1
|
Tucci FA, Pennisi R, Rigiracciolo DC, Filippone MG, Bonfanti R, Romeo F, Freddi S, Guerrera E, Soriani C, Rodighiero S, Gunby RH, Jodice G, Sanguedolce F, Renne G, Fusco N, Di Fiore PP, Pruneri G, Bertalot G, Musi G, Vago G, Tosoni D, Pece S. Loss of NUMB drives aggressive bladder cancer via a RHOA/ROCK/YAP signaling axis. Nat Commun 2024; 15:10378. [PMID: 39627202 PMCID: PMC11615365 DOI: 10.1038/s41467-024-54246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Advances in bladder cancer (BCa) treatment have been hampered by the lack of predictive biomarkers and targeted therapies. Here, we demonstrate that loss of the tumor suppressor NUMB promotes aggressive bladder tumorigenesis and worsens disease outcomes. Retrospective cohort studies show that NUMB-loss correlates with poor prognosis in post-cystectomy muscle-invasive BCa patients and increased risk of muscle invasion progression in non-muscle invasive BCa patients. In mouse models, targeted Numb ablation induces spontaneous tumorigenesis and sensitizes the urothelium to carcinogenic insults, accelerating tumor onset and progression. Integrative transcriptomic and functional analyses in mouse and human BCa models reveal that upregulation of YAP transcriptional activity via a RHOA/ROCK-dependent pathway is a hallmark of NUMB-deficient BCa. Pharmacological or genetic inhibition of this molecular pathway selectively inhibits proliferation and invasion of NUMB-deficient BCa cells in 3D-Matrigel organoids. Thus, NUMB-loss could serve as a biomarker for identifying high-risk patients who may benefit from targeted anti-RHOA/ROCK/YAP therapies.
Collapse
Grants
- IG 23049 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG 23060 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- MIUR-PRIN2017 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- MIUR/PRIN2020 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 5x1000 funds Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente Ministero della Salute (Ministry of Health, Italy)
- RF-2016-02361540 Ministero della Salute (Ministry of Health, Italy)
- RF-2021-12373957 Ministero della Salute (Ministry of Health, Italy)
- Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
Collapse
Affiliation(s)
- F A Tucci
- European Institute of Oncology IRCCS, Milan, Italy
- School of Pathology, University of Milan, Milan, Italy
| | - R Pennisi
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - D C Rigiracciolo
- European Institute of Oncology IRCCS, Milan, Italy
- IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - M G Filippone
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - R Bonfanti
- European Institute of Oncology IRCCS, Milan, Italy
| | - F Romeo
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - S Freddi
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - E Guerrera
- European Institute of Oncology IRCCS, Milan, Italy
| | - C Soriani
- European Institute of Oncology IRCCS, Milan, Italy
| | - S Rodighiero
- European Institute of Oncology IRCCS, Milan, Italy
| | - R H Gunby
- European Institute of Oncology IRCCS, Milan, Italy
| | - G Jodice
- European Institute of Oncology IRCCS, Milan, Italy
| | - F Sanguedolce
- Department of Pathology, University of Foggia, Foggia, Italy
| | - G Renne
- European Institute of Oncology IRCCS, Milan, Italy
| | - N Fusco
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - P P Di Fiore
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - G Pruneri
- School of Pathology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G Bertalot
- Department of Anatomy and Pathological Histology, APSS, Trento, Italy
- Centre for Medical Sciences-CISMed, University of Trento, Trento, Italy
| | - G Musi
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - G Vago
- School of Pathology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - D Tosoni
- European Institute of Oncology IRCCS, Milan, Italy.
| | - S Pece
- European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Guo X, Guo S, Tian F, Gao Z, Fan Y, Wang C, Xu S. CCN1 Promotes Mesenchymal Phenotype Transition Through Activating NF-κB Signaling Pathway Regulated by S100A8 in Glioma Stem Cells. CNS Neurosci Ther 2024; 30:e70128. [PMID: 39659236 PMCID: PMC11632201 DOI: 10.1111/cns.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND The presence of glioma stem cells (GSCs) and the occurrence of mesenchymal phenotype transition contribute to the miserable prognosis of glioblastoma (GBM). Cellular communication network factor 1 (CCN1) is upregulated within various malignancies and associated with cancer development and progression, while the implications of CCN1 in the phenotype transition and tumorigenicity of GSCs remain unclear. METHODS Data for bioinformatic analysis were obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. A range of primary GBM and GSC cell models were then used to demonstrate the regulatory role of CCN1 via the phenotype validation, tumor sphere formation assays, extreme limiting dilution assays (ELDA), and transwell assays. To screen out the downstream signaling pathway, we employed high-throughput RNA-seq. Intracranial xenograft GSC mouse models were used to investigate the role of CCN1 in vivo. RESULTS Among the CCN family members, CCN1 was highly expressed in MES-GBM/GSCs and was correlated with a poor prognosis. Both in vitro and in vivo assays indicated that knockdown of CCN1 in MES-GSCs reduced the tumor stemness, proliferation, invasion, and tumorigenicity, whereas CCN1 overexpression in PN-GSCs exhibited the opposite effects. Mechanistically, CCN1 triggered the FAK/STAT3 signaling in autocrine and paracrine manners to upregulate the expression of S100A8. Knockdown of S100A8 inactivated NF-κB/p65 pathway and significantly suppressed the tumorigenesis of MES-GSCs. CONCLUSION Our findings reveal that CCN1 may be an important factor in the enhanced invasiveness and MES phenotype transition of GSCs and highlight the potential to target CCN1 for treating GBM.
Collapse
Affiliation(s)
- Xing Guo
- Department of NeurosurgeryQilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Shandong UniversityJinanShandongChina
| | - Shuhua Guo
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Feng Tian
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Zijie Gao
- Department of NeurosurgeryQilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Shandong UniversityJinanShandongChina
| | - Yang Fan
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Chuanxin Wang
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Shuo Xu
- Department of NeurosurgeryQilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Shandong UniversityJinanShandongChina
| |
Collapse
|
3
|
Gündel B, Liu X, Pfützenreuter A, Engelsberger V, Weiskirchen R, Löhr JM, Heuchel R. The Crosstalk Analysis between mPSCs and Panc1 Cells Identifies CCN1 as a Positive Regulator of Gemcitabine Sensitivity in Pancreatic Cancer Cells. Int J Mol Sci 2024; 25:9369. [PMID: 39273316 PMCID: PMC11394772 DOI: 10.3390/ijms25179369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is almost entirely resistant to conventional chemotherapy and radiation therapy. A significant factor in this resistance appears to be the dense desmoplastic stroma, which contains various cancer-associated fibroblast (CAF) populations. However, our understanding of the communication between tumor cells and CAFs that contributes to this aggressive malignancy is still developing. Recently, we used an advanced three-dimensional heterospecies, heterospheroid co-culture model to investigate the signaling between human pancreatic tumor Panc1 cells and mouse pancreatic stellate cells (mPSCs) through global expression profiling. Upon discovering that CCN1 was significantly upregulated in Panc1 cells during co-culture, we decided to explore the role of CCN1 using CRISPR-Cas9 knockout technology. Panc1 cells lacking CCN1 showed reduced differentiation and decreased sensitivity to gemcitabine, primarily due to lower expression of genes involved in gemcitabine transport and metabolism. Additionally, we observed that stimulation with TGF-β1 and lysophosphatidic acid increased CCN1 expression in Panc1 cells and induced a shift in mPSCs towards a more myofibroblastic CAF-like phenotype.
Collapse
Affiliation(s)
- Beate Gündel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| | - Xinyuan Liu
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| | - Anna Pfützenreuter
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| | - Veronika Engelsberger
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - J-Matthias Löhr
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| |
Collapse
|
4
|
Rasool S, Ismaeel QAL, Arif SH. CYR61 promotes colorectal carcinoma progression via activating epithelial-mesenchymal transition. Am J Cancer Res 2023; 13:4872-4887. [PMID: 37970355 PMCID: PMC10636662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023] Open
Abstract
Colorectal carcinoma is the third most common type of cancer. Although the role of matricellular proteins and their association with tumor progression is well documented, limited data are available concerning their involvement in colorectal cancer. The current study investigated the expression pattern of matricellular proteins SPARC and CYR61 with epithelial-mesenchymal transition proteins in human CRC tissues and unleashed their association with colorectal cancer progression. The expression of these proteins was associated with advancement in tumor staging, nodal metastasis, and vascular invasion. Elevated CYR61 protein levels were also consistent with higher mesenchymal markers ZEB1 and Vimentin in collected biopsies and CRC cells. Moreover, expression of CYR61 promoted CRC cell migration, invasion, proliferation, and apoptosis. Our findings conclusively revealed the significant involvement of CYR61 in CRC progression through activating epithelial-mesenchymal transition. This discovery holds great promise for advancing therapeutic approaches in the treatment of CRC.
Collapse
Affiliation(s)
- Shelan Rasool
- Department of Anatomy, Biology and Histology, College of Medicine, University of DuhokDuhok 42001, Kurdistan Region of Iraq
| | - Qais AL Ismaeel
- Department of Anatomy, Biology and Histology, College of Medicine, University of DuhokDuhok 42001, Kurdistan Region of Iraq
| | - Sardar H Arif
- Department of Surgery, College of Medicine, University of DuhokDuhok 42001, Kurdistan Region of Iraq
| |
Collapse
|
5
|
Iyer SR, Nusser K, Jones K, Shinde P, Keddy C, Beach CZ, Aguero E, Force J, Shinde U, Davare MA. Discovery of oncogenic ROS1 missense mutations with sensitivity to tyrosine kinase inhibitors. EMBO Mol Med 2023; 15:e17367. [PMID: 37587872 PMCID: PMC10565643 DOI: 10.15252/emmm.202217367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
ROS1 is the largest receptor tyrosine kinase in the human genome. Rearrangements of the ROS1 gene result in oncogenic ROS1 kinase fusion proteins that are currently the only validated biomarkers for targeted therapy with ROS1 TKIs in patients. While numerous somatic missense mutations in ROS1 exist in the cancer genome, their impact on catalytic activity and pathogenic potential is unknown. We interrogated the AACR Genie database and identified 34 missense mutations in the ROS1 tyrosine kinase domain for further analysis. Our experiments revealed that these mutations have varying effects on ROS1 kinase function, ranging from complete loss to significantly increased catalytic activity. Notably, Asn and Gly substitutions at Asp2113 in the ROS1 kinase domain were found to be TKI-sensitive oncogenic variants in cell-based model systems. In vivo experiments showed that ROS1 D2113N induced tumor formation that was sensitive to crizotinib and lorlatinib, FDA-approved ROS1-TKIs. Collectively, these findings highlight the tumorigenic potential of specific point mutations within the ROS1 kinase domain and their potential as therapeutic targets with FDA-approved ROS1-TKIs.
