1
|
Zhang L, Chen Z, Sun G, Li C, Wu P, Xu W, Zhu H, Zhang Z, Tang Y, Li Y, Li Y, Xu S, Li H, Chen M, Xiao F, Zhang Y, Zhang W. Dynamic landscape of m6A modifications and related post-transcriptional events in muscle-invasive bladder cancer. J Transl Med 2024; 22:912. [PMID: 39380003 PMCID: PMC11460118 DOI: 10.1186/s12967-024-05701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Muscle-invasive bladder carcinoma (MIBC) is a serious and more advanced stage of bladder carcinoma. N6-Methyladenosine (m6A) is a dynamic and reversible modifications that primarily affects RNA stability and alternative splicing. The dysregulation of m6A in MIBC can be potential target for clinical interventions, but there have been limited studies on m6A modifications in MIBC and their associations with post-transcriptional regulatory processes. METHODS Paired tumor and adjacent-normal tissues were obtained from three patients with MIBC following radical cystectomy. The additional paired tissues for validation were obtained from patients underwent transurethral resection. Utilizing Nanopore direct-RNA sequencing, we characterized the m6A RNA methylation landscape in MIBC, with a focus on identifying post-transcriptional events potentially affected by changes in m6A sites. This included an examination of differential transcript usage, polyadenylation signal sites, and variations in poly(A) tail length, providing insights into the broader impact of m6A alterations on RNA processing in MIBC. RESULTS The prognostic-related m6A genes and m6A-risk model constructed by machine learning enables the stratification of high and low-risk patients with precision. A novel m6A modification site in the 3' untranslated region (3'UTR) of IGLL5 gene were identified, characterized by a lower m6A methylation ratio, elongated poly(A) tails, and a notable bias in transcript usage. Furthermore, we discovered two particular transcripts, VWA1-203 and CEBPB-201. VWA1-203 displayed diminished m6A methylation levels, a truncated 3'UTR, and an elongated poly(A) tail, whereas CEBPB-201 showed opposite trends, highlighting the complex interplay between m6A modifications and RNA processing. Source code was provided on GitHub ( https://github.com/lelelililele/Nanopore-m6A-analysis ). CONCLUSIONS The state-of-the-art Nanopore direct-RNA sequencing and machine learning techniques enables comprehensive identification of m6A modification and provided insights into the potential post-transcriptional regulation mechanisms on the development and progression in MIBC.
Collapse
Affiliation(s)
- Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziwei Chen
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengjie Wu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenrui Xu
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Hui Zhu
- Department of Nuclear Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zaifeng Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongbin Tang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yayu Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- University of Chinese Academy of Sciences Medical School, Beijing, China
| | - Yifei Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Siyuan Xu
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hexin Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Chen
- National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Xiao
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yaqun Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Wei Zhang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Gitto L, Vandermeer T, Lubin DJ, Zaccarini DJ. Mesenteric desmoid fibromatosis entrapping metastatic urothelial carcinoma: a unique collision tumor or fibromatosis-like variant? SURGICAL AND EXPERIMENTAL PATHOLOGY 2022. [DOI: 10.1186/s42047-022-00114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractA collision tumor is a neoplastic lesion comprised of two or more distinct cell populations with distinct borders. Desmoid fibromatosis (DF) is a rare musculoaponeurotic tissue tumor that grows deep in the connective tissue and shows locally aggressive behavior. Only two cases of collision tumors with desmoid fibromatosis are reported in the English literature, albeit papillary thyroid carcinoma with desmoid fibromatosis-like stroma is regarded as a variant rather than a collision tumor. We present a unique case of collision tumor with desmoid fibromatosis surrounding intra-abdominal metastasis from urothelial carcinoma. A 65-year-old white male with history of bladder and left renal pelvis high-grade papillary urothelial carcinoma status post-nephrectomy was found to have a small bowel obstruction due to a soft tissue mass. Histology of the mass showed multiple matted lymph nodes with metastatic urothelial carcinoma admixed with a proliferation of spindle cells positive for nuclear beta-catenin, consistent with desmoid fibromatosis. While the prior surgical site likely acted as a nidus for development of desmoid fibromatosis, we also hypothesize that a dysregulation of beta-catenin signaling pathways within the cancer cells might have attributed to the spindle cell proliferation in the stroma surrounding the tumor. Our case emphasized the importance of clinical suspicion of desmoid fibromatosis in patients with metastatic cancer, requiring a prompt diagnosis and treatment to decrease the risk of complications and local recurrence.
