Rodríguez
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
17
|
Belete TM. Recent Progress in the Development of New Antimalarial Drugs with Novel Targets. Drug Des Devel Ther 2020; 14:3875-3889. [PMID: 33061294 PMCID: PMC7519860 DOI: 10.2147/dddt.s265602] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Malaria is a major global health problem that causes significant mortality and morbidity annually. The therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains, which causes a major obstacle to malaria control. To prevent a potential public health emergency, there is an urgent need for new antimalarial drugs, with single-dose cures, broad therapeutic potential, and novel mechanism of action. Antimalarial drug development can follow several approaches ranging from modifications of existing agents to the design of novel agents that act against novel targets. Modern advancement in the biology of the parasite and the availability of the different genomic techniques provide a wide range of novel targets in the development of new therapy. Several promising targets for drug intervention have been revealed in recent years. Therefore, this review focuses on the progress made on the latest scientific and technological advances in the discovery and development of novel antimalarial agents. Among the most interesting antimalarial target proteins currently studied are proteases, protein kinases, Plasmodium sugar transporter inhibitor, aquaporin-3 inhibitor, choline transport inhibitor, dihydroorotate dehydrogenase inhibitor, isoprenoid biosynthesis inhibitor, farnesyltransferase inhibitor and enzymes are involved in lipid metabolism and DNA replication. This review summarizes the novel molecular targets and their inhibitors for antimalarial drug development approaches.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
18
|
Usman SO, Oreagba IA, Akinyede AA, Agbaje EO, Akinleye MO, Onwujuobi AG, Ken-Owotor C, Adeuja O, Ogunfowokan T, Kogbe S, Owolabi ET, Adeniji H, Busari AW, Hassan OO, Abideen G, Akanmu AS. Effect of nevirapine, efavirenz and lopinavir/ritonavir on the therapeutic concentration and toxicity of lumefantrine in people living with HIV at Lagos University Teaching Hospital, Nigeria. J Pharmacol Sci 2020; 144:95-101. [PMID: 32921396 DOI: 10.1016/j.jphs.2020.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/04/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Patients living with HIV in malarial endemic regions may experience clinically significant drug interaction between antiretroviral and antimalarial drugs. Effects of nevirapine (NVP), efavirenz (EFV) and lopinavir/ritonavir (LPVr) on lumefantrine (LM) therapeutic concentrations and toxicity were evaluated. In a four-arm parallel study design, the blood samples of 40 participants, treated with artemether/lumefantrine (AL), were analysed. Lumefantrine Cmax was increased by 32% (p = 0.012) and 325% (p < 0.0001) in the NVP and LPVr arms respectively but decreased by 62% (p < 0.0001) in the EFV-arm. AUC of LM was, respectively, increased by 50% (p = 0.27) and 328% (p < 0.0001) in the NVP and LPVr arms but decreased in the EFV-arm by 30% (p = 0.019). Median day 7 LM concentration was less than 280 ng/mL in EFV-arm (239 ng/mL) but higher in control (290 ng/mL), NVP (369 ng/mL, p = 0.004) and LPVr (1331 ng/mL, p < 0.0001) arms. There were no clinically relevant toxicities nor adverse events in both control and test arms. Artemether/lumefantrine is safe and effective for treatment of malaria in PLWHA taking NVP and LPVr based ART regimen but not EFV-based regimen.
Collapse
Affiliation(s)
- Sikiru Olatunji Usman
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria.
| | - Ibrahim Adekunle Oreagba
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria; West African Postgraduate College of Pharmacists, Yaba, Lagos State, Nigeria; National Agency for Food and Drug Administration and Control, Wuse, Abuja, Nigeria
| | - Akinwumi Akinyinka Akinyede
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Esther Oluwatoyin Agbaje
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | | | - Adaobi Goodness Onwujuobi
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Chioma Ken-Owotor
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Olatunbosun Adeuja
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Tosin Ogunfowokan
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Segun Kogbe
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | | | - Hannah Adeniji
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Abdul Wasiu Busari
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Olayinka Olayiwola Hassan
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Ganiu Abideen
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Alani Sulaimon Akanmu
- Department of Haematology and Blood Transfusion, Faculty of Clinical Science, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria; Apin Clinic, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria
| |
Collapse
|
19
|
Mhamilawa LE, Wikström S, Mmbando BP, Ngasala B, Mårtensson A. Electrocardiographic safety evaluation of extended artemether-lumefantrine treatment in patients with uncomplicated Plasmodium falciparum malaria in Bagamoyo District, Tanzania. Malar J 2020; 19:250. [PMID: 32664948 PMCID: PMC7362422 DOI: 10.1186/s12936-020-03309-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/26/2020] [Indexed: 01/24/2023] Open
Abstract
Background Extended artemisinin-based combination therapy (ACT) for treatment of uncomplicated Plasmodium falciparum malaria with already existing drug regimens, such as artemether-lumefantrine, might be effective in tackling the emerging ACT resistance. However, given the history of cardiotoxicity among anti-malarial drugs structurally similar to lumefantrine, the potential effect of extended artemether-lumefantrine treatment on the electrocardiographic (ECG) QTc interval is of high concern. Methods Male and non-pregnant females aged 1–65 years, diagnosed with uncomplicated P. falciparum malaria in Bagamoyo district, Tanzania, were randomized into two arms. The intervention arm received an extended, i.e. 6-day, course of artemether-lumefantrine and an additional single low-dose primaquine (0.25 mg/kg) administered together with the last artemether-lumefantrine dose. The control arm received the standard weight-based 3-day course. ECGs were performed at day 0 and 4–5 h after the last dose at day 5. QT intervals were read manually using the tangent method and automatically. Bazett’s (QTcB) and Fridericia’s (QTcF) formulae were used for correction for heart rate. Descriptive statistics were used to calculate baseline characteristics and the number of supra-thresholds QTc intervals (QTc prolongation > 500, change in QTc interval (ΔQTc) > 60 ms). The mean change in QTc interval in and between the two arms was compared using the paired t-test and independent samples t-test, respectively. Results A total of 195 patients were enrolled, 103 and 92 in the intervention and control arm, respectively. No patient experienced QTc intervals > 500 ms on day 5 by both formulae. Patients with ΔQTc > 60 ms, for QTcF were 6/103 (5.8%) vs 2/92 (2.2%) and for QTcB 2/103 (1.9%) vs 1/92 (1.1%) in the intervention and control arms, respectively. The mean difference in ΔQTc interval was statistically significant between the two arms with both correction formulae, 11.4 ms (95% CI 2.7–20.0, p = 0.010) and 13.4 ms (95% CI 5.3–21.5, p = 0.001), for QTcB and QTcF, respectively. Conclusion The extended 6-day course of artemether-lumefantrine did not reveal clinically relevant QTc prolonging effects. However, significant QTcF prolongation and presence of patients with supra-threshold QTc values observed in the intervention arm underscore the importance of further monitoring of QTc parameters in extended artemether-lumefantrine treatment. Trial registration ClinicalTrials.gov, NCT03241901. Registered July 27, 2017. https://clinicaltrials.gov/show/NCT03241901
