1
|
Sovi S, Adomako K, Kyei B, Kena AW, Olympio OS, Aggrey SE. A comparative study of population structure and genetic diversity of commercial and indigenous chickens from different agro-ecological zones in Ghana using SilicoDArT and SNP markers. Gene 2024; 929:148823. [PMID: 39122230 DOI: 10.1016/j.gene.2024.148823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Chicken production, both in the local and commercial sectors, contributes significantly to human livelihood and food security. Precise use of diverse genetic resources is primary in breeding programs. The study analyzed the genetic diversity and population structure of commercial chickens and indigenous chicken ecotypes from three different agro-ecological zones (Semi-Deciduous Rainforest Zone, Guinea Savannah, and Coastal Savannah) using SilicoDArT and SNP markers, utilizing whole-genome sequencing and phenotypic data. Phenotypic data were collected from 72 indigenous chicken ecotypes across the three AEZs, and 32 commercial birds kept at the Kwame Nkrumah University of Science and Technology (KNUST). DNA samples used for sequencing were obtained from 88 chickens (62 indigenous chicken ecotypes and 26 commercial chickens). A total of 54,995 SilicoDArT and 85,396 SNPs markers were generated from DArTseq genotyping. After filtering, 44,784 SilicoDArT and 58,353 SNP were used for genetic diversity and population structure analysis. Both markers showed high reproducibility and call rate. Polymorphic information content (PIC) values ranged from 0.00 to 0.50, while ≥ 50 % showed PIC values more than the median. Furthermore, we obtained FST values, Nei's genetic distance, dendrogram analysis, and principal component analysis (PCA) of commercial and indigenous chickens. The FST and Nei's genetic distance showed that there is high genetic diversity between the commercial chickens and the indigenous chicken ecotypes. However, there was low genetic diversity among the indigenous chicken ecotypes. The PCA analysis indicated a clear separation between the commercial and indigenous chicken ecotypes, while no clear separation was observed between the indigenous chicken ecotypes. The phenotypic data and the dendrogram indicated that naked and frizzle genes do not markedly alter the genetics of indigenous and commercial birds, and their influence on economic traits may be solely determined by the prevailing environmental conditions. The results indicate that there is high genetic differentiation between commercial and indigenous chickens based on SilicoDArT and SNP markers. The indigenous chickens from the agro-ecological zones have low genetic diversity and might have a common origin. Naked neck and frizzle genes do not markedly alter the genetic performance of birds in terms of economic traits. Therefore, the superiority of birds carrying these genes in economic traits may be solely due to environmental variation.
Collapse
Affiliation(s)
- Selorm Sovi
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; Nutrigenomics Laboratory, Department of Poultry Science, University of Georgia, USA
| | - Kwaku Adomako
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Bismark Kyei
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Alexander Wireko Kena
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Oscar Simon Olympio
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel E Aggrey
- Nutrigenomics Laboratory, Department of Poultry Science, University of Georgia, USA
| |
Collapse
|
2
|
Kucharski M, Nayak S, Gendrot M, Dondorp AM, Bozdech Z. Peeling the onion: how complex is the artemisinin resistance genetic trait of malaria parasites? Trends Parasitol 2024; 40:970-986. [PMID: 39358163 DOI: 10.1016/j.pt.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The genetics of Plasmodium as an intracellular, mostly haploid, sexually reproducing, eukaryotic organism with a complex life cycle, presents unprecedented challenges in studying drug resistance. This article summarizes current knowledge on the genetic basis of artemisinin resistance (AR) - a main component of current drug therapies for falciparum malaria. Although centered on nonsynonymous single-nucleotide polymorphisms (nsSNPs), we describe multifaceted resistance mechanisms as part of a complex, cumulative genetic trait that involves regulation of expression by a wide array of polymorphisms in noncoding regions. These genetic variations alter transcriptome profiles linked to Plasmodium's development and population dynamics, ultimately influencing the emergence and spread of the resistance.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore; Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore; Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Adomako K, Sovi S, Kyei B, Hamidu JA, Olympio OS, Aggrey SE. Phenotypic characterization and analysis of genetic diversity between commercial crossbred and indigenous chickens from three different agro-ecological zones using DArT-Seq technology. PLoS One 2024; 19:e0297643. [PMID: 38696379 PMCID: PMC11065228 DOI: 10.1371/journal.pone.0297643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/05/2024] [Indexed: 05/04/2024] Open