Collapse
|
3
|
Montazer M, Taghehchian N, Mojarrad M, Moghbeli M. Role of microRNAs in regulation of WNT signaling pathway in urothelial and prostate cancers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Urothelial cancer (UC) and prostate cancer (PCa) are the most common cancers among men with a high ratio of mortality in advanced-stages. The higher risk of these malignancies among men can be associated with higher carcinogens exposure. Molecular pathology of UC and PCa is related to the specific mutations and aberrations in some signaling pathways. WNT signaling is a highly regulated pathway that has a pivotal role during urothelial and prostate development and homeostasis. This pathway also plays a vital role in adult stem cell niches to maintain a balance between stemness and differentiation. Deregulation of the WNT pathway is frequently correlated with tumor progression and metastasis in urothelial and prostate tumors. Therefore, regulatory factors of WNT pathways are being investigated as diagnostic or prognostic markers and novel therapeutic targets during urothelial and prostate tumorigenesis. MicroRNAs (miRNAs) have a pivotal role in WNT signaling regulation in which there are interactions between miRNAs and WNT signaling pathway during tumor progression. Since, the miRNAs are sensitive, specific, and noninvasive, they can be introduced as efficient biomarkers of tumor progression.
Main body
In present review, we have summarized all of the miRNAs that have been involved in regulation of WNT signaling pathway in urothelial and prostate cancers.
Conclusions
It was observed that miRNAs were mainly involved in regulation of WNT signaling in bladder cancer cells through targeting the WNT ligands and cytoplasmic WNT components such as WNT5A, WNT7A, CTNNB1, GSK3β, and AXIN. Whereas, miRNAs were mainly involved in regulation of WNT signaling in prostate tumor cells via targeting the cytoplasmic WNT components and WNT related transcription factors such as CTNNB1, GSK3β, AXIN, TCF7, and LEF1. MiRNAs mainly functioned as tumor suppressors in bladder and prostate cancers through the WNT signaling inhibition. This review paves the way of introducing a noninvasive diagnostic panel of WNT related miRNAs in urothelial and prostate tumors.
Collapse
|
4
|
Walkowski B, Kleibert M, Majka M, Wojciechowska M. Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart. Cells 2022; 11:cells11091553. [PMID: 35563860 PMCID: PMC9105930 DOI: 10.3390/cells11091553] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite the significant decline in mortality, cardiovascular diseases are still the leading cause of death worldwide. Among them, myocardial infarction (MI) seems to be the most important. A further decline in the death rate may be achieved by the introduction of molecularly targeted drugs. It seems that the components of the PI3K/Akt signaling pathway are good candidates for this. The PI3K/Akt pathway plays a key role in the regulation of the growth and survival of cells, such as cardiomyocytes. In addition, it has been shown that the activation of the PI3K/Akt pathway results in the alleviation of the negative post-infarct changes in the myocardium and is impaired in the state of diabetes. In this article, the role of this pathway was described in each step of ischemia and subsequent left ventricular remodeling. In addition, we point out the most promising substances which need more investigation before introduction into clinical practice. Moreover, we present the impact of diabetes and widely used cardiac and antidiabetic drugs on the PI3K/Akt pathway and discuss the molecular mechanism of its effects on myocardial ischemia and left ventricular remodeling.
Collapse
Affiliation(s)
- Bartosz Walkowski
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
5
|
Wu J, Sun Z, Bi Q, Wang W. A Ferroptosis-Related Genes Model Allows for Prognosis and Treatment Stratification of Clear Cell Renal Cell Carcinoma: A Bioinformatics Analysis and Experimental Verification. Front Oncol 2022; 12:815223. [PMID: 35155251 PMCID: PMC8828561 DOI: 10.3389/fonc.2022.815223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Clear cell renal cell carcinoma (ccRCC) is a malignant tumor characterized by poor prognosis and difficult treatment. Ferroptosis is a relatively new form of programmed cell death that involved in cancer development and therapy resistance. Studies have shown that targeted ferroptosis may be a novel option for the treatment of ccRCC, but key genes and their roles between ferroptosis and ccRCC are limited so far. This study aims to develop a ccRCC stratified model based on ferroptosis-related genes to provide a reference for the prognosis prediction and the individualized treatment of ccRCC. Materials and Methods The mRNAs expression data of ccRCC and FRGs were obtained from TCGA and FerrDb database, respectively. Through multiple analysis, a 4-FRG based prognostic stratified model was constructed and its predictive performance was validated through various methods. Then, a nomogram based on the model was constructed and ccRCC patients stratified by the model were analyzed for tumor microenvironment, immune infiltration, sensitivity for immune checkpoint inhibitors (ICIs)/traditional anti-tumor therapy and tumor mutation burden (TMB). Functional enrichment analysis was performed to explore potential biological pathways. Finally, we verified our model by RT-qPCR, siRNA transfection, scratch assay and CCK-8 assay. Results In this study, the stratified model and a model-based nomogram can accurately predict the prognosis of ccRCC patients in TCGA database. The patients stratified by the model showed different tumor microenvironments, immune infiltration, TMB, resistance to traditional and ICIs therapy, and sensitivity to ferroptosis. Functional enrichment analysis suggested several biological pathways related to the process and prognosis of ccRCC. RT-qPCR confirmed the differential expression of ferroptosis-related genes. Scratch assay and CCK-8 assay indicated the promotion effects of CD44 on the proliferation and migration of ccRCC. Conclusion In this study, we established a novel ccRCC stratified model based on FRGs, which can accurately predict the prognosis of ccRCC patients and provide a reference for clinical individualized treatment.