Collapse
Affiliation(s)
- Lwidiko E Mhamilawa
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden. .,Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Sven Wikström
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Bruno P Mmbando
- Tanga Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Billy Ngasala
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden.,Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Saleh M, Gabriels J, Chang D, Soo Kim B, Mansoor A, Mahmood E, Makker P, Ismail H, Goldner B, Willner J, Beldner S, Mitra R, John R, Chinitz J, Skipitaris N, Mountantonakis S, Epstein LM. Effect of Chloroquine, Hydroxychloroquine, and Azithromycin on the Corrected QT Interval in Patients With SARS-CoV-2 Infection. Circ Arrhythm Electrophysiol 2020; 13:e008662. [PMID: 32347743 PMCID: PMC7299095 DOI: 10.1161/circep.120.008662] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is responsible for the global coronavirus disease 2019 pandemic. Small studies have shown a potential benefit of chloroquine/hydroxychloroquine±azithromycin for the treatment of coronavirus disease 2019. Use of these medications alone, or in combination, can lead to a prolongation of the QT interval, possibly increasing the risk of Torsade de pointes and sudden cardiac death. METHODS Hospitalized patients treated with chloroquine/hydroxychloroquine±azithromycin from March 1 to the 23 at 3 hospitals within the Northwell Health system were included in this prospective, observational study. Serial assessments of the QT interval were performed. The primary outcome was QT prolongation resulting in Torsade de pointes. Secondary outcomes included QT prolongation, the need to prematurely discontinue any of the medications due to QT prolongation, and arrhythmogenic death. RESULTS Two hundred one patients were treated for coronavirus disease 2019 with chloroquine/hydroxychloroquine. Ten patients (5.0%) received chloroquine, 191 (95.0%) received hydroxychloroquine, and 119 (59.2%) also received azithromycin. The primary outcome of torsade de pointes was not observed in the entire population. Baseline corrected QT interval intervals did not differ between patients treated with chloroquine/hydroxychloroquine (monotherapy group) versus those treated with combination group (chloroquine/hydroxychloroquine and azithromycin; 440.6±24.9 versus 439.9±24.7 ms, P=0.834). The maximum corrected QT interval during treatment was significantly longer in the combination group versus the monotherapy group (470.4±45.0 ms versus 453.3±37.0 ms, P=0.004). Seven patients (3.5%) required discontinuation of these medications due to corrected QT interval prolongation. No arrhythmogenic deaths were reported. CONCLUSIONS In the largest reported cohort of coronavirus disease 2019 patients to date treated with chloroquine/hydroxychloroquine±azithromycin, no instances of Torsade de pointes, or arrhythmogenic death were reported. Although use of these medications resulted in QT prolongation, clinicians seldomly needed to discontinue therapy. Further study of the need for QT interval monitoring is needed before final recommendations can be made.
Collapse
Affiliation(s)
- Moussa Saleh
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
- Division of Electrophysiology, Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, NY (M.S., P.M., N.S., S.M.)
| | - James Gabriels
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
| | - David Chang
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
| | - Beom Soo Kim
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
| | - Amtul Mansoor
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
| | - Eitezaz Mahmood
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
| | - Parth Makker
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
- Division of Electrophysiology, Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, NY (M.S., P.M., N.S., S.M.)
| | - Haisam Ismail
- Division of Electrophysiology, Department of Cardiology, Long Island Jewish Medical Center, Northwell Health, New Hyde Park (H.I., B.G.)
| | - Bruce Goldner
- Division of Electrophysiology, Department of Cardiology, Long Island Jewish Medical Center, Northwell Health, New Hyde Park (H.I., B.G.)
| | - Jonathan Willner
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
| | - Stuart Beldner
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
| | - Raman Mitra
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
| | - Roy John
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
| | - Jason Chinitz
- Division of Electrophysiology, Department of Cardiology, Southside Hospital, Northwell Health, Bay Shore (J.C.)
| | - Nicholas Skipitaris
- Division of Electrophysiology, Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, NY (M.S., P.M., N.S., S.M.)
| | - Stavros Mountantonakis
- Division of Electrophysiology, Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, NY (M.S., P.M., N.S., S.M.)
| | - Laurence M. Epstein
- Division of Electrophysiology, Department of Cardiology, North Shore University Hospital, Northwell Health, Manhasset, NY (M.S., J.G., D.C., B.S.K., A.M., E.M., P.M., J.W., S.B., R.M., R.J., L.M.E.)
| |
Collapse
|
21
|
Cardiac Arrhythmia in a Patient with Sickle Cell Anemia and Falciparum Malaria Treated with Intravenous Artesunate. Case Rep Infect Dis 2019; 2019:1913685. [PMID: 31815023 PMCID: PMC6877966 DOI: 10.1155/2019/1913685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/07/2019] [Accepted: 10/08/2019] [Indexed: 11/18/2022] Open
Abstract
Treatment of severe malaria with artemisinin derivatives in patients with comorbid conditions such as sickle cell anemia must be considered with precaution. We report here a case of possibly undocumented ventricular arrhythmia in a sickle cell anemia patient diagnosed with Plasmodium falciparum malaria and treated with intravenous artesunate. The patient suffered from wide complex tachycardia after treatment with artesunate 170 mg (2.4 mg/kg) i.v. bolus, tachycardia was managed with amiodarone (150 mg i.v. for 10 minutes). Electrocardiographic abnormalities, including QT prolongation, are common in patients with sickle cell anemia. The mortality rate in sickle cell anemia patients due to cardiovascular and pulmonary complications remains high. The probability of precipitation of ventricular arrhythmias may increase in patients with sickle cell anemia, diagnosed with malaria and treated with artemisinin derivatives.