Abstract
Indigenous and were used to study genetic diversity and population structure analyses. Polymorphism information content (PIC) values ranged from 0.0 to 0.5, with 21,285 SNP markers (35%) being in the lowest PIC value range (0 to 0.15) while 13,511 (commercial chickens have developed unique adaptations to their environments, which may include nutrition, pathogens, and thermal stress. Besides, environmental pressures and artificial selection have generated significant genome-wide divergence in chickens, as those selection pressures contribute a considerable evolutionary force to phenotypic and genotypic differentiation. Herein, we determined genomic diversity of indigenous chickens from semi-deciduous rainforest (SDR), coastal savannah (CS) and Guinea savannah (GS) agro-ecological zones (AEZs) in Ghana and commercial crossbreds (CC) reared at the Kwame Nkrumah University of Science and Technology (KNUST). We generated SNP markers from 82 chickens (62 indigenous chicken ecotypes and 26 commercial crossbred ecotype) using DArT-Seq technology. A total of 85,396 SNP markers were generated and after filtering the data, 58,353 markers 21%) were in the highest PIC value range (0.45 to 0.50). The CC were more genetically diverse than the indigenous birds, with the highest expected heterozygosity value of 0.220. Between the commercial crossbreds population and the indigenous ecotypes, pairwise FST values were estimated to be 0.105 between CS, 0.096 between SDF, and 0.133 between GS. Furthermore, PCA analysis showed that the CC, SDF and GS chickens clustered together and are genetically distant from the commercial crossbred. We herein show that chickens from the AEZs studied can be considered as one population. However, due the abundance of agro-byproducts in the SDR compared to the CS and GS, chickens from the SDR AEZ had better growth compared to their counterparts. It is suggested that the genetic diversity within the local ecotypes could form the basis for genetic improvement.
Collapse
Affiliation(s)
- Kwaku Adomako
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Selorm Sovi
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Nutrigenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Bismark Kyei
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jacob Alhassan Hamidu
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Oscar Simon Olympio
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel E. Aggrey
- Nutrigenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
4
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. G3 (BETHESDA, MD.) 2023; 13:jkad159. [PMID: 37481264 PMCID: PMC10542507 DOI: 10.1093/g3journal/jkad159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene overexpression, revealing that the fitness costs of copy-number variation can vary substantially with genetic background in a common-garden environment. But the interplay between copy-number variation tolerance and environment remains unexplored on a genomic scale. Here, we measured the tolerance to gene overexpression in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride stress. Overexpressed genes that are commonly deleterious during sodium chloride stress recapitulated those commonly deleterious under standard conditions. However, sodium chloride stress uncovered novel differences in strain responses to gene overexpression. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to sodium chloride stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to overexpression of specific genes. Although most genes were deleterious, hundreds were beneficial when overexpressed-remarkably, most of these effects were strain specific. Few beneficial genes were shared between the sodium chloride-sensitive isolates, implicating mechanistic differences behind their sodium chloride sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural copy-number variation of a sodium export pump that likely contributes to strain-specific responses to overexpression of other genes. Our results reveal extensive strain-by-environment interactions in the response to gene copy-number variation, raising important implications for the accessibility of copy-number variation-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53704, USA
| |
Collapse
|
5