Collapse
Affiliation(s)
- Sudarshan R Iyer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Kevin Nusser
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Kristen Jones
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Pushkar Shinde
- Department of Chemical PhysiologyOregon Health and Sciences UniversityORPortlandUSA
| | - Clare Keddy
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Catherine Z Beach
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Erin Aguero
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Jeremy Force
- Department of Medicine, Division of Medical Oncology, Duke Cancer InstituteDuke UniversityNCDurhamUSA
| | - Ujwal Shinde
- Department of Chemical PhysiologyOregon Health and Sciences UniversityORPortlandUSA
| | - Monika A Davare
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| |
Collapse
|
6
|
Marinkovic M, Dai Q, Gonzalez AO, Tran ON, Block TJ, Harris SE, Salmon AB, Yeh CK, Dean DD, Chen XD. Matrix-bound Cyr61/CCN1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging. Matrix Biol 2022; 111:108-132. [PMID: 35752272 PMCID: PMC10069241 DOI: 10.1016/j.matbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Previously, we showed that extracellular matrices (ECMs), produced ex vivo by various types of stromal cells, direct bone marrow mesenchymal stem cells (BM-MSCs) in a tissue-specific manner and recapitulate physiologic changes characteristic of the aging microenvironment. In particular, BM-MSCs obtained from elderly donors and cultured on ECM produced by young BM stromal cells showed improved quantity, quality and osteogenic differentiation. In the present study, we searched for matrix components that are required for a functional BM-MSC niche by comparing ECMs produced by BM stromal cells from "young" (≤25 y/o) versus "elderly" (≥60 y/o) donors. With increasing donor age, ECM fibrillar organization and mechanical integrity deteriorated, along with the ability to promote BM-MSC proliferation and responsiveness to growth factors. Proteomic analyses revealed that the matricellular protein, Cyr61/CCN1, was present in young, but undetectable in elderly, BM-ECM. To assess the role of Cyr61 in the BM-MSC niche, we used genetic methods to down-regulate the incorporation of Cyr61 during production of young ECM and up-regulate its incorporation in elderly ECM. The results showed that Cyr61-depleted young ECM lost the ability to promote BM-MSC proliferation and growth factor responsiveness. However, up-regulating the incorporation of Cyr61 during synthesis of elderly ECM restored its ability to support BM-MSC responsiveness to osteogenic factors such as BMP-2 and IGF-1. We next examined aging bone and compared bone mineral density and Cyr61 content of L4-L5 vertebral bodies in "young" (9-11 m/o) and "elderly" (21-33 m/o) mice. Our analyses showed that low bone mineral density was associated with decreased amounts of Cyr61 in osseous tissue of elderly versus young mice. Our results strongly demonstrate a novel role for ECM-bound Cyr61 in the BM-MSC niche, where it is responsible for retention of BM-MSC proliferation and growth factor responsiveness, while depletion of Cyr61 from the BM niche contributes to an aging-related dysregulation of BM-MSCs. Our results also suggest new potential therapeutic targets for treating age-related bone loss by restoring specific ECM components to the stem cell niche.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States
| | - Qiuxia Dai
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Aaron O Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, TX 78229, United States
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States.
| |
Collapse
|
7
|
Xiao Y, Ju L, Qian K, Jin W, Wang G, Zhao Y, Jiang W, Liu N, Wu K, Peng M, Cao R, Li S, Shi H, Gong Y, Zheng H, Liu T, Luo Y, Ma H, Chang L, Li G, Cao X, Tian Y, Xu Z, Yang Z, Shan L, Guo Z, Yao D, Zhou X, Chen X, Guo Z, Liu D, Xu S, Ji C, Yu F, Hong X, Luo J, Cao H, Zhang Y, Wang X. Non-invasive diagnosis and surveillance of bladder cancer with driver and passenger DNA methylation in a prospective cohort study. Clin Transl Med 2022; 12:e1008. [PMID: 35968916 PMCID: PMC9377153 DOI: 10.1002/ctm2.1008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND State-of-art non-invasive diagnosis processes for bladder cancer (BLCA) harbour shortcomings such as low sensitivity and specificity, unable to distinguish between high- (HG) and low-grade (LG) tumours, as well as inability to differentiate muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). This study investigates a comprehensive characterization of the entire DNA methylation (DNAm) landscape of BLCA to determine the relevant biomarkers for the non-invasive diagnosis of BLCA. METHODS A total of 304 samples from 224 donors were enrolled in this multi-centre, prospective cohort study. BLCA-specific DNAm signature discovery was carried out with genome-wide bisulfite sequencing in 32 tumour tissues and 12 normal urine samples. A targeted sequencing assay for BLCA-specific DNAm signatures was developed to categorize tumour tissue against normal urine, or MIBC against NMIBC. Independent validation was performed with targeted sequencing of 259 urine samples in a double-blinded manner to determine the clinical diagnosis and prognosis value of DNAm-based classification models. Functions of genomic region harbouring BLCA-specific DNAm signature were validated with biological assays. Concordances of pathology to urine tumour DNA (circulating tumour DNA [ctDNA]) methylation, genomic mutations or other state-of-the-art diagnosis methods were measured. RESULTS Genome-wide DNAm profile could accurately classify LG tumour from HG tumour (LG NMIBC vs. HG NMIBC: p = .038; LG NMIBC vs. HG MIBC, p = .00032; HG NMIBC vs. HG MIBC: p = .82; Student's t-test). Overall, the DNAm profile distinguishes MIBC from NMIBC and normal urine. Targeted-sequencing-based DNAm signature classifiers accurately classify LG NMIBC tissues from HG MIBC and could detect tumours in urine at a limit of detection of less than .5%. In tumour tissues, DNAm accurately classifies pathology, thus outperforming genomic mutation or RNA expression profiles. In the independent validation cohort, pre-surgery urine ctDNA methylation outperforms fluorescence in situ hybridization (FISH) assay to detect HG BLCA (n = 54) with 100% sensitivity (95% CI: 82.5%-100%) and LG BLCA (n = 26) with 62% sensitivity (95% CI: 51.3%-72.7%), both at 100% specificity (non-BLCA: n = 72; 95% CI: 84.1%-100%). Pre-surgery urine ctDNA methylation signature correlates with pathology and predicts recurrence and metastasis. Post-surgery urine ctDNA methylation (n = 61) accurately predicts recurrence-free survival within 180 days, with 100% accuracy. CONCLUSION With the discovery of BLCA-specific DNAm signatures, targeted sequencing of ctDNA methylation outperforms FISH and DNA mutation to detect tumours, predict recurrence and make prognoses.
Collapse
|
8
|
Deprogramming metabolism in pancreatic cancer with a bi-functional GPR55 inhibitor and biased β2 adrenergic agonist. Sci Rep 2022; 12:3618. [PMID: 35256673 PMCID: PMC8901637 DOI: 10.1038/s41598-022-07600-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/21/2022] [Indexed: 01/14/2023] Open
Abstract
Metabolic reprogramming contributes to oncogenesis, tumor growth, and treatment resistance in pancreatic ductal adenocarcinoma (PDAC). Here we report the effects of (R,S′)-4′-methoxy-1-naphthylfenoterol (MNF), a GPR55 antagonist and biased β2-adrenergic receptor (β2-AR) agonist on cellular signaling implicated in proliferation and metabolism in PDAC cells. The relative contribution of GPR55 and β2-AR in (R,S′)-MNF signaling was explored further in PANC-1 cells. Moreover, the effect of (R,S′)-MNF on tumor growth was determined in a PANC-1 mouse xenograft model. PANC-1 cells treated with (R,S′)-MNF showed marked attenuation in GPR55 signal transduction and function combined with increased β2-AR/Gαs/adenylyl cyclase/PKA signaling, both of which contributing to lower MEK/ERK, PI3K/AKT and YAP/TAZ signaling. (R,S′)-MNF administration significantly reduced PANC-1 tumor growth and circulating l-lactate concentrations. Global metabolic profiling of (R,S′)-MNF-treated tumor tissues revealed decreased glycolytic metabolism, with a shift towards normoxic processes, attenuated glutamate metabolism, and increased levels of ophthalmic acid and its precursor, 2-aminobutyric acid, indicative of elevated oxidative stress. Transcriptomics and immunoblot analyses indicated the downregulation of gene and protein expression of HIF-1α and c-Myc, key initiators of metabolic reprogramming in PDAC. (R,S′)-MNF treatment decreased HIF-1α and c-Myc expression, attenuated glycolysis, shifted fatty acid metabolism towards β-oxidation, and suppressed de novo pyrimidine biosynthesis in PANC-1 tumors. The results indicate a potential benefit of combined GPR55 antagonism and biased β2-AR agonism in PDAC therapy associated with the deprogramming of altered cellular metabolism.
Collapse
|
9
|
Liu S, Medina-Perez P, Ha-Thi MC, Wieland A, Stecklum M, Hoffmann J, Tchernitsa O, Sers C, Schäfer R. Rapid testing of candidate oncogenes and tumour suppressor genes in signal transduction and neoplastic transformation. Adv Biol Regul 2021; 83:100841. [PMID: 34866037 DOI: 10.1016/j.jbior.2021.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
The COSMIC database (version 94) lists 576 genes in the Cancer Gene Census which have a defined function as drivers of malignancy (oncogenes) or as tumour suppressors (Tier 1). In addition, there are 147 genes with similar functions, but which are less well characterised (Tier 2). Furthermore, next-generation sequencing projects in the context of precision oncology activities are constantly discovering new ones. Since cancer genes differ from their wild-type precursors in numerous molecular and biochemical properties and exert significant differential effects on downstream processes, simple assays that can uncover oncogenic or anti-oncogenic functionality are desirable and may precede more sophisticated analyses. We describe simple functional assays for PTPN11 (protein-tyrosine phosphatase, non-receptor-type 11)/SHP2 mutants, which are typically found in RASopathies and exhibit potential oncogenic activity. We have also designed a functional test for lysyl oxidase (LOX), a prototypical class II tumour suppressor gene whose loss of function may contribute to neoplastic transformation by RAS oncogenes. Moreover, we applied this test to analyse three co-regulated, RAS-responsive genes for transformation-suppressive activity. The integration of these tests into systems biology studies will contribute to a better understanding of cellular networks in cancer.
Collapse
Affiliation(s)
- Sha Liu
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Paula Medina-Perez
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Minh-Cam Ha-Thi
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Anja Wieland
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Maria Stecklum
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, D-13125, Berlin-Buch, Germany
| | - Jens Hoffmann
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, D-13125, Berlin-Buch, Germany
| | - Oleg Tchernitsa
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Christine Sers
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Reinhold Schäfer
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany; Charité Comprehensive Cancer Center Berlin, Germany.
| |
Collapse
|
10
|
Jia Q, Xu B, Zhang Y, Ali A, Liao X. CCN Family Proteins in Cancer: Insight Into Their Structures and Coordination Role in Tumor Microenvironment. Front Genet 2021; 12:649387. [PMID: 33833779 PMCID: PMC8021874 DOI: 10.3389/fgene.2021.649387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
The crosstalk between tumor cells and the tumor microenvironment (TME), triggers a variety of critical signaling pathways and promotes the malignant progression of cancer. The success rate of cancer therapy through targeting single molecule of this crosstalk may be extremely low, whereas co-targeting multiple components could be complicated design and likely to have more side effects. The six members of cellular communication network (CCN) family proteins are scaffolding proteins that may govern the TME, and several studies have shown targeted therapy of CCN family proteins may be effective for the treatment of cancer. CCN protein family shares similar structures, and they mutually reinforce and neutralize each other to serve various roles that are tightly regulated in a spatiotemporal manner by the TME. Here, we review the current knowledge on the structures and roles of CCN proteins in different types of cancer. We also analyze CCN mRNA expression, and reasons for its diverse relationship to prognosis in different cancers. In this review, we conclude that the discrepant functions of CCN proteins in different types of cancer are attributed to diverse TME and CCN truncated isoforms, and speculate that targeting CCN proteins to rebalance the TME could be a potent anti-cancer strategy.