Collapse
|
22
|
Haeusler IL, Chan XHS, Guérin PJ, White NJ. The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review. BMC Med 2018; 16:200. [PMID: 30400791 PMCID: PMC6220451 DOI: 10.1186/s12916-018-1188-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Several quinoline and structurally related antimalarial drugs are associated with cardiovascular side effects, particularly hypotension and electrocardiographic QT interval prolongation. A prolonged QT interval is a sensitive but not specific risk marker for the development of Torsade de Pointes-a potentially lethal polymorphic ventricular tachyarrhythmia. The increasing use of quinoline and structurally related antimalarials in mass treatments to eliminate malaria rapidly highlights the need to review their cardiovascular safety profiles. METHODS The primary objective of this systematic review was to describe the documented clinical and electrocardiographic cardiovascular side effects of quinine, mefloquine, lumefantrine, piperaquine, halofantrine, chloroquine, sulfadoxine-pyrimethamine, amodiaquine, and primaquine. Trials in healthy subjects or patients with Plasmodium falciparum or P. vivax infection were included if at least two ECGs were conducted during the trial. All trial designs were included except case reports and pooled analyses. Secondary outcomes were the methods adopted by trials for measuring and reporting the QT interval. RESULTS Data from trials published between 1982 and July 2016 were included. A total of 177 trials met the inclusion criteria. 35,448 participants received quinoline antimalarials in these trials, of which 18,436 participants underwent ECG evaluation. Subjects with co-medication use or comorbidities including cardiovascular disease were excluded from the majority of trials. Dihydroartemisinin-piperaquine was the drug most studied (5083 participants). Despite enormous use over the past 60 years, only 1076, 452, and 150 patients had ECG recordings reported in studies of chloroquine, amodiaquine, and primaquine respectively. Transiently high concentrations of quinine, quinidine, and chloroquine following parenteral administration have all been associated with hypotension, but there were no documented reports of death or syncope attributable to a cardiovascular cause, nor of electrocardiographic recordings of ventricular arrhythmia in these trials. The large volume of missing outcome information and the heterogeneity of ECG interval reporting and measurement methodology did not allow pooled quantitative analysis of QT interval changes. CONCLUSIONS No serious cardiac adverse effects were recorded in malaria clinical trials of 35,548 participants who received quinoline and structurally related antimalarials with close follow-up including 18,436 individuals who underwent ECG evaluation. While these findings provide further evidence of the rarity of serious cardiovascular events after treatment with these drugs, they also underscore the need for continued strengthening of pharmacovigilance systems for robust detection of rare drug adverse events in real-world populations. A standardised approach to measurement and reporting of ECG data in malaria trials is also needed. TRIAL REGISTRATION PROSPERO CRD42016036678.
Collapse
Affiliation(s)
- Ilsa L Haeusler
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xin Hui S Chan
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
23
|
Chan XHS, Win YN, Mawer LJ, Tan JY, Brugada J, White NJ. Risk of sudden unexplained death after use of dihydroartemisinin-piperaquine for malaria: a systematic review and Bayesian meta-analysis. THE LANCET. INFECTIOUS DISEASES 2018; 18:913-923. [PMID: 29887371 PMCID: PMC6060085 DOI: 10.1016/s1473-3099(18)30297-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dihydroartemisinin-piperaquine is an effective and well tolerated artemisinin-based combination therapy that has been assessed extensively for the prevention and treatment of malaria. Piperaquine, similar to several structurally related antimalarials currently used, can prolong cardiac ventricular repolarisation duration and the electrocardiographic QT interval, leading to concerns about its proarrhythmic potential. We aimed to assess the risk of potentially lethal iatrogenic ventricular arrhythmias in individuals receiving dihydroartemisinin-piperaquine. METHODS We did a systematic review and Bayesian meta-analysis. We searched clinical bibliographic databases (last on May 24, 2017) for studies of dihydroartemisinin-piperaquine in human beings. Further unpublished studies were identified with the WHO Evidence Review Group on the Cardiotoxicity of Antimalarials. We searched for articles containing "dihydroartemisinin-piperaquine" as title, abstract, or subject heading keywords, with synonyms and variant spellings as additional search terms. We excluded animal studies, but did not apply limits on language or publication date. Eligible studies were prospective, randomised, controlled trials or cohort studies in which individuals received at least one 3-day treatment course of dihydroartemisinin-piperaquine for mass drug administration, preventive therapy, or case management of uncomplicated malaria, with follow-up over at least 3 days. At least two independent reviewers screened titles, abstracts, and full texts, agreed study eligibility, and extracted information about study and participant characteristics, adverse event surveillance methodology, dihydroartemisinin-piperaquine exposures, loss-to-follow up, and any deaths after dihydroartemisinin-piperaquine treatment into a standardised database. The risk of sudden unexplained death after dihydroartemisinin-piperaquine with 95% credible intervals (CI) generated by Bayesian meta-analysis was compared with the baseline rate of sudden cardiac death. FINDINGS Our search identified 94 eligible primary studies including data for 197 867 individuals who had received dihydroartemisinin-piperaquine: 154 505 in mass drug administration programmes; 15 188 in 14 studies of repeated courses in preventive therapies and case management of uncomplicated malaria; and 28 174 as single-course treatments of uncomplicated malaria in 76 case-management studies. There was one potentially drug-related sudden unexplained death: a healthy woman aged 16 in Mozambique who developed heart palpitations several hours after the second dose of dihydroartemisinin-piperaquine and collapsed and died on the way to hospital (no autopsy or ECG was done). The median pooled risk estimate of sudden unexplained death after dihydroartemisinin-piperaquine was 1 in 757 950 (95% CI 1 in 2 854 490 to 1 in 209 114). This risk estimate was not higher than the baseline rate of sudden cardiac death (0·7-11·9 per 100 000 person-years or 1 in 1 714 280 to 1 in 100 835 over a 30-day risk period). The risk of bias was low in most studies and unclear in a few. INTERPRETATION Dihydroartemisinin-piperaquine was associated with a low risk of sudden unexplained death that was not higher than the baseline rate of sudden cardiac death. Concerns about repolarisation-related cardiotoxicity need not limit its current use for the prevention and treatment of malaria. FUNDING Wellcome Trust, UK Medical Research Council, WHO, Bill & Melinda Gates Foundation, and University of Oxford.