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540375. [PMID: 37503218 PMCID: PMC10369901 DOI: 10.1101/2023.05.11.540375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation (CNV) provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene over-expression (OE), revealing that the fitness costs of CNV can vary substantially with genetic background in a common-garden environment. But the interplay between CNV tolerance and environment remains unexplored on a genomic scale. Here we measured the tolerance to gene OE in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride (NaCl) stress. OE genes that are commonly deleterious during NaCl stress recapitulated those commonly deleterious under standard conditions. However, NaCl stress uncovered novel differences in strain responses to gene OE. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to NaCl stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to gene OE. Although most genes were deleterious, hundreds were beneficial when overexpressed - remarkably, most of these effects were strain specific. Few beneficial genes were shared between the NaCl-sensitive isolates, implicating mechanistic differences behind their NaCl sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural CNV of a sodium export pump that likely contributes to strain-specific responses to OE of other genes. Our results reveal extensive strain-by-environment interaction in the response to gene CNV, raising important implications for the accessibility of CNV-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
- Department of Medical Genetics, University of Wisconsin-Madison, Madison WI 53704
| |
Collapse
|
6
|
Gelder K, Oliveira-Filho ER, García-García JD, Hu Y, Bruner SD, Hanson AD. Directed Evolution of Aerotolerance in Sulfide-Dependent Thiazole Synthases. ACS Synth Biol 2023; 12:963-970. [PMID: 36920242 PMCID: PMC10127261 DOI: 10.1021/acssynbio.2c00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 03/16/2023]
Abstract
Sulfide-dependent THI4 thiazole synthases could potentially be used to replace plant cysteine-dependent suicide THI4s, whose high protein turnover rates make thiamin synthesis exceptionally energy-expensive. However, sulfide-dependent THI4s are anaerobic or microoxic enzymes and hence unadapted to the aerobic conditions in plants; they are also slow enzymes (kcat < 1 h-1). To improve aerotolerance and activity, we applied continuous directed evolution under aerobic conditions in the yeast OrthoRep system to two sulfide-dependent bacterial THI4s. Seven beneficial single mutations were identified, of which five lie in the active-site cleft predicted by structural modeling and two recapitulate features of naturally aerotolerant THI4s. That single mutations gave substantial improvements suggests that further advance under selection will be possible by stacking mutations. This proof-of-concept study established that the performance of sulfide-dependent THI4s in aerobic conditions is evolvable and, more generally, that yeast OrthoRep provides a plant-like bridge to adapt nonplant enzymes to work better in plants.
Collapse
Affiliation(s)
- Kristen
Van Gelder
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| | - Edmar R. Oliveira-Filho
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| | | | - You Hu
- Chemistry
Department, University of Florida, Gainesville, Florida 32611, United States
| | - Steven D. Bruner
- Chemistry
Department, University of Florida, Gainesville, Florida 32611, United States
| | - Andrew D. Hanson
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Burny C, Nolte V, Dolezal M, Schlötterer C. Genome-wide selection signatures reveal widespread synergistic effects of two different stressors in Drosophila melanogaster. Proc Biol Sci 2022; 289:20221857. [PMID: 36259211 PMCID: PMC9579754 DOI: 10.1098/rspb.2022.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experimental evolution combined with whole-genome sequencing (evolve and resequence (E&R)) is a powerful approach to study the adaptive architecture of selected traits. Nevertheless, so far the focus has been on the selective response triggered by a single stressor. Building on the highly parallel selection response of founder populations with reduced variation, we evaluated how the presence of a second stressor affects the genomic selection response. After 20 generations of adaptation to laboratory conditions at either 18°C or 29°C, strong genome-wide selection signatures were observed. Only 38% of the selection signatures can be attributed to laboratory adaptation (no difference between temperature regimes). The remaining selection responses are either caused by temperature-specific effects, or reflect the joint effects of temperature and laboratory adaptation (same direction, but the magnitude differs between temperatures). The allele frequency changes resulting from the combined effects of temperature and laboratory adaptation were more extreme in the hot environment for 83% of the affected genomic regions-indicating widespread synergistic effects of the two stressors. We conclude that E&R with reduced genetic variation is a powerful approach to study genome-wide fitness consequences driven by the combined effects of multiple environmental factors.