Collapse
Affiliation(s)
- Qingan Jia
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Binghui Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yaoyao Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xia Liao
- Department of Nutrition, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Su W, Zhu S, Chen K, Yang H, Tian M, Fu Q, Shi G, Feng S, Ren D, Jin X, Yang C. Overexpressed WDR3 induces the activation of Hippo pathway by interacting with GATA4 in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:88. [PMID: 33648545 PMCID: PMC7923337 DOI: 10.1186/s13046-021-01879-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/14/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND WD repeat domain 3 (WDR3) is involved in a variety of cellular processes including gene regulation, cell cycle progression, signal transduction and apoptosis. However, the biological role of WDR3 in pancreatic cancer and the associated mechanism remains unclear. We seek to explore the immune-independent functions and relevant mechanism for WDR3 in pancreatic cancer. METHODS The GEPIA web tool was searched, and IHC assays were conducted to determine the mRNA and protein expression levels of WDR3 in pancreatic cancer patients. MTS, colony formation, and transwell assays were conducted to determine the biological role of WDR3 in human cancer. Western blot analysis, RT-qPCR, and immunohistochemistry were used to detect the expression of specific genes. An immunoprecipitation assay was used to explore protein-protein interactions. RESULTS Our study proved that overexpressed WDR3 was correlated with poor survival in pancreatic cancer and that WDR3 silencing significantly inhibited the proliferation, invasion, and tumor growth of pancreatic cancer. Furthermore, WDR3 activated the Hippo signaling pathway by inducing yes association protein 1 (YAP1) expression, and the combination of WDR3 silencing and administration of the YAP1 inhibitor TED-347 had a synergistic inhibitory effect on the progression of pancreatic cancer. Finally, the upregulation of YAP1 expression induced by WDR3 was dependent on an interaction with GATA binding protein 4 (GATA4), the transcription factor of YAP1, which interaction induced the nuclear translocation of GATA4 in pancreatic cancer cells. CONCLUSIONS We identified a novel mechanism by which WDR3 plays a critical role in promoting pancreatic cancer progression by activating the Hippo signaling pathway through the interaction with GATA4. Therefore, WDR3 is potentially a therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Wenjie Su
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Shikai Zhu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Kai Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Hongji Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Mingwu Tian
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Qiang Fu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China.,Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02148, USA
| | - Ganggang Shi
- Jack Bell Research Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shijian Feng
- Jack Bell Research Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Xin Jin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Chong Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China. .,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
12
|
Haque I, Kawsar HI, Motes H, Sharma M, Banerjee S, Banerjee SK, Godwin AK, Huang CH. Downregulation of miR-506-3p Facilitates EGFR-TKI Resistance through Induction of Sonic Hedgehog Signaling in Non-Small-Cell Lung Cancer Cell Lines. Int J Mol Sci 2020; 21:E9307. [PMID: 33291316 PMCID: PMC7729622 DOI: 10.3390/ijms21239307] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation eventually develop resistance to EGFR-targeted tyrosine kinase inhibitors (TKIs). Treatment resistance remains the primary obstacle to the successful treatment of NSCLC. Although drug resistance mechanisms have been studied extensively in NSCLC, the regulation of these mechanisms has not been completely understood. Recently, increasing numbers of microRNAs (miRNAs) are implicated in EGFR-TKI resistance, indicating that miRNAs may serve as novel targets and may hold promise as predictive biomarkers for anti-EGFR therapy. MicroRNA-506 (miR-506) has been identified as a tumor suppressor in many cancers, including lung cancer; however, the role of miR-506 in lung cancer chemoresistance has not yet been addressed. Here we report that miR-506-3p expression was markedly reduced in erlotinib-resistant (ER) cells. We identified Sonic Hedgehog (SHH) as a novel target of miR-506-3p, aberrantly activated in ER cells. The ectopic overexpression of miR-506-3p in ER cells downregulates SHH signaling, increases E-cadherin expression, and inhibits the expression of vimentin, thus counteracting the epithelial-mesenchymal transition (EMT)-mediated chemoresistance. Our results advanced our understanding of the molecular mechanisms underlying EGFR-TKI resistance and indicated that the miR-506/SHH axis might represent a novel therapeutic target for future EGFR mutated lung cancer treatment.
Collapse
Affiliation(s)
- Inamul Haque
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hameem I Kawsar
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hannah Motes
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
- Kirksville College of Osteopathic Medicine, Andrew Taylor Still University, Jefferson St, Kirksville, MO 63501, USA
| | - Mukut Sharma
- Research Service, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Snigdha Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sushanta K Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Chao H Huang
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
13
|
Ray P, Dutta D, Haque I, Nair G, Mohammed J, Parmer M, Kale N, Orr M, Jain P, Banerjee S, Reindl KM, Mallik S, Kambhampati S, Banerjee SK, Quadir M. pH-Sensitive Nanodrug Carriers for Codelivery of ERK Inhibitor and Gemcitabine Enhance the Inhibition of Tumor Growth in Pancreatic Cancer. Mol Pharm 2020; 18:87-100. [PMID: 33231464 DOI: 10.1021/acs.molpharmaceut.0c00499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a metabolic disorder, remains one of the leading cancer mortality sources worldwide. An initial response to treatments, such as gemcitabine (GEM), is often followed by emergent resistance reflecting an urgent need for alternate therapies. The PDAC resistance to GEM could be due to ERK1/2 activity. However, successful ERKi therapy is hindered due to low ligand efficiency, poor drug delivery, and toxicity. In this study, to overcome these limitations, we have designed pH-responsive nanoparticles (pHNPs) with a size range of 100-150 nm for the simultaneous delivery of ERKi (SCH 772984) and GEM with tolerable doses. These pHNPs are polyethylene glycol (PEG)-containing amphiphilic polycarbonate block copolymers with tertiary amine side chains. They are systemically stable and capable of improving in vitro and in vivo drug delivery at the cellular environment's acidic pH. The functional analysis indicates that the nanomolar doses of ERKi or GEM significantly decreased the 50% growth inhibition (IC50) of PDAC cells when encapsulated in pHNPs compared to free drugs. The combination of ERKi with GEM displayed a synergistic inhibitory effect. Unexpectedly, we uncover that the minimum effective dose of ERKi significantly promotes GEM activities on PDAC cells. Furthermore, we found that pHNP-encapsulated combination therapy of ERKi with GEM was superior to unencapsulated combination drug therapy. Our findings, thus, reveal a simple, yet efficient, drug delivery approach to overcome the limitations of ERKi for clinical applications and present a new model of sensitization of GEM by ERKi with no or minimal toxicity.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Gauthami Nair
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jiyan Mohammed
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Meredith Parmer
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Narendra Kale
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Pooja Jain
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Katie M Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Suman Kambhampati
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
14
|
Mpilla GB, Philip PA, El-Rayes B, Azmi AS. Pancreatic neuroendocrine tumors: Therapeutic challenges and research limitations. World J Gastroenterol 2020; 26:4036-4054. [PMID: 32821069 PMCID: PMC7403797 DOI: 10.3748/wjg.v26.i28.4036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are known to be the second most common epithelial malignancy of the pancreas. PNETs can be listed among the slowest growing as well as the fastest growing human cancers. The prevalence of PNETs is deceptively low; however, its incidence has significantly increased over the past decades. According to the American Cancer Society’s estimate, about 4032 (> 7% of all pancreatic malignancies) individuals will be diagnosed with PNETs in 2020. PNETs often cause severe morbidity due to excessive secretion of hormones (such as serotonin) and/or overall tumor mass. Patients can live for many years (except for those patients with poorly differentiated G3 neuroendocrine tumors); thus, the prevalence of the tumors that is the number of patients actually dealing with the disease at any given time is fairly high because the survival is much longer than pancreatic ductal adenocarcinoma. Due to significant heterogeneity, the management of PNETs is very complex and remains an unmet clinical challenge. In terms of research studies, modest improvements have been made over the past decades in the identification of potential oncogenic drivers in order to enhance the quality of life and increase survival for this growing population of patients. Unfortunately, the majority of systematic therapies approved for the management of advanced stage PNETs lack objective response or at most result in modest benefits in survival. In this review, we aim to discuss the broad challenges associated with the management and the study of PNETs.
Collapse
Affiliation(s)
- Gabriel Benyomo Mpilla
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Philip Agop Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Bassel El-Rayes
- Department of Hematology Oncology, Emory Winship Institute, Atlanta, GA 30322, United States
| | - Asfar Sohail Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
15
|
Ménard A, Abou Nader N, Levasseur A, St-Jean G, Le Gad-Le Roy M, Boerboom D, Benoit-Biancamano MO, Boyer A. Targeted Disruption of Lats1 and Lats2 in Mice Impairs Adrenal Cortex Development and Alters Adrenocortical Cell Fate. Endocrinology 2020; 161:5815549. [PMID: 32243503 PMCID: PMC7211035 DOI: 10.1210/endocr/bqaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
It has recently been shown that the loss of the Hippo signaling effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in adrenocortical steroidogenic cells impairs the postnatal maintenance of the adrenal gland. To further explore the role of Hippo signaling in mouse adrenocortical cells, we conditionally deleted the key Hippo kinases large tumor suppressor homolog kinases 1 and -2 (Lats1 and Lats2, two kinases that antagonize YAP and TAZ transcriptional co-regulatory activity) in steroidogenic cells using an Nr5a1-cre strain (Lats1flox/flox;Lats2flox/flox;Nr5a1-cre). We report here that developing adrenocortical cells adopt characteristics of myofibroblasts in both male and female Lats1flox/flox;Lats2flox/flox;Nr5a1-cre mice, resulting in a loss of steroidogenic gene expression, adrenal failure and death by 2 to 3 weeks of age. A marked accumulation of YAP and TAZ in the nuclei of the myofibroblast-like cell population with an accompanying increase in the expression of their transcriptional target genes in the adrenal glands of Lats1flox/flox;Lats2flox/flox;Nr5a1-cre animals suggested that the myofibroblastic differentiation could be attributed in part to YAP and TAZ. Taken together, our results suggest that Hippo signaling is required to maintain proper adrenocortical cell differentiation and suppresses their differentiation into myofibroblast-like cells.
Collapse
Affiliation(s)
- Amélie Ménard
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Nour Abou Nader
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Adrien Levasseur
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Guillaume St-Jean
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Marie Le Gad-Le Roy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Marie-Odile Benoit-Biancamano
- Département de Pathologie et Microbiologie Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Alexandre Boyer
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
- Correspondence: Alexandre Boyer, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada. E-mail:
| |
Collapse
|
16
|
Abou-Kheir W, Mukherji D, Hadadeh O, Saleh E, Bahmad HF, Kanso M, Khalifeh M, Shamseddine A, Tamraz S, Jaafar R, Dagher C, Khalifeh I, Faraj W. CYR61/CCN1 expression in resected pancreatic ductal adenocarcinoma: A retrospective pilot study of the interaction between the tumors and their surrounding microenvironment. Heliyon 2020; 6:e03842. [PMID: 32395647 PMCID: PMC7205742 DOI: 10.1016/j.heliyon.2020.e03842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND CCN1 is an extracellular matrix-associated protein thought to be implicated in tumor-stromal interaction in several solid tumors. The aim of our pilot study was to evaluate the correlation between CCN1 expression in stromal cells, pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma cells in resected pancreatic ductal adenocarcinoma (PDAC) specimens, and correlate that clinically. METHODS A total of 42 paraffin-embedded PDAC tumor specimens were stained for CCN1 and evaluated via immunohistochemical (IHC) analysis. Statistical analysis was performed to correlate between CCN1 expression profiles in tumor tissues and clinicopathological parameters of patients. RESULTS Our results showed CCN1 (CYR61) gene was highly expressed in PDAC tissues relative to other organ specific tumor tissues. Also, moderate and overexpression of CCN1 in PanIN was associated with PanIN grade 3 tissues. A statistically significant association was found between PanIN CCN1 scores on one hand and cancer stage, cancer grade, and CCN1 expression among ductal tumor cells and adjacent stromal cells on the other hand. DISCUSSION The associations demonstrated suggest that CCN1 might be contributing to a substantial role in the interaction between the pancreatic tumors on one hand and their surrounding microenvironment and their precursors on the other hand; hence, it might serve as a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Eman Saleh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mariam Kanso
- Department of Surgery, Division of General Surgery, Liver Transplantation and Hepatopancreaticobiliary (HPB) Unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamad Khalifeh
- Department of Surgery, Division of General Surgery, Liver Transplantation and Hepatopancreaticobiliary (HPB) Unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sally Tamraz
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rola Jaafar
- Department of Surgery, Division of General Surgery, Liver Transplantation and Hepatopancreaticobiliary (HPB) Unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christelle Dagher
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Walid Faraj
- Department of Surgery, Division of General Surgery, Liver Transplantation and Hepatopancreaticobiliary (HPB) Unit, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
17
|
CCN-Based Therapeutic Peptides Modify Pancreatic Ductal Adenocarcinoma Microenvironment and Decrease Tumor Growth in Combination with Chemotherapy. Cells 2020; 9:cells9040952. [PMID: 32294968 PMCID: PMC7226963 DOI: 10.3390/cells9040952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
The prominent desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a determinant factor in tumor progression and a major barrier to the access of chemotherapy. The PDAC microenvironment therefore appears to be a promising therapeutic target. CCN2/CTGF is a profibrotic matricellular protein, highly present in the PDAC microenvironment and associated with disease progression. Here we have investigated the therapeutic value of the CCN2-targeting BLR100 and BLR200, two modified synthetic peptides derived from active regions of CCN3, an endogenous inhibitor of CCN2. In a murine orthotopic PDAC model, the two peptides, administered as monotherapy at low doses (approximating physiological levels of CCN3), had tumor inhibitory activity that increased with the dose. The peptides affected the tumor microenvironment, inhibiting fibrosis and vessel formation and reducing necrosis. Both peptides were active in preventing ascites formation. An increased activity was obtained in combination regimens, administering BLR100 or BLR200 with the chemotherapeutic drug gemcitabine. Pharmacokinetic analysis indicated that the improved activity of the combination was not mainly determined by the substantial increase in gemcitabine delivery to tumors, suggesting other effects on the tumor microenvironment. The beneficial remodeling of the tumor stroma supports the potential value of these CCN3-derived peptides for targeting pathways regulated by CCN2 in PDAC.