Collapse
Affiliation(s)
- Xin Hui S Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Yan Naung Win
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Defence Services Medical Research Centre & Health and Disease Control Unit, Naypyidaw, Myanmar
| | - Laura J Mawer
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Royal Free London NHS Foundation Trust, London, UK
| | - Jireh Y Tan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Josep Brugada
- Arrhythmia Section, Cardiology Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Spain
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
24
|
Medhi H, Maity S, Suthram N, Chalapareddy SK, Bhattacharyya MK, Paik P. Hollow mesoporous polymer capsules with Dihydroartemisinin and Chloroquine diphosphate for knocking down Plasmodium falciparum infection. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaaddb] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Leoni D, Rello J. Cardiac arrest among patients with infections: causes, clinical practice and research implications. Clin Microbiol Infect 2017; 23:730-735. [DOI: 10.1016/j.cmi.2016.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
|
26
|
Iwasaki M, Araki Y, Nishihara Y. Phenanthrene Synthesis by Palladium-Catalyzed Benzannulation with o-Bromobenzyl Alcohols through Multiple Carbon–Carbon Bond Formations. J Org Chem 2017; 82:6242-6258. [DOI: 10.1021/acs.joc.7b00848] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Masayuki Iwasaki
- Research Institute for Interdisciplinary
Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasuhiro Araki
- Research Institute for Interdisciplinary
Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary
Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
27
|
Post-licensure safety evaluation of dihydroartemisinin piperaquine in the three major ecological zones across Ghana. PLoS One 2017; 12:e0174503. [PMID: 28358871 PMCID: PMC5373525 DOI: 10.1371/journal.pone.0174503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/06/2017] [Indexed: 01/17/2023] Open
Abstract
Background Uncommon and rare adverse events (AEs), with delayed onset may not be detected before new drugs are licensed and deployed. The present study examined the post licensure safety of dihydroartemisinin-piperaquine (DHP) as an additional treatment for malaria in Ghana. The relationship between the incidence of AEs, treatment completion rate, participant characteristics and concomitant medications are reported. Methods A study conducted from September 2013 to June 2014 in Navrongo, Kintampo and Dodowa health research centres in Ghana is presented. Participants had confirmed malaria and no known allergy to study drug. Patients provided informed consent and had their symptoms and results of their clinical examinations documented. Treatment with Eurartesim® (20/160mg dihydroartemisinin and 40/320mg piperaquine by Sigma-Tau Incorporated) was given, according to the body weight of patients. First treatment doses were under observation but the second and third doses were taken at home except in a sub-study involving a nested cohort. Patients were contacted at Day 5 (± 2 days) either on telephone or by a home visit to document any AEs experienced. Patients were asked to report to the study team any other AEs that occurred within 28 days post-treatment. All patients in the nested cohort had electrocardiogram (ECG). Findings A total of 4563 patients, 52.1% females and 48.2% <6 years completed the study. A total of 444 patients were enrolled into the nested cohort. About 33% had temperature ≥ 37.5°C at enrolment. Approximately 3.4% reported taking prior antimalarials, 19.4% other medications and 86% took at least one concomitant medication. Incidence of AEs was 7.6% including infections (4.6%), gastrointestinal disorders (1.0%) and local reactions at the site of venesection (0.5%). Others were respiratory disorders (0.4%) and nervous system disorders (0.3%). There were nine adverse events of special interest (AESI); itching/pruritus (7), dizziness (1), and skin lesions (1). Patients who took medications prior to enrolment had higher incidence of AEs compared with those without (9.3% vs. 6.1%; P<0.001). Statistically significant associations were found between the reported AEs and age of patients (P<0.001), their body mass index (BMI) (P< 0.001) and parasite densities (P< 0.001). Conclusion Dihydroartemisinin-Piperaquine was well tolerated with no serious safety concerns identified. Obesity and prior enrolment medication were among significant factors associated with increased AEs reporting.
Collapse
|
28
|
Baruah UK, Gowthamarajan K, Vanka R, Karri VVSR, Selvaraj K, Jojo GM. Malaria treatment using novel nano-based drug delivery systems. J Drug Target 2017; 25:567-581. [PMID: 28166440 DOI: 10.1080/1061186x.2017.1291645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We reside in an era of technological innovation and advancement despite which infectious diseases like malaria remain to be one of the greatest threats to the humans. Mortality rate caused by malaria disease is a huge concern in the twenty-first century. Multiple drug resistance and nonspecific drug targeting of the most widely used drugs are the main reasons/drawbacks behind the failure in malarial therapy. Dose-related toxicity because of high doses is also a major concern. Therefore, to overcome these problems nano-based drug delivery systems are being developed to facilitate site-specific or target-based drug delivery and hence minimizing the development of resistance progress and dose-dependent toxicity issues. In this review, we discuss about the shortcomings in treating malaria and how nano-based drug delivery systems can help in curtailing the infectious disease malaria.