Collapse
Affiliation(s)
- Claire Burny
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna 1210, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Marlies Dolezal
- Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Vienna 1210, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| |
Collapse
|
8
|
Perrier A, Sánchez‐Castro D, Willi Y. Environment dependence of the expression of mutational load and species' range limits. J Evol Biol 2022; 35:731-741. [PMID: 35290676 PMCID: PMC9314787 DOI: 10.1111/jeb.13997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022]
Abstract
Theoretical and empirical research on the causes of species' range limits suggest the contribution of several intrinsic and extrinsic factors, with potentially complex interactions among them. An intrinsic factor proposed by recent theory is mutational load increasing towards range edges because of genetic drift. Furthermore, environmental quality may decline towards range edges and enhance the expression of load. Here, we tested whether the expression of mutational load associated with range limits in the North American plant Arabidopsis lyrata was enhanced under stressful environmental conditions by comparing the performance of within- versus between-population crosses at common garden sites across the species' distribution and beyond. Heterosis, reflecting the expression of load, increased with heightened estimates of genomic load and with environmental stress caused by warming, but the interaction was not significant. We conclude that range-edge populations suffer from a twofold genetic Allee effect caused by increased mutational load and stress-dependent load linked to general heterozygote deficiency, but there is no synergistic effect between them.
Collapse
Affiliation(s)
- Antoine Perrier
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | | | - Yvonne Willi
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
9
|
LaPanse AJ, Krishnan A, Posewitz MC. Adaptive Laboratory Evolution for algal strain improvement: methodologies and applications. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Mitigation of host cell mutations and regime shift during microbial fermentation: a perspective from flux memory. Curr Opin Biotechnol 2020; 66:227-235. [DOI: 10.1016/j.copbio.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
|
11
|
Worland AM, Czajka JJ, Li Y, Wang Y, Tang YJ, Su WW. Biosynthesis of terpene compounds using the non-model yeast Yarrowia lipolytica: grand challenges and a few perspectives. Curr Opin Biotechnol 2020; 64:134-140. [PMID: 32299032 DOI: 10.1016/j.copbio.2020.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022]
Abstract
Yarrowia lipolytica has emerged as an important non-model host for terpene production. However, three main challenges remain in industrial production using this yeast. First, considerable knowledge gaps exist in metabolic flux across multiple compartments, cofactor generation, and catabolism of non-sugar carbon sources. Second, many enzymatic steps in the complex-terpene synthesis pathway can pose rate-limitations, causing accumulation of toxic intermediates and increased metabolic burdens. Third, metabolic shifts, morphological changes, and genetic mutations are poorly characterized under industrial fermentation conditions. To overcome these challenges, systems metabolic analysis, protein engineering, novel pathway engineering, model-guided strain design, and fermentation optimization have been attempted with some successes. Further developments that address these challenges are needed to advance the Yarrowia lipolytica platform for industrial-scale production of high-value terpenes, including those with highly complex structures such as anticancer molecules withanolides and insecticidal limonoids.
Collapse
Affiliation(s)
- Alyssa M Worland
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Yechun Wang
- Arch Innotek, LLC, 4320 Forest Park Ave, St. Louis, MO 63108, United States
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States.
| |
Collapse
|
12
|
Czajka JJ, Kambhampati S, Tang YJ, Wang Y, Allen DK. Application of Stable Isotope Tracing to Elucidate Metabolic Dynamics During Yarrowia lipolytica α-Ionone Fermentation. iScience 2020; 23:100854. [PMID: 32058965 PMCID: PMC7005465 DOI: 10.1016/j.isci.2020.100854] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 11/15/2022] Open
Abstract
Targeted metabolite analysis in combination with 13C-tracing is a convenient strategy to determine pathway activity in biological systems; however, metabolite analysis is limited by challenges in separating and detecting pathway intermediates with current chromatographic methods. Here, a hydrophilic interaction chromatography tandem mass spectrometry approach was developed for improved metabolite separation, isotopologue analysis, and quantification. The physiological responses of a Yarrowia lipolytica strain engineered to produce ∼400 mg/L α-ionone and temporal changes in metabolism were quantified (e.g., mevalonate secretion, then uptake) indicating bottleneck shifts in the engineered pathway over the course of fermentation. Dynamic labeling results indicated limited tricarboxylic acid cycle label incorporation and, combined with a measurable ATP shortage during the high ionone production phase, suggested that electron transport and oxidative phosphorylation may limit energy supply and strain performance. The results provide insights into terpenoid pathway metabolic dynamics of non-model yeasts and offer guidelines for sensor development and modular engineering. A HILIC method is demonstrated for efficient separation of 57 cellular metabolites Production of α-ionone was ∼400 mg/L in bench-top bioreactors Engineered Y. lipolytica secreted then consumed mevalonate during fermentation Oxidative phosphorylation may limit performance in high-cell-density fermentations
Collapse
Affiliation(s)
- Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA
| | | | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA.
| | - Yechun Wang
- Arch Innotek, LLC, 4320 Forest Park Avenue, St Louis, MO, USA.