Collapse
|
18
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
19
|
Ilhan M, Kucukkose C, Efe E, Gunyuz ZE, Firatligil B, Dogan H, Ozuysal M, Yalcin-Ozuysal O. Pro-metastatic functions of Notch signaling is mediated by CYR61 in breast cells. Eur J Cell Biol 2020; 99:151070. [PMID: 32005345 DOI: 10.1016/j.ejcb.2020.151070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/25/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Metastasis is the main cause of cancer related deaths, and unfolding the molecular mechanisms underlying metastatic progression is critical for the development of novel therapeutic approaches. Notch is one of the key signaling pathways involved in breast tumorigenesis and metastasis. Notch activation induces pro-metastatic processes such as migration, invasion and epithelial to mesenchymal transition (EMT). However, molecular mediators working downstream of Notch in these processes are not fully elucidated. CYR61 is a secreted protein implicated in metastasis, and its inhibition by a monoclonal antibody suppresses metastasis in xenograft breast tumors, indicating the clinical importance of CYR61 targeting. Here, we aimed to investigate whether CYR61 works downstream of Notch in inducing pro-metastatic phenotypes in breast cells. We showed that CYR61 expression is positively regulated by Notch activity in breast cells. Notch1-induced migration, invasion and anchorage independent growth of a normal breast cell line, MCF10A, were abrogated by CYR61 silencing. Furthermore, upregulation of core EMT markers upon Notch1-activation was impaired in the absence of CYR61. However, reduced migration and invasion of highly metastatic cell line, MDA MB 231, cells upon Notch inhibition was not dependent on CYR61 downregulation. In conclusion, we showed that in normal breast cell line MCF10A, CYR61 is a mediator of Notch1-induced pro-metastatic phenotypes partly via induction of EMT. Our results imply CYR61 as a prominent therapeutic candidate for a subpopulation of breast tumors with high Notch activity.
Collapse
Affiliation(s)
- Mustafa Ilhan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Cansu Kucukkose
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Eda Efe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Zehra Elif Gunyuz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Burcu Firatligil
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Hulya Dogan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Mustafa Ozuysal
- Department of Computer Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey.
| |
Collapse
|
20
|
Ros G, Pegoraro S, De Angelis P, Sgarra R, Zucchelli S, Gustincich S, Manfioletti G. HMGA2 Antisense Long Non-coding RNAs as New Players in the Regulation of HMGA2 Expression and Pancreatic Cancer Promotion. Front Oncol 2020; 9:1526. [PMID: 32010621 PMCID: PMC6978849 DOI: 10.3389/fonc.2019.01526] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Natural antisense long non-coding RNAs (lncRNAs) are regulatory RNAs transcribed from the opposite strand of either protein coding or non-coding genes, able to modulate their own sense gene expression. Hence, their dysregulation can lead to pathologic processes. Cancer is a complex class of diseases determined by the aberrant expression of a variety of factors, among them, the oncofetal chromatin architectural proteins High Mobility Group A (HMGA) modulate several cancer hallmarks. Thus, we decided to investigate the presence of natural antisense lncRNAs in HMGA1 and HMGA2 loci, and their possible involvement in gene expression regulation. Methods: We used FANTOM5 data resources, FANTOM-CAT genome browser and Zenbu visualization tool, which employ 1,829 human CAGE and RNA-sequencing libraries, to determine expression, ontology enrichment, and dynamic regulation of natural antisense lncRNAs in HMGA1 and HMGA2 loci. We then performed qRT-PCR in different cancer cell lines to validate the existence of HMGA2-AS1 transcripts. We depleted HMGA2-AS1 transcripts with siRNAs and investigated HMGA2 expression by qRT-PCR and western blot analyses. Moreover, we evaluated cell viability and migration by MTS and transwell assays, and EMT markers by qRT-PCR and immunofluorescence. Furthermore, we used bioinformatics approaches to evaluate HMGA2 and HMGA2-AS1 correlation and overall survival in tumor patients. Results: We found the presence of a promoter-associated lncRNA (CATG00000088127.1) in the HMGA1 gene and three antisense genes (RPSAP52, HMGA2-AS1, and RP11-366L20.3) in the HMGA2 gene. We studied the uncharacterized HMGA2-AS1 transcripts, validating their existence in cancer cell lines and observing a positive correlation between HMGA2 and HMGA2-AS1 expression in a cancer-derived patient dataset. We showed that HMGA2-AS1 transcripts positively modulate HMGA2 expression and migration properties of PANC1 cells through HMGA2. In addition, Kaplan-Meier analysis showed that high level of HMGA2-AS1 is a negative prognostic factor in pancreatic cancer patients. Conclusions: Our results describe novel antisense lncRNAs associated with HMGA1 and HMGA2 genes. In particular, we demonstrate that HMGA2-AS1 is involved in the regulation of its own sense gene expression, mediating tumorigenesis. Thus, we highlight a new layer of complexity in the regulation of HMGA2 expression, providing new potential targets for cancer therapy.
Collapse
Affiliation(s)
- Gloria Ros
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paolo De Angelis
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Zucchelli
- Department of Health Sciences, Center for Autoimmune and Allergic Diseases, Interdisciplinary Research Center of Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | | | | |
Collapse
|
21
|
Hellinger JW, Hüchel S, Goetz L, Bauerschmitz G, Emons G, Gründker C. Inhibition of CYR61-S100A4 Axis Limits Breast Cancer Invasion. Front Oncol 2019; 9:1074. [PMID: 31709177 PMCID: PMC6819319 DOI: 10.3389/fonc.2019.01074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: Matricellular proteins modulate the micro environment of tumors and are recognized to contribute to tumor cell invasion and dissemination. The cysteine-rich angiogenic inducer 61 (CYR61) is upregulated in mesenchymal transformed and invasive breast cancer cells. CYR61 correlates with poor prognosis of breast cancer patients. The signaling mechanism that causes invasive properties of cancer cells regarding to epithelial-mesenchymal transition (EMT) needs further research. In this study, we investigated the signaling mechanism, which is responsible for reduced cell invasion after suppression of CYR61 in mesenchymal transformed breast cancer cells and in triple negative breast cancer cells. Methods: We addressed this issue by generating a mesenchymal transformed breast cancer cell line using prolonged mammosphere cultivation. Western blotting and quantitative PCR were used to analyze gene expression alterations. Transient gene silencing was conducted using RNA interference. Proliferation was assessed using AlamarBlue assay. Invasiveness was analyzed using 2D and 3D invasion assays. Immune-histochemical analysis of patient tissue samples was performed to examine the prognostic value of CYR61 expression. Results: In this study, we investigated whether CYR61 could be used as therapeutic target and prognostic marker for invasive breast cancer. We discovered an interaction of CYR61 with metastasis-associated protein S100A4. Suppression of CYR61 by RNA interference reduced the expression of S100A4 dependent on ERK1/2 activity regulation. Non-invasive breast cancer cells became invasive due to extracellular CYR61 supplement. Immune-histochemical analysis of 239 patient tissue samples revealed a correlation of higher CYR61 and S100A4 expression with invasive breast cancer and metastasis. Conclusion: Our data suggest that suppression of CYR61 impedes the formation of an invasive cancer cell phenotype by reducing ERK1/2 phosphorylation thereby suppressing S100A4. These findings identify mechanisms by which CYR61 suppresses cell invasion and suggest it to be a potential therapeutic target and prognostic marker for invasive breast cancer and metastasis.
Collapse
Affiliation(s)
- Johanna W Hellinger
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| | - Silke Hüchel
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| | - Lena Goetz
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| | - Gerd Bauerschmitz
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| | - Günter Emons
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation. Cell Death Dis 2019; 10:768. [PMID: 31601778 PMCID: PMC6787001 DOI: 10.1038/s41419-019-2000-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Yes-associated protein (YAP) is a transcriptional co-factor involved in many cell processes, including development, proliferation, stemness, differentiation, and tumorigenesis. It has been described as a sensor of mechanical and biochemical stimuli that enables cells to integrate environmental signals. Although in the liver the correlation between extracellular matrix elasticity (greatly increased in the most of chronic hepatic diseases), differentiation/functional state of parenchymal cells and subcellular localization/activation of YAP has been previously reported, its role as regulator of the hepatocyte differentiation remains to be clarified. The aim of this study was to evaluate the role of YAP in the regulation of epithelial/hepatocyte differentiation and to clarify how a transducer of general stimuli can integrate tissue-specific molecular mechanisms determining specific cell outcomes. By means of YAP silencing and overexpression we demonstrated that YAP has a functional role in the repression of epithelial/hepatocyte differentiation by inversely modulating the expression of Snail (master regulator of the epithelial-to-mesenchymal transition and liver stemness) and HNF4α (master regulator of hepatocyte differentiation) at transcriptional level, through the direct occupancy of their promoters. Furthermore, we found that Snail, in turn, is able to positively control YAP expression influencing protein level and subcellular localization and that HNF4α stably represses YAP transcription in differentiated hepatocytes both in cell culture and in adult liver. Overall, our data indicate YAP as a new member of the HNF4/Snail epistatic molecular circuitry previously demonstrated to control liver cell state. In this model, the dynamic balance between three main transcriptional regulators, that are able to control reciprocally their expression/activity, is responsible for the induction/maintenance of different liver cell differentiation states and its modulation could be the aim of therapeutic protocols for several chronic liver diseases.
Collapse
|
23
|
Gupta V, Bhavanasi S, Quadir M, Singh K, Ghosh G, Vasamreddy K, Ghosh A, Siahaan TJ, Banerjee S, Banerjee SK. Protein PEGylation for cancer therapy: bench to bedside. J Cell Commun Signal 2019; 13:319-330. [PMID: 30499020 PMCID: PMC6732144 DOI: 10.1007/s12079-018-0492-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
PEGylation is a biochemical modification process of bioactive molecules with polyethylene glycol (PEG), which lends several desirable properties to proteins/peptides, antibodies, and vesicles considered to be used for therapy or genetic modification of cells. However, PEGylation of proteins is a complex process and can be carried out using more than one strategy that depends on the nature of the protein and the desired application. Proteins of interest are covalently conjugated or non-covalently complexed with inert PEG strings. Purification of PEGylated protein is another critical step, which is mainly carried out based on electrostatic interactions or molecular sizes using chromatography. Several PEGylated drugs are being used for diseases like anemia, kidney disease, multiple sclerosis, hemophilia and cancers. With the advancement and increased specificity of the PEGylation process, the world of drug therapy, and specifically cancer therapy could benefit by utilizing this technique to create more stable and non-immunogenic therapies. In this article we describe the structure and functions of PEGylation and how this chemistry helps in drug discovery. Moreover, special emphasis has been given to CCN-family proteins that can be targeted or used as therapy to prevent or block cancer progression through PEGylation technology.