Collapse
Affiliation(s)
- Uday Krishna Baruah
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | - Kuppusamy Gowthamarajan
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | - Ravisankar Vanka
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | | | - Kousalya Selvaraj
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | - Gifty M Jojo
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| |
Collapse
|
29
|
Davis TME, Moore BR, Salman S, Page-Sharp M, Batty KT, Manning L. Use of quantitative pharmacology tools to improve malaria treatments. Expert Rev Clin Pharmacol 2015; 9:303-16. [DOI: 10.1586/17512433.2016.1129273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Xie S, Jia Y, Liu A, Dai R, Huang L. Hypaconitine-induced QT prolongation mediated through inhibition of KCNH2 (hERG) potassium channels in conscious dogs. JOURNAL OF ETHNOPHARMACOLOGY 2015; 166:375-379. [PMID: 25800797 DOI: 10.1016/j.jep.2015.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/15/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypaconitine is one of the main aconitum alkaloids in traditional Chinese medicines prepared with herbs from the genus Acotinum. These herbs are widely used for the treatment of cardiac insufficiency and arrhythmias. However, Acotinum alkaloids are known for their toxicity as well as their pharmacological activity, especially cardiotoxicity including QT prolongation, and the mechanism of this toxicity is not clear. MATERIAL AND METHODS In this study, hypaconitine was administered orally to conscious Beagle dogs, and electrocardiograms were recorded by telemetry. Pharmacokinetic studies (6h) were conducted to evaluate the relationship between QT prolongation and exposure level. HEK293 cells stably transfected with KCNH2 (hERG) cDNA were used to examine the effects of hypaconitine on the KCNH2 channel by using the manual patch clamp technique. RESULTS In the conscious dogs, all doses of hypaconitine induced QTcV (QT interval corrected according to the Van de Water formula) prolongation by more than 23% (67ms) of control in a dose-dependent manner. The maximum QTcV prolongation was observed at 2h after dosing. Maximum prolongation percentages were plotted against plasma concentrations of hypaconitine and showed a strong correlation (R(2)=0.789). In the in vitro study in HEK293 cells, hypaconitine inhibited the KCNH2 currents in a concentration-dependent manner with an IC50 of 8.1nM. CONCLUSION These data suggest that hypaconitine inhibits KCNH2 potassium channels and this effect might be the molecular mechanism underlying QT prolongation in conscious dogs.
Collapse
Affiliation(s)
- Shuilin Xie
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Jia
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Renke Dai
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Lizhen Huang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
31
|
Lalani M, Kaur H, Mohammed N, Mailk N, van Wyk A, Jan S, Kakar RM, Mojadidi MK, Leslie T. Substandard antimalarials available in Afghanistan: a case for assessing the quality of drugs in resource poor settings. Am J Trop Med Hyg 2015; 92:51-58. [PMID: 25897070 PMCID: PMC4455088 DOI: 10.4269/ajtmh.14-0394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 01/05/2015] [Indexed: 11/11/2022] Open
Abstract
Good-quality antimalarials are crucial for the effective treatment and control of malaria. A total of 7,740 individual and packaged tablets, ampoules, and syrups were obtained from 60 randomly selected public (N = 35) and private outlets (N = 25) in Afghanistan. Of these, 134 samples were screened using the Global Pharma Health Fund (GPHF) MiniLab® in Kabul with 33/126 (26%) samples failing the MiniLab® disintegration test. The quality of a subsample (N = 37) of cholorquine, quinine, and sulfadoxine/pyrimethamine tablets was assessed by in vitro dissolution testing following U.S. Pharmacopeia (USP) monographs at a bioanalytical laboratory in London, United Kingdom. Overall, 12/32 (32%) samples of sulfadoxine/pyrimethamine and quinine were found not to comply with the USP tolerance limits. Substandard antimalarials were available in Afghanistan demonstrating that continuous monitoring of drug quality is warranted. However, in Afghanistan as in many low-income countries, capacity to determine and monitor drug quality using methods such as dissolution testing needs to be established to empower national authorities to take appropriate action in setting up legislation and regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Toby Leslie
- *Address correspondence to Toby Leslie, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom. E-mail:
| |
Collapse
|
32
|
Sinha S, Medhi B, Sehgal R. Challenges of drug-resistant malaria. ACTA ACUST UNITED AC 2014; 21:61. [PMID: 25402734 PMCID: PMC4234044 DOI: 10.1051/parasite/2014059] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/23/2014] [Indexed: 01/09/2023]
Abstract
Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
33
|
Analytical sample preparation strategies for the determination of antimalarial drugs in human whole blood, plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 962:109-131. [DOI: 10.1016/j.jchromb.2014.02.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 02/06/2023]
|
34
|
Egan TJ, Kuter D. Dual-functioning antimalarials that inhibit the chloroquine-resistance transporter. Future Microbiol 2013; 8:475-89. [PMID: 23534360 PMCID: PMC7099626 DOI: 10.2217/fmb.13.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Malaria remains a major international health challenge. Resistance to a number of existing drugs and evidence of the emergence of artemisinin resistance has emphasized the need for new antimalarials. A new approach has been the preparation of dual-function compounds that include a chloroquine-like antimalarial group and a group that resembles a chloroquine chemosensitizer. This article reviews the recent discovery of such dual-function antimalarials that are proposed to target both hemozoin formation and the chloroquine resistance transporter, PfCRT. These are discussed in relation to the mechanism of action of 4-aminoquinolines, chloroquine resistance and resistance reversal.
Collapse
Affiliation(s)
- Timothy J Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa.
| | | |
Collapse
|
35
|
Genetic and genomic approaches for the discovery of parasite genes involved in antimalarial drug resistance. Parasitology 2013; 140:1455-67. [PMID: 23931581 DOI: 10.1017/s0031182013000954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The biggest threat to the war on malaria is the continued evolution of drug resistance by the parasite. Resistance to almost all currently available antimalarials now exists in Plasmodium falciparum which causes the most suffering among all human malaria parasites. Monitoring of antimalarial efficacy and the development and subsequent spread of resistance has become an important part in the treatment and control of malaria. With recent reports of reduced efficacy of artemisinin, the current recommended treatment for uncomplicated malaria, there is urgent need for better methods to recognize and monitor drug resistance for effective treatment. Molecular markers have become a welcome addition to complement the more laborious and costly in vitro and in vivo methods that have traditionally been used to monitor drug resistance. However, there are currently no molecular markers for resistance to some antimalarials. This review highlights the role of the various genetic and genomic approaches that have been used in identifying the molecular markers that underlie drug resistance in P. falciparum. These approaches include; candidate genes, genetic linkage and genome-wide association studies. We discuss the requirements and limitations of each approach and use various examples to illustrate their contributions in identifying genomic regions of the parasite associated with antimalarial drug responses.