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO, USA; United States Department of Agriculture, Agricultural Research Service, St. Louis, MO, USA.
| |
Collapse
|
13
|
Liu H, Zhang J. Yeast Spontaneous Mutation Rate and Spectrum Vary with Environment. Curr Biol 2019; 29:1584-1591.e3. [PMID: 31056389 DOI: 10.1016/j.cub.2019.03.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
Mutation is the ultimate genetic source of evolution and biodiversity, but to what extent the environment impacts mutation rate and spectrum is poorly understood. Past studies discovered mutagenesis induced by antibiotic treatment or starvation, but its relevance and importance to long-term evolution is unclear because these severe stressors typically halt cell growth and/or cause substantial cell deaths. Here, we quantify the mutation rate and spectrum in Saccharomyces cerevisiae by whole-genome sequencing following mutation accumulation in each of seven environments with relatively rapid cell growths and minimal cell deaths. We find the point mutation rate per generation to differ by 3.6-fold among the seven environments, generally increasing in environments with slower cell growths. This trend renders the mutation rate per year more constant than that per generation across environments, which has implications for neutral evolution and the molecular clock. Additionally, we find substantial among-environment variations in mutation spectrum, such as the transition to transversion ratio and AT mutational bias. Other main mutation types, including small insertion or deletion, segmental duplication or deletion, and chromosome gain or loss also tend to occur more frequently in environments where yeast grows more slowly. In contrast to these findings from the nuclear genome, the yeast mitochondrial mutation rate rises with the growth rate, consistent with the metabolic rate hypothesis. Together, these observations indicate that environmental changes, which are ubiquitous in nature, influence not only natural selection, but also the amount and type of mutations available to selection, and suggest that ignoring the latter impact, as is currently practiced, may mislead evolutionary inferences.
Collapse
Affiliation(s)
- Haoxuan Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Swings T, Van den Bergh B, Wuyts S, Oeyen E, Voordeckers K, Verstrepen KJ, Fauvart M, Verstraeten N, Michiels J. Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli. eLife 2017; 6. [PMID: 28460660 PMCID: PMC5429094 DOI: 10.7554/elife.22939] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
While specific mutations allow organisms to adapt to stressful environments, most changes in an organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in cellular mutation rates as a response to changes in selective pressure. We show that hypermutation independently evolves when different Escherichia coli cultures adapt to high ethanol stress. Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation rate. Specifically, population mutation rates rise when cells experience higher stress and decline again once cells are adapted. Interestingly, we identified cellular mortality as the major force driving the quick evolution of mutation rates. Together, these findings show how organisms balance robustness and evolvability and help explain the prevalence of hypermutation in various settings, ranging from emergence of antibiotic resistance in microbes to cancer relapses upon chemotherapy.
Collapse
Affiliation(s)
- Toon Swings
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Sander Wuyts
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Eline Oeyen
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Karin Voordeckers
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium.,VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Kevin J Verstrepen
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium.,VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium.,Smart Systems and Emerging Technologies Unit, Imec (Interuniversity Micro-Electronics Centre), Leuven, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Members of a new subgroup of Streptococcus anginosus harbor virulence related genes previously observed in Streptococcus pyogenes. Int J Med Microbiol 2017; 307:174-181. [DOI: 10.1016/j.ijmm.2017.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/15/2016] [Accepted: 02/24/2017] [Indexed: 11/22/2022] Open
|
16
|
Fitness Effects of Spontaneous Mutations in Picoeukaryotic Marine Green Algae. G3-GENES GENOMES GENETICS 2016; 6:2063-71. [PMID: 27175016 PMCID: PMC4938659 DOI: 10.1534/g3.116.029769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estimates of the fitness effects of spontaneous mutations are important for understanding the adaptive potential of species. Here, we present the results of mutation accumulation experiments over 265–512 sequential generations in four species of marine unicellular green algae, Ostreococcus tauri RCC4221, Ostreococcus mediterraneus RCC2590, Micromonas pusilla RCC299, and Bathycoccus prasinos RCC1105. Cell division rates, taken as a proxy for fitness, systematically decline over the course of the experiment in O. tauri, but not in the three other species where the MA experiments were carried out over a smaller number of generations. However, evidence of mutation accumulation in 24 MA lines arises when they are exposed to stressful conditions, such as changes in osmolarity or exposure to herbicides. The selection coefficients, estimated from the number of cell divisions/day, varies significantly between the different environmental conditions tested in MA lines, providing evidence for advantageous and deleterious effects of spontaneous mutations. This suggests a common environmental dependence of the fitness effects of mutations and allows the minimum mutation/genome/generation rates to be inferred at 0.0037 in these species.