Collapse
Affiliation(s)
- Vijayalaxmi Gupta
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sneha Bhavanasi
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA.
| | - Kevin Singh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Gaurav Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Kritin Vasamreddy
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Teruna J Siahaan
- School of Pharmacy-Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66047, USA
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
Pu N, Gao S, Yin H, Li JA, Wu W, Fang Y, Zhang L, Rong Y, Xu X, Wang D, Kuang T, Jin D, Yu J, Lou W. Cell-intrinsic PD-1 promotes proliferation in pancreatic cancer by targeting CYR61/CTGF via the hippo pathway. Cancer Lett 2019; 460:42-53. [PMID: 31233838 DOI: 10.1016/j.canlet.2019.06.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a refractory disease. Programmed cell death protein-1 (PD-1) monotherapy has shown strong performance in targeting several malignancies. However, the effect and mechanism of intrinsic PD-1 in pancreatic cancer cells is still unknown. In this study, associations between clinicopathological characteristics and stained tissue microarrays of PDAC specimens were analyzed along with profiling and functional analyses. The results showed that cell-intrinsic PD-1 was significantly correlated with overall survival (OS). Independently of adaptive immunity, intrinsic PD-1 promoted tumor growth in PDAC. Concomitantly, the overexpression of intrinsic PD-1 enhanced cancer proliferation and inhibited cell apoptosis in vitro and in vivo. Mechanistically, PD-1 binds to the downstream MOB1, thereby inhibiting its phosphorylation. Moreover, greater synergistic tumor suppression in vitro resulted from combining Hippo inhibitors with anti-PD-1 treatment compared with the suppression achieved by either single agent alone. Additionally, Hippo downstream targets, CYR61 (CCN1) and CTGF (CCN2), were directly affected by PD-1 mediated Hippo signaling activation in concert with survival outcomes. Finally, the formulated nomogram showed superior predictive accuracy for OS in comparison with the TNM stage alone. Therefore, PD-1 immunotherapy in combination with Hippo pathway inhibitors may optimize the anti-tumor efficacy in PDAC patients via targeting cell-intrinsic PD-1.
Collapse
Affiliation(s)
- Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Shanshan Gao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian-Ang Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuan Fang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yefei Rong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dayong Jin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Yu
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Quilichini E, Fabre M, Dirami T, Stedman A, De Vas M, Ozguc O, Pasek RC, Cereghini S, Morillon L, Guerra C, Couvelard A, Gannon M, Haumaitre C. Pancreatic Ductal Deletion of Hnf1b Disrupts Exocrine Homeostasis, Leads to Pancreatitis, and Facilitates Tumorigenesis. Cell Mol Gastroenterol Hepatol 2019; 8:487-511. [PMID: 31229598 PMCID: PMC6722301 DOI: 10.1016/j.jcmgh.2019.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS The exocrine pancreas consists of acinar cells that produce digestive enzymes transported to the intestine through a branched ductal epithelium. Chronic pancreatitis is characterized by progressive inflammation, fibrosis, and loss of acinar tissue. These changes of the exocrine tissue are risk factors for pancreatic cancer. The cause of chronic pancreatitis cannot be identified in one quarter of patients. Here, we investigated how duct dysfunction could contribute to pancreatitis development. METHODS The transcription factor Hnf1b, first expressed in pancreatic progenitors, is strictly restricted to ductal cells from late embryogenesis. We previously showed that Hnf1b is crucial for pancreas morphogenesis but its postnatal role still remains unelucidated. To investigate the role of pancreatic ducts in exocrine homeostasis, we inactivated the Hnf1b gene in vivo in mouse ductal cells. RESULTS We uncovered that postnatal Hnf1b inactivation in pancreatic ducts leads to chronic pancreatitis in adults. Hnf1bΔduct mutants show dilatation of ducts, loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis. We deciphered the early events involved, with down-regulation of cystic disease-associated genes, loss of primary cilia, up-regulation of signaling pathways, especially the Yap pathway, which is involved in acinar-to-ductal metaplasia. Remarkably, Hnf1bΔduct mutants developed pancreatic intraepithelial neoplasia and promote pancreatic intraepithelial neoplasia progression in concert with KRAS. We further showed that adult Hnf1b inactivation in pancreatic ducts is associated with impaired regeneration after injury, with persistent metaplasia and initiation of neoplasia. CONCLUSIONS Loss of Hnf1b in ductal cells leads to chronic pancreatitis and neoplasia. This study shows that Hnf1b deficiency may contribute to diseases of the exocrine pancreas and gains further insight into the etiology of pancreatitis and tumorigenesis.
Collapse
Affiliation(s)
- Evans Quilichini
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Mélanie Fabre
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Thassadite Dirami
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Aline Stedman
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Matias De Vas
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Ozge Ozguc
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Raymond C. Pasek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Silvia Cereghini
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Lucie Morillon
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Carmen Guerra
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Anne Couvelard
- Hôpital Bichat, Département de Pathologie, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Paris, France
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cécile Haumaitre
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France,Correspondence Address correspondence to: Cecile Haumaitre, PhD, Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, 9 Quai Saint-Bernard, Batiment C-7eme Etage-Case 24, 75252 Paris Cedex 05, France. fax: (33) 1-44-27-34-45.
| |
Collapse
|
26
|
Li Z, Yan G, Diao Q, Yu F, Li X, Sheng X, Liu Y, Dai Y, Zhou H, Zhen X, Hu Y, Péault B, Ding L, Sun H, Li H. Transplantation of human endometrial perivascular cells with elevated CYR61 expression induces angiogenesis and promotes repair of a full-thickness uterine injury in rat. Stem Cell Res Ther 2019; 10:179. [PMID: 31215503 PMCID: PMC6582612 DOI: 10.1186/s13287-019-1272-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Background Disruptions of angiogenesis can have a significant effect on the healing of uterine scars. Human endometrial perivascular cells (CD146+PDGFRβ+) function as stem cells in the endometrium. Cysteine-rich angiogenic inducer 61 (CYR61) plays an important role in vascular development. The purpose of this study was to observe the effects of the transplantation of human endometrial perivascular cells (En-PSCs) overexpressing CYR61 on structural and functional regeneration in rat models of partial full-thickness uterine excision. Methods We first sorted human En-PSCs from endometrial single-cell suspensions by flow cytometry. Human En-PSCs expressing low or high levels of CYR61 were then generated via transfection with a CYR61-specific small interfering ribonucleic acid (si-CYR61) construct or overexpression plasmid. To establish a rat model of uterine injury, a subset of uterine wall was then resected from each uterine horn in experimental animals. Female rats were randomly assigned to five groups, including a sham-operated group and four repair groups that received either PBS loaded on a collagen scaffold (collagen/PBS), En-PSCs loaded on a collagen scaffold (collagen/En-PSCs), En-PSCs with low CYR61 expression loaded on a collagen scaffold (collagen/si-CYR61 En-PSCs), and En-PSCs overexpressing CYR61 loaded on a collagen scaffold (collagen/ov-CYR61 En-PSCs). These indicated constructs were sutured in the injured uterine area to replace the excised segment. On days 30 and 90 after transplantation, a subset of rats in each group was sacrificed, and uterine tissue was recovered and serially sectioned. Hematoxylin and eosin staining and immunohistochemical staining were then performed. Finally, the remaining rats of each group were mated with fertile male rats on day 90 for a 2-week period. Results Sorted En-PSCs expressed all recognized markers of mesenchymal stem cells (MSCs), including CD10, CD13, CD44, CD73, CD90, and CD105, and exhibited differentiation potential toward adipocytes, osteoblasts, and neuron-like cells. Compared with En-PSCs and En-PSCs with low CYR61 expression, En-PSCs with elevated CYR61 expression enhanced angiogenesis by in vitro co-culture assays. At day 90 after transplantation, blood vessel density in the collagen/ov-CYR61 En-PSCs group (11.667 ± 1.287) was greater than that in the collagen/En-PSCs group (7.167 ± 0.672) (P < 0.05) and the collagen/si-CYR61 En-PSCs group (3.750 ± 0.906) (P < 0.0001). Pregnancy rates differed among groups, from 40% in the collagen/PBS group to 80% in the collagen/En-PSCs group, 12.5% in the collagen/si-CYR61 En-PSCs group, and 80% in the collagen/ov-CYR61 En-PSCs group. In addition, four embryos were evident in the injured uterine horns of the collagen/ov-CYR61 En-PSCs group, while no embryos were identified in the injured uterine horns of the collagen/PBS group. Conclusions The results showed that CYR61 plays an important role in angiogenesis. Collagen/ov-CYR61 En-PSCs promoted endometrial and myometrial regeneration and induced neovascular regeneration in injured rat uteri. The pregnancy rate of rats treated with transplantation of collagen/En-PSCs or collagen/ov-CYR61 En-PSCs was improved. Moreover, the number of embryos implantation on the injured area in uterus was increased after transplantation of collagen/ov-CYR61 En-PSCs. Electronic supplementary material The online version of this article (10.1186/s13287-019-1272-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongxun Li
- Department of Histology and Embryology of Shanxi Medical University, Taiyuan, 030001, China.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Guijun Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qiang Diao
- Department of Medical Imaging, Jinling Hospital, Nanjing University Medical School, Nanjing, 210002, China
| | - Fei Yu
- Center for Experimental Animal, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xin'an Li
- Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yong Liu
- Department of Experimental Medicine, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yimin Dai
- Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huaijun Zhou
- Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xin Zhen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yali Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bruno Péault
- UKMRC Center for Regenerative Medicine and Center for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,UKMRC Center for Regenerative Medicine and Center for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK. .,Clinical Center for Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Haixiang Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Hairong Li
- Department of Histology and Embryology of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
27
|
Javadinia SA, Shahidsales S, Fanipakdel A, Joudi-Mashhad M, Mehramiz M, Talebian S, Maftouh M, Mardani R, Hassanian SM, Khazaei M, Ferns GA, Avan A. Therapeutic potential of targeting the Wnt/β-catenin pathway in the treatment of pancreatic cancer. J Cell Biochem 2019; 120:6833-6840. [PMID: 30368889 DOI: 10.1002/jcb.27835] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023]
Abstract
The Wnt/β-catenin pathway is an important, dysregulated pathway in several tumor types, including pancreatic ductal adenocarcinoma. Although the activation of this pathway is an important component of normal development, its aberrant activation resulting from activating or inactivating mutations in the CTNNB1 gene locus, or in the negative regulators AXIN and APC involving stabilization of β-catenin, and activation of target genes leads to a more aggressive phenotype, suggesting its potential value as a therapeutic target in the treatment of pancreatic ductal adenocarcinoma. A number of small molecule and biologic agents have now been developed for targeting this pathway. This review summarizes the current knowledge about the therapeutic potential of targeting the Wnt pathway with particular emphasis on preclinical/clinical studies in the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Seyed Alireza Javadinia
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Fanipakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Joudi-Mashhad
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrane Mehramiz
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Talebian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Maftouh
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Mardani
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton and Sussex Medical School, Brighton, Sussex, UK
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
28
|
Kim IK, Lee YS, Kim HS, Dong SM, Park JS, Yoon DS. Specific protein 1(SP1) regulates the epithelial-mesenchymal transition via lysyl oxidase-like 2(LOXL2) in pancreatic ductal adenocarcinoma. Sci Rep 2019; 9:5933. [PMID: 30976063 PMCID: PMC6459819 DOI: 10.1038/s41598-019-42501-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Specific protein 1 (SP1) is associated with aggressive behavior, invasive clinical phenotype and poor clinical outcomes in various cancers. We studied whether SP1 exerts its effect on invasiveness and promotion of the epithelial-mesenchymal transition (EMT) by regulating lysyl oxidase-like 2 (LOXL2) in pancreatic ductal adenocarcinoma (PDAC) cell lines. We showed that silencing of SP1 in MIA Paca-2 cell significantly decreased cell invasion and migration. In MIA Paca-2 cells, silencing of SP1 induced a reduction of LOXL2 expression, whereas LOXL2 silencing did not lead to a decrease in the expression of SP1. Chromatin immunoprecipitation assay demonstrated the binding of SP1 to LOXL2 promoter. Wound healing and transmigration assays also showed that transfection of both SP1 and LOXL2 siRNA induced most significant decrease of cell invasion and migration compared to either SP1 or LOXL2-only silenced cells. Finally, we investigated the prognostic value of SP1 in patients with PDAC and SP1/LOX2 expression was examined by immunochemistry. Univariate and multivariate analyses showed that tumor differentiation and co-expression of SP1 and LOXL2 were independent factors for disease-free survival. In summary, our study demonstrates that SP1 modulates EMT and is involved in tumor invasion and migration of PDAC cells through the regulation of LOXL2.