Collapse
|
36
|
Bué M, Gendrel D. La toxicité cardiaque des antipaludéens. Arch Pediatr 2013. [DOI: 10.1016/s0929-693x(13)71340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Klein K, Aarons L, Ter Kuile FO, Nosten F, White NJ, Edstein MD, Teja-Isavadharm P. Population pharmacokinetics of halofantrine in healthy volunteers and patients with symptomatic falciparum malaria. ACTA ACUST UNITED AC 2012; 64:1603-13. [PMID: 23058047 DOI: 10.1111/j.2042-7158.2012.01554.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the population pharmacokinetics of the antimalarial halofantrine (HF) in healthy volunteers and patients with symptomatic falciparum malaria. METHODS Healthy volunteer data were obtained from six volunteers who received three different doses of HF (250, 500 and 1000 mg) after an overnight fast with a washout period of at least 6 weeks between doses. Patient data (n = 188) were obtained from randomised controlled trials conducted on the Thai-Burmese border in the early 1990s. They were either assigned to receive a total HF dose of 24 mg/kg (8 mg/kg every 6 h for 24 h) or 72 mg/kg (8 mg/kg every 6 to 10 h for 3 days). The population pharmacokinetics of HF were evaluated using non-linear mixed effects modelling with a two-compartment model with first-order absorption. KEY FINDINGS The population estimates of apparent clearance (CL), volume of compartment one (V1), distributional clearance (CLD) and volume of compartment two (V2) of HF in healthy volunteers were 2453 l/day (102 l/h), 2386 l, 716 l/day (29.8 l/h) and 2641 l, respectively. The population estimates of the PK parameters in patients were 429 l/day (17.9 l/h), 729 l, 178 l/day (7.42 l/h) and 1351 l, respectively. All PK parameters were significantly related to body weight and some were related to sex, sampling method, pre-treatment parasite density and whether patients vomited or not. When the two datasets were analysed jointly using a maximum likelihood method, the population estimates in patients were 196 l/day (8.17 l/h), 161 l, 65 l/day (2.71 l/h) and 89 l, respectively, and the parameters were significantly related to body weight and sex. Bayesian analysis of the patient data, with a diffuse prior based on the healthy volunteer data analysis results, yielded the population estimates 354 l/day (14.8 l/h), 728 l, 162 l/day (6.75 l/h) and 1939 l, respectively. CONCLUSIONS The pharmacokinetic properties of HF in patients with malaria are affected by several demographic variables as well as other relevant covariates. Apparent differences between the healthy volunteer and the patient data analysis results are not entirely due to differences in bioavailability. For the patient data analysis, the Bayesian method was preferred, as the fitting procedure was more stable, allowing random effects to be estimated for all four dispositional parameters.
Collapse
Affiliation(s)
- Kerenaftali Klein
- Queensland Clinical Trials and Biostatistics Centre, School of Population Health, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Lee JH, Kim DG, Bae TJ, Rho K, Kim JT, Lee JJ, Jang Y, Kim BC, Park KM, Kim S. CDA: combinatorial drug discovery using transcriptional response modules. PLoS One 2012; 7:e42573. [PMID: 22905152 PMCID: PMC3414439 DOI: 10.1371/journal.pone.0042573] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/09/2012] [Indexed: 11/18/2022] Open
Abstract
Background Anticancer therapies that target single signal transduction pathways often fail to prevent proliferation of cancer cells because of overlapping functions and cross-talk between different signaling pathways. Recent research has identified that balanced multi-component therapies might be more efficacious than highly specific single component therapies in certain cases. Ideally, synergistic combinations can provide 1) increased efficacy of the therapeutic effect 2) reduced toxicity as a result of decreased dosage providing equivalent or increased efficacy 3) the avoidance or delayed onset of drug resistance. Therefore, the interest in combinatorial drug discovery based on systems-oriented approaches has been increasing steadily in recent years. Methodology Here we describe the development of Combinatorial Drug Assembler (CDA), a genomics and bioinformatics system, whereby using gene expression profiling, multiple signaling pathways are targeted for combinatorial drug discovery. CDA performs expression pattern matching of signaling pathway components to compare genes expressed in an input cell line (or patient sample data), with expression patterns in cell lines treated with different small molecules. Then it detects best pattern matching combinatorial drug pairs across the input gene set-related signaling pathways to detect where gene expression patterns overlap and those predicted drug pairs could likely be applied as combination therapy. We carried out in vitro validations on non-small cell lung cancer cells and triple-negative breast cancer (TNBC) cells. We found two combinatorial drug pairs that showed synergistic effect on lung cancer cells. Furthermore, we also observed that halofantrine and vinblastine were synergistic on TNBC cells. Conclusions CDA provides a new way for rational drug combination. Together with phExplorer, CDA also provides functional insights into combinatorial drugs. CDA is freely available at http://cda.i-pharm.org.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
- Information Center for Bio-pharmacological Network, Seoul National University, Suwon, South Korea
| | - Dae Gyu Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
| | - Tae Jeong Bae
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
- Information Center for Bio-pharmacological Network, Seoul National University, Suwon, South Korea
| | - Kyoohyoung Rho
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
- Information Center for Bio-pharmacological Network, Seoul National University, Suwon, South Korea
| | - Ji-Tae Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
- Information Center for Bio-pharmacological Network, Seoul National University, Suwon, South Korea
| | - Jong-Jun Lee
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
| | - Yeongjun Jang
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Deajeon, South Korea
| | - Byung Cheol Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
| | - Kyoung Mii Park
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
- Information Center for Bio-pharmacological Network, Seoul National University, Suwon, South Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
39
|
Siriez JY, Lupoglazoff JM, Bouchy-Bagros ML, Pull L, Denjoy I. Effect of halofantrine on QT interval in children. Pathog Glob Health 2012; 106:124-5. [DOI: 10.1179/2047773212y.0000000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
40
|
Chavali AK, Blazier AS, Tlaxca JL, Jensen PA, Pearson RD, Papin JA. Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease. BMC SYSTEMS BIOLOGY 2012; 6:27. [PMID: 22540944 PMCID: PMC3388006 DOI: 10.1186/1752-0509-6-27] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/27/2012] [Indexed: 11/14/2022]
Abstract
Background Systems biology holds promise as a new approach to drug target identification and drug discovery against neglected tropical diseases. Genome-scale metabolic reconstructions, assembled from annotated genomes and a vast array of bioinformatics/biochemical resources, provide a framework for the interrogation of human pathogens and serve as a platform for generation of future experimental hypotheses. In this article, with the application of selection criteria for both Leishmania major targets (e.g. in silico gene lethality) and drugs (e.g. toxicity), a method (MetDP) to rationally focus on a subset of low-toxic Food and Drug Administration (FDA)-approved drugs is introduced. Results This metabolic network-driven approach identified 15 L. major genes as high-priority targets, 8 high-priority synthetic lethal targets, and 254 FDA-approved drugs. Results were compared to previous literature findings and existing high-throughput screens. Halofantrine, an antimalarial agent that was prioritized using MetDP, showed noticeable antileishmanial activity when experimentally evaluated in vitro against L. major promastigotes. Furthermore, synthetic lethality predictions also aided in the prediction of superadditive drug combinations. For proof-of-concept, double-drug combinations were evaluated in vitro against L. major and four combinations involving the drug disulfiram that showed superadditivity are presented. Conclusions A direct metabolic network-driven method that incorporates single gene essentiality and synthetic lethality predictions is proposed that generates a set of high-priority L. major targets, which are in turn associated with a select number of FDA-approved drugs that are candidate antileishmanials. Additionally, selection of high-priority double-drug combinations might provide for an attractive and alternative avenue for drug discovery against leishmaniasis.