Collapse
|
17
|
Fleming DS, Koltes JE, Markey AD, Schmidt CJ, Ashwell CM, Rothschild MF, Persia ME, Reecy JM, Lamont SJ. Genomic analysis of Ugandan and Rwandan chicken ecotypes using a 600 k genotyping array. BMC Genomics 2016; 17:407. [PMID: 27230772 PMCID: PMC4882793 DOI: 10.1186/s12864-016-2711-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Background Indigenous populations of animals have developed unique adaptations to their local environments, which may include factors such as response to thermal stress, drought, pathogens and suboptimal nutrition. The survival and subsequent evolution within these local environments can be the result of both natural and artificial selection driving the acquisition of favorable traits, which over time leave genomic signatures in a population. This study’s goals are to characterize genomic diversity and identify selection signatures in chickens from equatorial Africa to identify genomic regions that may confer adaptive advantages of these ecotypes to their environments. Results Indigenous chickens from Uganda (n = 72) and Rwanda (n = 100), plus Kuroilers (n = 24, an Indian breed imported to Africa), were genotyped using the Axiom® 600 k Chicken Genotyping Array. Indigenous ecotypes were defined based upon location of sampling within Africa. The results revealed the presence of admixture among the Ugandan, Rwandan, and Kuroiler populations. Genes within runs of homozygosity consensus regions are linked to gene ontology (GO) terms related to lipid metabolism, immune functions and stress-mediated responses (FDR < 0.15). The genes within regions of signatures of selection are enriched for GO terms related to health and oxidative stress processes. Key genes in these regions had anti-oxidant, apoptosis, and inflammation functions. Conclusions The study suggests that these populations have alleles under selective pressure from their environment, which may aid in adaptation to harsh environments. The correspondence in gene ontology terms connected to stress-mediated processes across the populations could be related to the similarity of environments or an artifact of the detected admixture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2711-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - J E Koltes
- Iowa State University, Ames, IA, USA.,University of Arkansas, Fayetteville, AR, USA
| | | | | | - C M Ashwell
- North Carolina State University, Raleigh, NC, USA
| | | | - M E Persia
- Virginia Polytechnic University, Blacksburg, VA, USA
| | - J M Reecy
- Iowa State University, Ames, IA, USA
| | | |
Collapse
|
18
|
Knöppel A, Lind PA, Lustig U, Näsvall J, Andersson DI. Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol Biol Evol 2014; 31:1220-7. [PMID: 24536043 DOI: 10.1093/molbev/msu076] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genes introduced by horizontal gene transfer (HGT) from other species constitute a significant portion of many bacterial genomes, and the evolutionary dynamics of HGTs are important for understanding the spread of antibiotic resistance and the emergence of new pathogenic strains of bacteria. The fitness effects of the transferred genes largely determine the fixation rates and the amount of neutral diversity of newly acquired genes in bacterial populations. Comparative analysis of bacterial genomes provides insight into what genes are commonly transferred, but direct experimental tests of the fitness constraints on HGT are scarce. Here, we address this paucity of experimental studies by introducing 98 random DNA fragments varying in size from 0.45 to 5 kb from Bacteroides, Proteus, and human intestinal phage into a defined position in the Salmonella chromosome and measuring the effects on fitness. Using highly sensitive competition assays, we found that eight inserts were deleterious with selection coefficients (s) ranging from ≈ -0.007 to -0.02 and 90 did not have significant fitness effects. When inducing transcription from a PBAD promoter located at one end of the insert, 16 transfers were deleterious and 82 were not significantly different from the control. In conclusion, a major fraction of the inserts had minor effects on fitness implying that extra DNA transferred by HGT, even though it does not confer an immediate selective advantage, could be maintained at selection-transfer balance and serve as raw material for the evolution of novel beneficial functions.