Collapse
Affiliation(s)
- Im-Kyung Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Sun Lee
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Sun Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | | | - Joon Seong Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
| | - Dong Sup Yoon
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Maity G, Ghosh A, Gupta V, Haque I, Sarkar S, Das A, Dhar K, Bhavanasi S, Gunewardena SS, Von Hoff DD, Mallik S, Kambhampati S, Banerjee SK, Banerjee S. CYR61/CCN1 Regulates dCK and CTGF and Causes Gemcitabine-resistant Phenotype in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2019; 18:788-800. [PMID: 30787177 DOI: 10.1158/1535-7163.mct-18-0899] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Accepted: 01/30/2019] [Indexed: 02/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops extrinsic- and intrinsic-resistant phenotypes to prevent chemotherapies from entering into the cells by promoting desmoplastic reactions (DR) and metabolic malfunctions of the drugs. It is well established that these responses are also associated with pancreatic cancer cells' gemcitabine resistance. However, the mechanism by which these resistant pathways function in the pancreatic cancer cells remains poorly understood. In these studies, we show that CYR61/CCN1 signaling plays a vital role in making pancreatic cancer cells resistant to gemcitabine in vitro and also in a tumor xenograft model. We proved that the catastrophic effect of gemcitabine could significantly be increased in gemcitabine-resistant PDAC cells when CYR61/CCN1 is depleted, while this effect can be suppressed in gemcitabine-sensitive neoplastic cells by treating them with CYR61/CCN1 recombinant protein. Ironically, nontransformed pancreatic cells, which are sensitive to gemcitabine, cannot be resistant to gemcitabine by CYR61/CCN1 protein treatment, showing a unique feature of CYR61/CCN signaling that only influences PDAC cells to become resistant. Furthermore, we demonstrated that CYR61/CCN1 suppresses the expression of the gemcitabine-activating enzyme deoxycytidine kinase (dCK) while it induces the expression of a DR-promoting factor CTGF (connective tissue growth factor) in pancreatic cancer cells in vitro and in vivo Thus, the previously described mechanisms (dCK and CTGF pathways) for gemcitabine resistance may be two novel targets for CYR61/CCN1 to protect pancreatic cancer cells from gemcitabine. Collectively, these studies reveal a novel paradigm in which CYR61/CCN1regulates both extrinsic and intrinsic gemcitabine resistance in PDAC cells by employing unique signaling pathways.
Collapse
Affiliation(s)
- Gargi Maity
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Vijayalaxmi Gupta
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Ob/Gyn, University of Kansas Medical Center, Kansas City, Kansas
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sandipto Sarkar
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Amlan Das
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Kakali Dhar
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Sneha Bhavanasi
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Sumedha S Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Daniel D Von Hoff
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Suman Kambhampati
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- The Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, Missouri
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
30
|
CYR61 triggers osteosarcoma metastatic spreading via an IGF1Rβ-dependent EMT-like process. BMC Cancer 2019; 19:62. [PMID: 30642298 PMCID: PMC6332662 DOI: 10.1186/s12885-019-5282-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Osteosarcoma is the most prevalent primary bone malignancy in children and young adults. These tumors are highly metastatic, leading to poor outcome. We previously demonstrated that Cysteine-rich protein 61 (CYR61/CCN1) expression level is correlated to osteosarcoma aggressiveness in preclinical model and in patient tumor samples. The aim of the present study was to investigate the CYR61-induced intracellular mechanisms leading to the acquisition of an invasive phenotype by osteosarcoma cells. METHODS Modified murine and human osteosarcoma cell lines were evaluated for cell adhesion, aggregation (spheroid), motility (wound healing assay), phenotypic markers expression (RT-qPCR, western blot). Cell-derived xenograft FFPE samples and patients samples (TMA) were assessed by IHC. RESULTS CYR61 levels controlled the expression of markers related to an Epithelial-mesenchymal transition (EMT)-like process, allowing tumor cells to migrate acquiring a competent morphology, and to be able to invade the surrounding stroma. This phenotypic shift indeed correlated with tumor grade and aggressiveness in patient samples and with the metastatic dissemination potential in cell-derived xenograft models. Unlike EGFR or PDGFR, IGF1Rβ levels correlated with CYR61 and N-cadherin levels, and with the aggressiveness of osteosarcoma and overall survival. The expression levels of IGF1Rβ/IGF1 axis were controlled by CYR61, and anti-IGF1 neutralizing antibody prevented the CYR61-induced phenotypic shift, aggregation, and motility abilities. CONCLUSIONS Taken together, our study provides new evidence that CYR61 acts as a key inducing factor in the metastatic progression of osteosarcoma by playing a critical role in primary tumor dissemination, with a process associated with IGF1/IGFR stimulation. This suggests that CYR61 may represent a potential pivotal target for therapeutic management of metastases spreading in osteosarcoma, in correlation with IGF1/IGFR pathway.
Collapse
|
31
|
Zhang F, Chen H, Du J, Wang B, Yang L. Anticancer Activity of Metformin, an Antidiabetic Drug, Against Ovarian Cancer Cells Involves Inhibition of Cysteine-Rich 61 (Cyr61)/Akt/Mammalian Target of Rapamycin (mTOR) Signaling Pathway. Med Sci Monit 2018; 24:6093-6101. [PMID: 30171812 PMCID: PMC6130173 DOI: 10.12659/msm.909745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Ovarian cancer is considered one of the lethal cancers responsible for high mortality and morbidity across the world. The prognosis and the survival rate of ovarian cancer is far from decent. Cysteine-rich 61 (Cyr61) also known as CCN1, is a member of CCN-family of growth factors, reported to be significantly overexpressed in several malignancies which include, but are not limited to, ovarian cancer. Recent studies have revealed that women with type 2 diabetes mellitus have an elevated risk of ovarian cancer. Hence, administration of an antidiabetic drug with anticancer effects such as metformin may act as an effective therapeutic regime against ovarian cancer. Material/Methods Cell viability and apoptosis were examined by MTT and Annexin V/PI double staining respectively. Cell migration was determined by Boyden Chamber assay. Transient knockdown of Cyr61 in ovarian cancer cells was achieved by transecting the cells with siRNA for Cyr61using Lipofectamine 2000. Results Our results indicated that treatment of ovarian cancer cells with metformin caused significant downregulation of Cyr61 protein expression levels ultimately favoring apoptosis. Transient knockdown of Cyr61 resulted in the inhibition of cell proliferation and migration. This was also associated with the concomitant downregulation of pAkt and pmTOR confirming the role of Cyr61 as an upstream modulator of Akt signaling. Conversely the extracellular supplementation of recombinant Cyr61 attenuates the cytotoxic properties of metformin in ovarian cancer cells. Conclusions Taken together, we concluded that metformin exhibits anticancer effects and Cyr61 acts as a direct target for metformin in ovarian cancer cells.
Collapse
Affiliation(s)
- Fengli Zhang
- Infertility Center, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland).,Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Huixiao Chen
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Jing Du
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Bin Wang
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Lixiao Yang
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| |
Collapse
|
32
|
Maity G, Haque I, Ghosh A, Dhar G, Gupta V, Sarkar S, Azeem I, McGregor D, Choudhary A, Campbell DR, Kambhampati S, Banerjee SK, Banerjee S. The MAZ transcription factor is a downstream target of the oncoprotein Cyr61/CCN1 and promotes pancreatic cancer cell invasion via CRAF-ERK signaling. J Biol Chem 2018; 293:4334-4349. [PMID: 29414775 PMCID: PMC5868262 DOI: 10.1074/jbc.ra117.000333] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/01/2018] [Indexed: 01/18/2023] Open
Abstract
Myc-associated zinc-finger protein (MAZ) is a transcription factor with dual roles in transcription initiation and termination. Deregulation of MAZ expression is associated with the progression of pancreatic ductal adenocarcinoma (PDAC). However, the mechanism of action of MAZ in PDAC progression is largely unknown. Here, we present evidence that MAZ mRNA expression and protein levels are increased in human PDAC cell lines, tissue samples, a subcutaneous tumor xenograft in a nude mouse model, and spontaneous cancer in the genetically engineered PDAC mouse model. We also found that MAZ is predominantly expressed in pancreatic cancer stem cells. Functional analysis indicated that MAZ depletion in PDAC cells inhibits invasive phenotypes such as the epithelial-to-mesenchymal transition, migration, invasion, and the sphere-forming ability of PDAC cells. Mechanistically, we detected no direct effects of MAZ on the expression of K-Ras mutants, but MAZ increased the activity of CRAF-ERK signaling, a downstream signaling target of K-Ras. The MAZ-induced activation of CRAF-ERK signaling was mediated via p21-activated protein kinase (PAK) and protein kinase B (AKT/PKB) signaling cascades and promoted PDAC cell invasiveness. Moreover, we found that the matricellular oncoprotein cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) regulates MAZ expression via Notch-1-sonic hedgehog signaling in PDAC cells. We propose that Cyr61/CCN1-induced expression of MAZ promotes invasive phenotypes of PDAC cells not through direct K-Ras activation but instead through the activation of CRAF-ERK signaling. Collectively, these results highlight key molecular players in PDAC invasiveness and may help inform therapeutic strategies to improve clinical management and outcomes of PDAC.
Collapse
Affiliation(s)
- Gargi Maity
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
| | - Inamul Haque
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
| | - Arnab Ghosh
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Gopal Dhar
- From the Cancer Research Unit, Veterans Affairs Medical Center
| | | | - Sandipto Sarkar
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Imaan Azeem
- From the Cancer Research Unit, Veterans Affairs Medical Center
| | - Douglas McGregor
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
- the Pathology Department, Veterans Affairs Medical Center, Kansas City, Missouri 64128
| | - Abhishek Choudhary
- the Gastroenterology Department, Veterans Affairs Medical Center, Kansas City, Missouri 64128
| | - Donald R Campbell
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the University of Missouri Kansas City and Saint Luke's Hospital of Kansas City, Kansas City, Missouri, and
| | - Suman Kambhampati
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, Missouri 64131
| | - Sushanta K Banerjee
- From the Cancer Research Unit, Veterans Affairs Medical Center,
- the Department of Pathology and Laboratory Medicine, and
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Snigdha Banerjee
- From the Cancer Research Unit, Veterans Affairs Medical Center,
- the Department of Pathology and Laboratory Medicine, and
| |
Collapse
|
33
|
The matricellular protein CCN1 in tissue injury repair. J Cell Commun Signal 2018; 12:273-279. [PMID: 29357009 DOI: 10.1007/s12079-018-0450-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
The expression of Ccn1 (Cyr61) is essential for cardiovascular development during embryogenesis, whereas in adulthood it is associated with inflammation, wound healing, injury repair, and related pathologies including fibrosis and cancer. Recent studies have found that CCN1 plays a critical role in promoting wound healing and tissue repair. Mechanistically, CCN1 functions through direct interaction with specific integrin receptors expressed in various cell types in the wound tissue microenvironment to coordinate diverse cellular functions for repair. Here we briefly summarize the current knowledge on the functions of CCN1 in tissue injury repair and discuss pertinent unanswered questions.