Collapse
Affiliation(s)
- Arvind K Chavali
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Sutherland CJ, Babiker H, Mackinnon MJ, Ranford-Cartwright L, El Sayed BB. Rational deployment of antimalarial drugs in Africa: should first-line combination drugs be reserved for paediatric malaria cases? Parasitology 2011; 138:1459-68. [PMID: 21810298 PMCID: PMC3575203 DOI: 10.1017/s0031182011001144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Artemisinin-based combination therapy is exerting novel selective pressure upon populations of Plasmodium falciparum across Africa. Levels of resistance to non-artemisinin partner drugs differ among parasite populations, and so the artemisinins are not uniformly protected from developing resistance, already present in South East Asia. Here, we consider strategies for prolonging the period of high level efficacy of combination therapy for two particular endemicities common in Africa. Under high intensity transmission, two alternating first-line combinations, ideally with antagonistic selective effects on the parasite genome, are advocated for paediatric malaria cases. This leaves second-line and other therapies for adult cases, and for intermittent preventive therapy. The drug portfolio would be selected to protect the 'premier' combination regimen from selection for resistance, while maximising impact on severe disease and mortality in children. In endemic areas subject to low, seasonal transmission of Plasmodium falciparum, such a strategy may deliver little benefit, as children represent a minority of cases. Nevertheless, the deployment of other drug-based interventions in low transmission and highly seasonal areas, such as mass drug administration aimed to interrupt malaria transmission, or intermittent preventive therapy, does provide an opportunity to diversify drug pressure. We thus propose an integrated approach to drug deployment, which minimises direct selective pressure on parasite populations from any one drug component. This approach is suitable for qualitatively and quantitatively different burdens of malaria, and should be supported by a programme of routine surveillance for emerging resistance.
Collapse
Affiliation(s)
- Colin J Sutherland
- Department of Immunology & Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | | | | | | | | |
Collapse
|
42
|
Patel JP, Brocks DR. Effect of experimental hyperlipidaemia on the electrocardiographic effects of repeated doses of halofantrine in rats. Br J Pharmacol 2011; 161:1427-40. [PMID: 20698852 DOI: 10.1111/j.1476-5381.2010.00983.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Halofantrine can cause a prolongation of the cardiac QT interval, leading to serious ventricular arrhythmias. Hyperlipidaemia elevates plasma concentration of halofantrine and may influence its tissue uptake. The present study examined the effect of experimental hyperlipidaemia on QT interval prolongation induced by halofantrine in rats. EXPERIMENTAL APPROACH Normolipidaemic and hyperlipidaemic rats (induced with poloxamer 407) were given 4 doses of halofantrine (i.v., 4-40 mg·kg(-1)·d(-1)) or vehicle every 12 h. Under brief anaesthesia, ECGs were recorded before administration of the vehicle or drug and 12 h after the first and last doses. Blood samples were taken at the same time after the first and last dose of halofantrine. Hearts were also collected 12 h after the last dose. Plasma and heart samples were assayed for drug and desbutylhalofantrine using a stereospecific method. KEY RESULTS In the vehicle group, hyperlipidaemia by itself did not affect the ECG. Compared to baseline, QT intervals were significantly higher in both normolipidaemic and hyperlipidaemic rats after halofantrine. In hyperlipidaemic rats, plasma but not heart concentrations of the halofantrine enantiomers were significantly higher compared to those in normolipidaemic rats. Despite the lack of difference in the concentrations of halofantrine in heart, QT intervals were significantly higher in hyperlipidaemic compared to those in normolipidaemic rats. CONCLUSIONS AND IMPLICATIONS The unbound fraction of halofantrine appeared to be the controlling factor for drug uptake by the heart. Our data suggested a greater vulnerability to halofantrine-induced QT interval prolongation in the hyperlipidaemic state.
Collapse
Affiliation(s)
- Jigar P Patel
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
43
|
Identification and functional validation of the novel antimalarial resistance locus PF10_0355 in Plasmodium falciparum. PLoS Genet 2011; 7:e1001383. [PMID: 21533027 PMCID: PMC3080868 DOI: 10.1371/journal.pgen.1001383] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 03/25/2011] [Indexed: 11/25/2022] Open
Abstract
The Plasmodium falciparum parasite's ability to adapt to
environmental pressures, such as the human immune system and antimalarial drugs,
makes malaria an enduring burden to public health. Understanding the genetic
basis of these adaptations is critical to intervening successfully against
malaria. To that end, we created a high-density genotyping array that assays
over 17,000 single nucleotide polymorphisms (∼1 SNP/kb), and applied it to
57 culture-adapted parasites from three continents. We characterized genome-wide
genetic diversity within and between populations and identified numerous loci
with signals of natural selection, suggesting their role in recent adaptation.