Collapse
Affiliation(s)
- Anna Knöppel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
19
|
Zhao Y, Epstein RJ. Programmed genetic instability: a tumor-permissive mechanism for maintaining the evolvability of higher species through methylation-dependent mutation of DNA repair genes in the male germ line. Mol Biol Evol 2008; 25:1737-49. [PMID: 18535014 PMCID: PMC2464741 DOI: 10.1093/molbev/msn126] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tumor suppressor genes are classified by their somatic behavior either as caretakers (CTs) that maintain DNA integrity or as gatekeepers (GKs) that regulate cell survival, but the germ line role of these disease-related gene subgroups may differ. To test this hypothesis, we have used genomic data mining to compare the features of human CTs (n = 38), GKs (n = 36), DNA repair genes (n = 165), apoptosis genes (n = 622), and their orthologs. This analysis reveals that repair genes are numerically less common than apoptosis genes in the genomes of multicellular organisms (P < 0.01), whereas CT orthologs are commoner than GK orthologs in unicellular organisms (P < 0.05). Gene targeting data show that CTs are less essential than GKs for survival of multicellular organisms (P < 0.0005) and that CT knockouts often permit offspring viability at the cost of male sterility. Patterns of human familial oncogenic mutations confirm that isolated CT loss is commoner than is isolated GK loss (P < 0.00001). In sexually reproducing species, CTs appear subject to less efficient purifying selection (i.e., higher Ka/Ks) than GKs (P = 0.000003); the faster evolution of CTs seems likely to be mediated by gene methylation and reduced transcription-coupled repair, based on differences in dinucleotide patterns (P = 0.001). These data suggest that germ line CT/repair gene function is relatively dispensable for survival, and imply that milder (e.g., epimutational) male prezygotic repair defects could enhance sperm variation—and hence environmental adaptation and speciation—while sparing fertility. We submit that CTs and repair genes are general targets for epigenetically initiated adaptive evolution, and propose a model in which human cancers arise in part as an evolutionarily programmed side effect of age- and damage-inducible genetic instability affecting both somatic and germ line lineages.
Collapse
Affiliation(s)
- Yongzhong Zhao
- Laboratory of Computational Oncology, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | |
Collapse
|
20
|
Killick SC, Carlsson AM, West SA, Little TJ. Testing the pluralist approach to sex: the influence of environment on synergistic interactions between mutation load and parasitism in Daphnia magna. J Evol Biol 2006; 19:1603-11. [PMID: 16910989 DOI: 10.1111/j.1420-9101.2006.01123.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both deleterious mutations and parasites have been acknowledged as potential selective forces responsible for the evolutionary maintenance of sexual reproduction. The pluralist approach to sex proposes that these two factors may have to interact synergistically in order to stabilize sex, and one of the simplest ways this could occur is if parasites are capable of causing synergistic epistasis between mutations in their hosts. However, the effects of both deleterious mutations and parasitism are known to be influenced by a range of environmental factors, so the nature of the interaction may depend upon the organisms' environment. Using chemically mutated Daphnia magna lines, we examined the effects of mutation and parasitism under a range of temperature and food regimes. We found that although parasites were capable of causing synergistic epistasis between mutations in their hosts, these effects were dependent upon an interaction between parasite genotype and temperature.