Collapse
|
34
|
Ghosh P, Banerjee S, Maity G, De A, Banerjee SK. Detection of CCN1 and CCN5 mRNA in Human Cancer Samples Using a Modified In Situ Hybridization Technique. Methods Mol Biol 2018; 1489:495-504. [PMID: 27734400 DOI: 10.1007/978-1-4939-6430-7_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
In situ hybridization is an ideal tool for the detection and localization of mRNA expression of specific gene(s) in tissue sections and cell lines for prognosis, predictive markers, and highlighted potential therapeutic targets. Given the importance of CCN1 and CCN5 in breast and pancreatic cancer progression, these two secretory proteins could be novel therapeutic targets. Thus, evaluating the distribution of mRNA of these targets using in situ hybridization could be important preclinical tools. This chapter describes a detailed in situ hybridization technique for the detection of CCN1 and CCN5 in formalin-fixed, paraffin-embedded patient samples of breast and pancreatic cancers.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gargi Maity
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Archana De
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Division of Hematology and Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
35
|
Hesler RA, Huang JJ, Starr MD, Treboschi VM, Bernanke AG, Nixon AB, McCall SJ, White RR, Blobe GC. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis 2017; 37:1041-1051. [PMID: 27604902 DOI: 10.1093/carcin/bgw093] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Although low expression of the nucleoside transporters hENT1 and hCNT3 that mediate cellular uptake of gemcitabine has been linked to gemcitabine resistance, the mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. Here, we report that the matricellular protein cysteine-rich angiogenic inducer 61 (CYR61) negatively regulates the nucleoside transporters hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 increased expression of hENT1 and hCNT3, increased cellular uptake of gemcitabine and sensitized PDAC cells to gemcitabine-induced apoptosis. In PDAC patient samples, expression of hENT1 and hCNT3 negatively correlates with expression of CYR61 . We demonstrate that stromal pancreatic stellate cells (PSCs) are a source of CYR61 within the PDAC tumor microenvironment. Transforming growth factor-β (TGF-β) induces the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad2/3 signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in PDAC cells in an in vitro co-culture assay. Our results identify CYR61 as a TGF-β-induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients.
Collapse
Affiliation(s)
| | | | - Mark D Starr
- Division of Medical Oncology, Department of Medicine
| | | | | | | | | | - Rebekah R White
- Department of Surgery, Duke University, B354 LSRC Research Drive , Box 91004, Durham, NC 27708 , USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology.,Division of Medical Oncology, Department of Medicine
| |
Collapse
|
36
|
Chen PC, Tai HC, Lin TH, Wang SW, Lin CY, Chao CC, Yu HJ, Tsai YC, Lai YW, Lin CW, Tang CH. CCN3 promotes epithelial-mesenchymal transition in prostate cancer via FAK/Akt/HIF-1α-induced twist expression. Oncotarget 2017; 8:74506-74518. [PMID: 29088803 PMCID: PMC5650358 DOI: 10.18632/oncotarget.20171] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 02/04/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) has received considerable attention as a conceptual paradigm for explaining metastatic behavior during cancer progression. NOV/CCN3 is a matrix-associated protein involved in many cellular functions. Previous studies have shown that CCN3 expression is upregulated in prostate cancer (PCa) cells and in PCa patients. In this study, we have provided evidence of tumor promoting effects of CCN3, which includes induction of epithelial-to-mesenchymal transition (EMT) and tumor metastasis. We used an orthotopic in vivo model to demonstrate the prometastatic effects of CCN3. Overexpression or knockdown of CCN3 changed the EMT phenotype in PCa cells. Moreover, treatment with recombinant CCN3 promoted EMT in PCa cells. We also found that CCN3 may promote EMT by activating the FAK/Akt/HIF-1α pathway and this activation is responsible for Twist expression. IHC staining confirmed a positive correlation between the expression of CCN3, Twist, and tumor stage in PCa tissue. Our findings provide insight into the involvement of CCN3 in the EMT regulation of prostate cancer. CCN3 is a promising molecular target that may contribute to a novel therapeutic strategy against metastatic PCa.
Collapse
Affiliation(s)
- Po-Chun Chen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Huai-Ching Tai
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Urology, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan.,School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Tien-Huang Lin
- Department of Urology, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chih-Yang Lin
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chia-Chia Chao
- Department of Respiratory Therapy, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hong-Jeng Yu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chieh Tsai
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wei Lai
- Division of Urology, Taipei City Hospital Renai Branch, Taipei, Taiwan.,Department of Urology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Upstream and Downstream Co-inhibition of Mitogen-Activated Protein Kinase and PI3K/Akt/mTOR Pathways in Pancreatic Ductal Adenocarcinoma. Neoplasia 2017; 18:425-35. [PMID: 27435925 PMCID: PMC5022074 DOI: 10.1016/j.neo.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/29/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Extensive cross talk exists between PI3K/Akt/mTOR and mitogen-activated protein kinase (MAPK) pathways, and both are upregulated in pancreatic ductal adenocarcinoma (PDAC). Our previous study suggested that epidermal growth factor receptor inhibitor erlotinib which acts upstream of these pathways acts synergistically with PI3K inhibitors in PDAC. Horizontal combined blockade upstream and downstream of these two pathways is therefore explored. METHODS Erlotinib paired with PI3K inhibitor (BYL719) was tested against erlotinib plus dual PI3K/mTOR inhibitor BEZ-235, and MEK inhibitor (PD98059) plus BEZ235, on five primary PDAC cell lines and on two pairs of parent and erlotinib-resistant (ER) cell lines. A range of in vitro assays including cell proliferation, Western blotting, migration, clonogenic, cell cycle, and apopotic assays was used to test for the efficacy of combined blockade. RESULTS Dual downstream blockade of the MAPK and PAM pathways was more effective in attenuating downstream molecular signals. Synergy was demonstrated for erlotinib and BEZ235 and for PD-98059 and BEZ-235. This resulted in a trend of increased growth cell cycle arrest, apoptosis, cell proliferation, and colony and migration suppression. This combination showed more efficacy in cell lines with acquired resistance to erlotinib. CONCLUSIONS The additional mTOR blockade provided by BEZ235 in combined blockade resulted in increased anticancer effect. The hypersensitivity of ER cell lines to additional mTOR blockade suggested PAM pathway oncogenic dependence via mTOR. Dual downstream combined blockade of MAPK and PAM pathways with MEK and PI3K/mTOR inhibitor appeared most effective and represents an attractive therapeutic strategy against pancreatic cancer and its associated drug resistance.
Collapse
|
38
|
Deficiency of CCN5/WISP-2-Driven Program in breast cancer Promotes Cancer Epithelial cells to mesenchymal stem cells and Breast Cancer growth. Sci Rep 2017; 7:1220. [PMID: 28450698 PMCID: PMC5430628 DOI: 10.1038/s41598-017-00916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer progression and relapse is conceivably due to tumor initiating cells (TICs)/cancer stem cells. EMT (epithelial-mesenchymal-transition)-signaling regulates TICs’ turnover. However, the mechanisms associated with this episode are unclear. We show that, in triple-negative-breast cancer (TNBC) cells enriched with TICs, CCN5 significantly blocks cellular growth via apoptosis, reversing EMT-signaling and impairing mammosphere formation, thereby blocking the tumor-forming ability and invasive capacity of these cells. To corroborate these findings, we isolated tumor-initiating side populations (SP) and non-side population (NSP or main population) from MCF-7 cell line, and evaluated the impact of CCN5 on these subpopulations. CCN5 was overexpressed in the NSP but downregulated in the SP. Characteristically, NSP cells are ER-α positive and epithelial type with little tumorigenic potency, while SP cells are very similar to triple-negative ones that do not express ER-α- and Her-2 and are highly tumorigenic in xenograft models. The overexpression of CCN5 in SP results in EMT reversion, ER-α upregulation and delays in tumor growth in xenograft models. We reasoned that CCN5 distinguishes SP and NSP and could reprogram SP to NSP transition, thereby delaying tumor growth in the xenograft model. Collectively, we reveal how CCN5-signaling underlies the driving force to prevent TNBC growth and progression.
Collapse
|
39
|
Gao J, Long B, Wang Z. Role of Notch signaling pathway in pancreatic cancer. Am J Cancer Res 2017; 7:173-186. [PMID: 28337369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 09/28/2022] Open
Abstract
Pancreatic cancer (PC) is one of the highly aggressive malignancies in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of PC, such as JNK, PI3K/AKT, Rho GTPase, Hedgehog (Hh) and Skp2. In recent years, accumulated evidence has demonstrated that Notch signaling pathway plays critical roles in the development and progression of PC. Therefore, in this review we discuss the recent literature regarding the function and regulation of Notch in the pathogenesis of PC. Moreover, we describe that Notch signaling pathway could be down-regulated by its inhibitors or natural compounds, which could be a novel approach for the treatment of PC patients.
Collapse
Affiliation(s)
- Jiankun Gao
- Sichuan College of Tranditional Chinese Medicine Mianyang, Sichuan, China
| | - Bo Long
- Department of Infectious Diseases, Mianyang 404 Hospital Mianyang, Sichuan, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow UniversitySuzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolMA 02215, USA
| |
Collapse
|
40
|
Träger MM, Dhayat SA. Epigenetics of epithelial-to-mesenchymal transition in pancreatic carcinoma. Int J Cancer 2017; 141:24-32. [DOI: 10.1002/ijc.30626] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/25/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Max M. Träger
- Department of General and Visceral Surgery; University Hospital of Muenster; Muenster Germany
| | - Sameer A. Dhayat
- Department of General and Visceral Surgery; University Hospital of Muenster; Muenster Germany
| |
Collapse
|
41
|
Sumter TF, Xian L, Huso T, Koo M, Chang YT, Almasri TN, Chia L, Inglis C, Reid D, Resar LMS. The High Mobility Group A1 (HMGA1) Transcriptome in Cancer and Development. Curr Mol Med 2016; 16:353-93. [PMID: 26980699 DOI: 10.2174/1566524016666160316152147] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/15/2016] [Accepted: 03/10/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND & OBJECTIVES Chromatin structure is the single most important feature that distinguishes a cancer cell from a normal cell histologically. Chromatin remodeling proteins regulate chromatin structure and high mobility group A (HMGA1) proteins are among the most abundant, nonhistone chromatin remodeling proteins found in cancer cells. These proteins include HMGA1a/HMGA1b isoforms, which result from alternatively spliced mRNA. The HMGA1 gene is overexpressed in cancer and high levels portend a poor prognosis in diverse tumors. HMGA1 is also highly expressed during embryogenesis and postnatally in adult stem cells. Overexpression of HMGA1 drives neoplastic transformation in cultured cells, while inhibiting HMGA1 blocks oncogenic and cancer stem cell properties. Hmga1 transgenic mice succumb to aggressive tumors, demonstrating that dysregulated expression of HMGA1 causes cancer in vivo. HMGA1 is also required for reprogramming somatic cells into induced pluripotent stem cells. HMGA1 proteins function as ancillary transcription factors that bend chromatin and recruit other transcription factors to DNA. They induce oncogenic transformation by activating or repressing specific genes involved in this process and an HMGA1 "transcriptome" is emerging. Although prior studies reveal potent oncogenic properties of HMGA1, we are only beginning to understand the molecular mechanisms through which HMGA1 functions. In this review, we summarize the list of putative downstream transcriptional targets regulated by HMGA1. We also briefly discuss studies linking HMGA1 to Alzheimer's disease and type-2 diabetes. CONCLUSION Further elucidation of HMGA1 function should lead to novel therapeutic strategies for cancer and possibly for other diseases associated with aberrant HMGA1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - L M S Resar
- Department of Medicine, Faculty of the Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, MD 21205-2109, USA.
| |
Collapse
|
42
|
Nguyen LTT, Song YW, Cho SK. Baicalein Inhibits Epithelial to Mesenchymal Transition via Downregulation of Cyr61 and LOXL-2 in MDA-MB231 Breast Cancer Cells. Mol Cells 2016; 39:909-914. [PMID: 28008161 PMCID: PMC5223108 DOI: 10.14348/molcells.2016.0243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/09/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of the migratory and invasive capabilities associated with metastatic competence. Cysteine-rich protein 61 (CCN1/Cyr61) has been implicated as an important mediator in the proliferation and metastasis of breast cancer. Hence, Cyr61 and associated pathways are attractive targets for therapeutic interventions directed against the EMT. In the present study, we report that baicalein significantly inhibits the expression of Cyr61 and migration and invasion of MDA-MB231 human breast cancer cells. Exposure to baicalein led to increased E-cadherin expression, possibly due to the ubiquitination of Snail and Slug, which was mediated by the Cyr61/Akt/glycogen synthase kinase 3β (GSK3β) pathway. Further analysis revealed that baicalein inhibited the expression of lysyl oxidase like-2 (LOXL-2), which is a functional collaborator of Snail and Slug, and subsequently attenuated the direct interaction between LOXL-2 and Snail or Slug, thereby enhancing GSK3β-dependent Snail and Slug degradation. Our findings provide new insights into the antimetastatic mechanism of baicalein and may contribute to its beneficial use in breast cancer therapies.