In addition, we performed a genome-wide association study (GWAS), searching for
loci correlated with resistance to thirteen antimalarials; we detected both
known and novel resistance loci, including a new halofantrine resistance locus,
PF10_0355. Through functional testing we demonstrated that
PF10_0355 overexpression decreases sensitivity to
halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated
antimalarials, and that increased gene copy number mediates resistance. Our GWAS
and follow-on functional validation demonstrate the potential of genome-wide
studies to elucidate functionally important loci in the malaria parasite
genome. Malaria infection with the human pathogen Plasmodium falciparum
results in almost a million deaths each year, mostly in African children.
Efforts to eliminate malaria are underway, but the parasite is adept at eluding
both the human immune response and antimalarial treatments. Thus, it is
important to understand how the parasite becomes resistant to drugs and to
develop strategies to overcome resistance mechanisms. Toward this end, we used
population genetic strategies to identify genetic loci that contribute to
parasite adaptation and to identify candidate genes involved in drug resistance.
We examined over 17,000 genetic variants across the parasite genome in over 50
strains in which we also measured responses to many known antimalarial
compounds. We found a number of genetic loci showing signs of recent natural
selection and a number of loci potentially involved in modulating the
parasite's response to drugs. We further demonstrated that one of the novel
candidate genes (PF10_0355) modulates resistance to the
antimalarial compounds halofantrine, mefloquine, and lumefantrine. Overall, this
study confirms that we can use genome-wide approaches to identify clinically
relevant genes and demonstrates through functional testing that at least one of
these candidate genes is indeed involved in antimalarial drug resistance.
Collapse
|
44
|
Kinoshita A, Yamada H, Kotaki H, Kimura M. Effects of anti-malarial drugs on the electrocardiographic QT interval modelled in the isolated perfused guinea pig heart system. Malar J 2010; 9:318. [PMID: 21067575 PMCID: PMC2992072 DOI: 10.1186/1475-2875-9-318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/10/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Concern over the potential cardiotoxicity of anti-malarial drugs inducing a prolonged electrocardiographic QT interval has resulted in the almost complete withdrawal from the market of one anti-malarial drug - halofantrine. The effects on the QT interval of four anti-malarial drugs were examined, using the guinea pig heart. METHODS The guinea pig heart was isolated, mounted on a Langendorff apparatus, and was then perfused with pyruvate-added Klebs-Henseleit solutions containing graded concentrations of the four agents such as quinidine (0.15 - 1.2 μM), quinine (0.3 - 2.4 μM), halofantrine (0.1 - 2.0 μM) and mefloquine (0.1 - 2.0 μM). The heart rate-corrected QaTc intervals were measured to evaluate drug-induced QT prolongation effects. RESULTS Quinidine, quinine, and halofantrine prolonged the QaTc interval in a dose-dependent manner, whereas no such effect was found with mefloquine. The EC50 values for the QaTc prolongation effects, the concentration that gives a half-maximum effect, were quinidine < quinine ≈ halofantrine. CONCLUSIONS In this study, an isolated, perfused guinea pig heart system was constructed to assess the cardiotoxic potential of anti-malarial drugs. This isolated perfused guinea pig heart system could be used to test newly developed anti-malarial drugs for their inherent QT lengthening potential. More information is required on the potential variation in unbound drug concentrations in humans, and their role in cardiotoxicity.
Collapse
Affiliation(s)
- Atsushi Kinoshita
- Division of Drug Informatics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo, 670-8524 Japan.
| | | | | | | |
Collapse
|
45
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2010. [DOI: 10.1002/pds.1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Diap G, Amuasi J, Boakye I, Sevcsik AM, Pecoul B. Anti-malarial market and policy surveys in sub-Saharan Africa. Malar J 2010; 9 Suppl 1:S1. [PMID: 20423536 DOI: 10.1186/1475-2875-9-s1-s1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
At a recent meeting (Sept 18, 2009) in which reasons for the limited access to artemisinin-based combination therapy (ACT) in sub-Saharan Africa were discussed, policy and market surveys on anti-malarial drug availability and accessibility in Burundi and Sierra Leone were presented in a highly interactive brainstorming session among key stakeholders across private, public, and not-for-profit sectors. The surveys, the conduct of which directly involved the national malaria control programme managers of the two countries, provides the groundwork for evidence-based policy implementation. The results of the surveys could be extrapolated to other countries with similar socio-demographic and malaria profiles. The meeting resulted in recommendations on key actions to be taken at the global, national, and community level for better ACT accessibility. At the global level, both public and private sectors have actions to take to strengthen policies that lead to the replacement of loose blister packs with fixed-dose ACT products, develop strategies to ban inappropriate anti-malarials and regulate those bans, and facilitate technology and knowledge transfer to scale up production of fixed-dose ACT products, which should be readily available and affordable to those patients who are in the greatest need of these medicines. At the national level, policies that regulate the anti-malarial medicines market should be enacted and enforced. The public sector, including funding donors, should participate in ensuring that the private sector is engaged in the ACT implementation process. Research similar to the surveys discussed is important for other countries to develop and evaluate the right incentives at a local level. At the community level, community outreach and education about appropriate preventive and treatment measures must continue and be strengthened, with service delivery systems developed within both public and private sectors, among other measures, to decrease access to ineffective and inappropriate anti-malarial medicines. What was clear during the meeting is that continuing commitment, strengthened interaction and transparency among various stakeholders, with focus on communities, national governments, and evidence-based policy and action are the only way to sustainably address the control of malaria, a disease which continues to have a significant health and socio-economic impact worldwide, particularly in sub-Saharan Africa. Details on the methodology employed in carrying out the studies discussed at this meeting, as well as more detailed results, data analysis and discussion of the studies are soon to be published.
Collapse
Affiliation(s)
- Graciela Diap
- Drugs for Neglected Diseases initiative (DNDi), Geneva 1202, Switzerland.
| | | | | | | | | |
Collapse
|