Collapse
Affiliation(s)
- S C Killick
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | | | |
Collapse
|
21
|
Buckling A, Wei Y, Massey RC, Brockhurst MA, Hochberg ME. Antagonistic coevolution with parasites increases the cost of host deleterious mutations. Proc Biol Sci 2006; 273:45-9. [PMID: 16519233 PMCID: PMC1560003 DOI: 10.1098/rspb.2005.3279] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fitness consequences of deleterious mutations are sometimes greater when individuals are parasitized, hence parasites may result in the more rapid purging of deleterious mutations from host populations. The significance of host deleterious mutations when hosts and parasites antagonistically coevolve (reciprocal evolution of host resistance and parasite infectivity) has not previously been experimentally investigated. We addressed this by coevolving the bacterium Pseudomonas fluorescens and a parasitic bacteriophage in laboratory microcosms, using bacteria with high and low mutation loads. Directional coevolution between bacterial resistance and phage infectivity occurred in all populations. Bacterial population fitness, as measured by competition experiments with ancestral genotypes in the absence of phage, declined with time spent coevolving. However, this decline was significantly more rapid in bacteria with high mutation loads, suggesting the cost of bacterial resistance to phage was greater in the presence of deleterious mutations (synergistic epistasis). As such, resistance to phage was more costly to evolve in the presence of a high mutation load. Consistent with these data, bacteria with high mutation loads underwent less rapid directional coevolution with their phage populations, and showed lower levels of resistance to their coevolving phage populations. These data suggest that coevolution with parasites increases the rate at which deleterious mutations are purged from host populations.
Collapse
Affiliation(s)
- Angus Buckling
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | | | | | | | | |
Collapse
|
22
|
Cooper TF, Lenski RE, Elena SF. Parasites and mutational load: an experimental test of a pluralistic theory for the evolution of sex. Proc Biol Sci 2005; 272:311-7. [PMID: 15705557 PMCID: PMC1634976 DOI: 10.1098/rspb.2004.2975] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecological and mutational explanations for the evolution of sexual reproduction have usually been considered independently. Although many of these explanations have yielded promising theoretical results,experimental support for their ability to overcome a twofold cost of sex has been limited. For this reason, it has recently been argued that a pluralistic approach, combining effects from multiple models, may be necessary to explain the apparent advantage of sex. One such pluralistic model proposes that parasite load and synergistic epistasis between deleterious mutations might interact to create an advantage for recombination.Here, we test this proposal by comparing the fitness functions of parasitized and parasite-free genotypes of Escherichia coli bearing known numbers of transposon-insertion mutations. In both classes, we failed to detect any evidence for synergistic epistasis. However, the average effect of deleterious mutations was greater in parasitized than parasite-free genotypes. This effect might broaden the conditions under which another proposed model combining parasite-host coevolutionary dynamics and mutation accumulation can explain the maintenance of sex. These results suggest that, on average, deleterious mutations act multiplicatively with each other but in synergy with infection in determining fitness.
Collapse
Affiliation(s)
- Tim F. Cooper
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI 48824USA
| | - Richard E. Lenski
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI 48824USA
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV46022 ValènciaSpain
- * Author for correspondence ()
| |
Collapse
|
23
|
Sanjuán R, Moya A, Elena SF. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc Natl Acad Sci U S A 2004; 101:8396-401. [PMID: 15159545 PMCID: PMC420405 DOI: 10.1073/pnas.0400146101] [Citation(s) in RCA: 413] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 04/22/2004] [Indexed: 02/07/2023] Open
Abstract
Little is known about the mutational fitness effects associated with single-nucleotide substitutions on RNA viral genomes. Here, we used site-directed mutagenesis to create 91 single mutant clones of vesicular stomatitis virus derived from a common ancestral cDNA and performed competition experiments to measure the relative fitness of each mutant. The distribution of nonlethal deleterious effects was highly skewed and had a long, flat tail. As expected, fitness effects depended on whether mutations were chosen at random or reproduced previously described ones. The effect of random deleterious mutations was well described by a log-normal distribution, with -19% reduction of average fitness; the effects distribution of preobserved deleterious mutations was better explained by a beta model. The fit of both models was improved when combined with a uniform distribution. Up to 40% of random mutations were lethal. The proportion of beneficial mutations was unexpectedly high. Beneficial effects followed a gamma distribution, with expected fitness increases of 1% for random mutations and 5% for preobserved mutations.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, P.O. Box 22085, 46071 Valencia, Spain.
| | | | | |
Collapse
|