Collapse
Affiliation(s)
- Linh Thi Thao Nguyen
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243,
Korea
| | - Yeon Woo Song
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243,
Korea
| | - Somi Kim Cho
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243,
Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243,
Korea
| |
Collapse
|
43
|
Thakur R, Mishra DP. Matrix reloaded: CCN, tenascin and SIBLING group of matricellular proteins in orchestrating cancer hallmark capabilities. Pharmacol Ther 2016; 168:61-74. [DOI: 10.1016/j.pharmthera.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Sano M, Driscoll DR, DeJesus-Monge WE, Quattrochi B, Appleman VA, Ou J, Zhu LJ, Yoshida N, Yamazaki S, Takayama T, Sugitani M, Nemoto N, Klimstra DS, Lewis BC. Activation of WNT/β-Catenin Signaling Enhances Pancreatic Cancer Development and the Malignant Potential Via Up-regulation of Cyr61. Neoplasia 2016; 18:785-794. [PMID: 27889647 PMCID: PMC5126137 DOI: 10.1016/j.neo.2016.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a poor prognostic cancer, commonly develops following activating mutations in the KRAS oncogene. Activation of WNT signaling is also commonly observed in PDAC. To ascertain the impact of postnatal activation of WNT-stimulated signaling pathways in PDAC development, we combined the Elastase-tva-based RCAS-TVA pancreatic cancer model with the established LSL-KrasG12D, Ptf1a-cre model. Delivery of RCAS viruses encoding β-cateninS37A and WNT1 stimulated the progression of premalignant pancreatic intraepithelial neoplasias (PanIN) and PDAC development. Moreover, mice injected with RCAS-β-cateninS37A or RCAS-Wnt1 had reduced survival relative to RCAS-GFP-injected controls (P < .05). Ectopic expression of active β-catenin, or its DNA-binding partner TCF4, enhanced transformation associated phenotypes in PDAC cells. In contrast, these phenotypes were significantly impaired by the introduction of ICAT, an inhibitor of the β-catenin/TCF4 interaction. By gene expression profiling, we identified Cyr61 as a target molecule of the WNT/β-catenin signaling pathway in pancreatic cancer cells. Nuclear β-catenin and CYR61 expression were predominantly detected in moderately to poorly differentiated murine and human PDAC. Indeed, nuclear β-catenin- and CYR61-positive PDAC patients demonstrated poor prognosis (P < .01). Knockdown of CYR61 in a β-catenin-activated pancreatic cancer cell line reduced soft agar, migration and invasion activity. Together, these data suggest that the WNT/β-catenin signaling pathway enhances pancreatic cancer development and malignancy in part via up-regulation of CYR61.
Collapse
Affiliation(s)
- Makoto Sano
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605; Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan.
| | - David R Driscoll
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Wilfredo E DeJesus-Monge
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Brian Quattrochi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Victoria A Appleman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Nao Yoshida
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shintaro Yamazaki
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Tadatoshi Takayama
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Masahiko Sugitani
- Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan
| | - Norimichi Nemoto
- Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan
| | - David S Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021
| | - Brian C Lewis
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605; Cancer Center, University of Massachusetts Medical School, Worcester, MA, 01605.
| |
Collapse
|
45
|
Cardoso J, Mesquita M, Dias Pereira A, Bettencourt-Dias M, Chaves P, Pereira-Leal JB. CYR61 and TAZ Upregulation and Focal Epithelial to Mesenchymal Transition May Be Early Predictors of Barrett's Esophagus Malignant Progression. PLoS One 2016; 11:e0161967. [PMID: 27583562 PMCID: PMC5008832 DOI: 10.1371/journal.pone.0161967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022] Open
Abstract
Barrett's esophagus is the major risk factor for esophageal adenocarcinoma. It has a low but non-neglectable risk, high surveillance costs and no reliable risk stratification markers. We sought to identify early biomarkers, predictive of Barrett's malignant progression, using a meta-analysis approach on gene expression data. This in silico strategy was followed by experimental validation in a cohort of patients with extended follow up from the Instituto Português de Oncologia de Lisboa de Francisco Gentil EPE (Portugal). Bioinformatics and systems biology approaches singled out two candidate predictive markers for Barrett's progression, CYR61 and TAZ. Although previously implicated in other malignancies and in epithelial-to-mesenchymal transition phenotypes, our experimental validation shows for the first time that CYR61 and TAZ have the potential to be predictive biomarkers for cancer progression. Experimental validation by reverse transcriptase quantitative PCR and immunohistochemistry confirmed the up-regulation of both genes in Barrett's samples associated with high-grade dysplasia/adenocarcinoma. In our cohort CYR61 and TAZ up-regulation ranged from one to ten years prior to progression to adenocarcinoma in Barrett's esophagus index samples. Finally, we found that CYR61 and TAZ over-expression is correlated with early focal signs of epithelial to mesenchymal transition. Our results highlight both CYR61 and TAZ genes as potential predictive biomarkers for stratification of the risk for development of adenocarcinoma and suggest a potential mechanistic route for Barrett's esophagus neoplastic progression.
Collapse
Affiliation(s)
- Joana Cardoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Ophiomics—Precision Medicine, Lisboa, Portugal
- * E-mail:
| | - Marta Mesquita
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- Faculdade de Ciências da Saúde–Universidade da Beira Interior, Covilhã, Portugal
| | - António Dias Pereira
- Faculdade de Ciências da Saúde–Universidade da Beira Interior, Covilhã, Portugal
- Serviço de Gastrenterologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
| | | | - Paula Chaves
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- Faculdade de Ciências da Saúde–Universidade da Beira Interior, Covilhã, Portugal
| | - José B. Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Ophiomics—Precision Medicine, Lisboa, Portugal
| |
Collapse
|
46
|
Human pancreatic cancer progression: an anarchy among CCN-siblings. J Cell Commun Signal 2016; 10:207-216. [PMID: 27541366 DOI: 10.1007/s12079-016-0343-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Decades of basic and translational studies have identified the mechanisms by which pancreatic cancer cells use molecular pathways to hijack the normal homeostasis of the pancreas, promoting pancreatic cancer initiation, progression, and metastasis, as well as drug resistance. These molecular pathways were explored to develop targeted therapies to prevent or cure this fatal disease. Regrettably, the studies found that majority of the molecular events that dictate carcinogenic growth in the pancreas are non-actionable (potential non-responder groups of targeted therapy). In this review we discuss exciting discoveries on CCN-siblings that reveal how CCN-family members contribute to the different aspects of the development of pancreatic cancer with special emphasis on therapy.
Collapse
|
47
|
Hawa Z, Haque I, Ghosh A, Banerjee S, Harris L, Banerjee SK. The miRacle in Pancreatic Cancer by miRNAs: Tiny Angels or Devils in Disease Progression. Int J Mol Sci 2016; 17:E809. [PMID: 27240340 PMCID: PMC4926343 DOI: 10.3390/ijms17060809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/04/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with increasing incidence and high mortality. Surgical resection is the only potentially curative treatment of patients with PDAC. Because of the late presentation of the disease, about 20 percent of patients are candidates for this treatment. The average survival of resected patients is between 12 and 20 months, with a high probability of relapse. Standard chemo and radiation therapies do not offer significant improvement of the survival of these patients. Furthermore, novel treatment options aimed at targeting oncogenes or growth factors in pancreatic cancer have proved unsuccessful. Thereby, identifying new biomarkers that can detect early stages of this disease is of critical importance. Among these biomarkers, microRNAs (miRNAs) have supplied a profitable recourse and become an attractive focus of research in PDAC. MiRNAs regulate many genes involved in the development of PDAC through mRNA degradation or translation inhibition. The possibility of intervention in the molecular mechanisms of miRNAs regulation could begin a new generation of PDAC therapies. This review summarizes the reports describing miRNAs involvement in cellular processes involving pancreatic carcinogenesis and their utility in diagnosis, survival and therapeutic potential in pancreatic cancer.
Collapse
Affiliation(s)
- Zuhair Hawa
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| | - LaCoiya Harris
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66205, USA.
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| |
Collapse
|
48
|
Sawyer AJ, Kyriakides TR. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization. Adv Drug Deliv Rev 2016; 97:56-68. [PMID: 26763408 DOI: 10.1016/j.addr.2015.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases.
Collapse
|
49
|
Han S, Bui NT, Ho MT, Kim YM, Cho M, Shin DB. Dexamethasone Inhibits TGF-β1-Induced Cell Migration by Regulating the ERK and AKT Pathways in Human Colon Cancer Cells Via CYR61. Cancer Res Treat 2015; 48:1141-53. [PMID: 26693911 PMCID: PMC4946372 DOI: 10.4143/crt.2015.209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/14/2015] [Indexed: 12/17/2022] Open
Abstract
PURPOSE One of the features in cancer development is the migration of cancer cells to form metastatic lesions. CYR61 protein promotes migration and the epithelial-mesenchymal transition in several cancer cell types. Evidence suggests that CYR61 and dexamethasone are relevant to colorectal cancer. However, relationships between them and colorectal cancer are still unclear. Understanding the molecular mechanism of colorectal cancer progression related with CYR61 and dexamethasone, which is widely used for combination chemotherapy, is necessary for improved therapy. MATERIALS AND METHODS We used colorectal cancer cells, HCT116, co-treated with transforming growth factor β1 (TGF-β1) and dexamethasone to examine the inhibitory migration effect of dexamethasone by migratory assay. Alternatively, both migratory pathways, expression of AKT and ERK, and the target factor CYR61 was also tested by co-treatment with TGF-β1 and dexamethasone. RESULTS We report that dexamethasone significantly inhibited TGF-β1-induced cell migration, without affecting cell proliferation. Importantly, we observed that TGF-β1 promoted the epithelial-mesenchymal transition process and that dexamethasone co-treatment abolished this effect. ERK and AKT signaling pathways were found to mediate TGF-β1-induced migration, which was inhibited by dexamethasone. In addition, TGF-β1 treatment induced CYR61 expression whereas dexamethasone reduced it. These observations were compatible with the modulation of migration observed following treatment of HCT116 cells with human recombinant CYR61 and anti-CYR61 antibody. Our results also indicated that TGF-β1 enhanced collagen I and reduced matrix metalloproteinase 1 expression, which was reversed by dexamethasone treatment. CONCLUSION These findings suggested that dexamethasone inhibits AKT and ERK phosphorylation, leading to decreased CYR61 expression, which in turn blocks TGF-β1-induced migration.
Collapse
Affiliation(s)
- Sanghoon Han
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Ngoc Thuy Bui
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Manh Tin Ho
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Young Mee Kim
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Moonjae Cho
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Dong Bok Shin
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
50
|
O-Fucosylation of CCN1 is required for its secretion. FEBS Lett 2015; 589:3287-93. [PMID: 26424659 DOI: 10.1016/j.febslet.2015.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
The matricellular protein CCN1, also known as Cyr61, is a secreted ligand and has numerous functions. Human CCN1 contains one predicted O-fucosylation site in the thrombospondin type-1 repeat (TSR1) domain at Thr(242). In this report, we demonstrated that CCN1 is O-fucosylated at Thr(242) using mass spectrometry. Deficiency of O-fucosylation resulted in the decrement of the cell surface localization and the secretion of CCN1. Furthermore, knockdown of protein O-fucosyltransferase 2, which modifies a specific Ser/Thr residue in the TSR1 domain, decreased secreted levels of CCN1. These results demonstrated that O-fucosylation of CCN1 at Thr(242) regulates its secretion.
Collapse
|