Collapse
Affiliation(s)
- Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Qing Bi
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Weidle UH, Nopora A. Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:349-368. [PMID: 33994361 PMCID: PMC8240043 DOI: 10.21873/cgp.20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
In order to identify new targets and treatment modalities for clear cell renal carcinoma, we surveyed the literature with respect to microRNAs involved in this disease. In this review, we have focused on up- and down-regulated miRs which mediate efficacy in preclinical clear-cell renal carcinoma-related in vivo models. We have identified 10 up-regulated and 33 down-regulated micro-RNAs according to this criterion. As proof-of-concept, micro-RNAs interfering with VEGF (miR-205p) and mTOR (mir-99a) pathways, which are modulated by approved drugs for this disease, have been identified. miRs targeting hypoxia induced factor-2α (HIF-2α) (miR-145), E3 ubiquitinylases speckle-type POZ protein (SPOP) (miR 520/372/373) and casitas B-lineage lymphoma (CBL) (miR-200a-3p), interfere with druggable targets. Further identified miRs interfere with cell-cycle dependent kinases, such as CDK2 (miR-200c), CDK4, 6 (miR-1) and CDK4, 9 (206c). Transmembrane receptor Ral interacting protein of 76 kD (RLIP76), targeted by mir-137, has emerged as another important target for ccRCC. Additional miRs and their targets merrying further preclinical validation are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
7
|
Siljee S, Milne B, Brasch HD, Bockett N, Patel J, Davis PF, Kennedy-Smith A, Itinteang T, Tan ST. Expression of Components of the Renin-Angiotensin System by Cancer Stem Cells in Renal Clear Cell Carcinoma. Biomolecules 2021; 11:537. [PMID: 33916968 PMCID: PMC8067590 DOI: 10.3390/biom11040537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022] Open
Abstract
This study investigated the expression of components of the renin-angiotensin system (RAS) by cancer stem cells (CSCs) we have recently demonstrated in renal clear cell carcinoma (RCCC). Fifteen RCCC tissue samples underwent immunohistochemical staining for components of the RAS: renin, pro-renin receptor (PRR), angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), and angiotensin II receptor 2 (AT2R). Immunofluorescence co-staining or double immunohistochemical staining of these components of the RAS with stemness-associated markers OCT4 or KLF4 was performed on two of the samples. Protein and transcript expression of these components of the RAS in six RCCC tissue samples was investigated using western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR), respectively. In addition, angiotensin II receptor 1 (AT1R) was investigated using RT-qPCR only. Immunohistochemical staining demonstrated expression of renin, PRR, and ACE2 in 11, 13, and 13 out of 15 RCCC samples, respectively, while AT2R was expressed in all 15 samples. ACE was detected in the endothelium of normal vasculature only. Double immunohistochemical staining demonstrated localization of ACE2, but not renin, to the KLF4+ CSCs. Immunofluorescence staining showed localization of PRR and AT2R to the OCT4+ CSCs. Western blotting confirmed protein expression of all components of the RAS except renin. RT-qPCR demonstrated transcript expression of all components of the RAS including AT1R, but not AT2R, in all six RCCC tissue samples. This study demonstrated expression of PRR, ACE2, and AT2R by the CSCs within RCCC. Further studies may lead to novel therapeutic targeting of CSCs by manipulation of the RAS in the treatment of this aggressive cancer.
Collapse
Affiliation(s)
- Sam Siljee
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Bridget Milne
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Helen D. Brasch
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Nicholas Bockett
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Josie Patel
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Andrew Kennedy-Smith
- Department of Urology, Wellington Regional Hospital, Wellington 6021, New Zealand;
| | - Tinte Itinteang
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
8
|
Ahmad B, Gamallat Y, Khan MF, Din SR, Israr M, Ahmad M, Tahir N, Azam N, Rahman KU, Xin W, Zexu W, Linjie P, Su P, Liang W. Natural Polyphyllins (I, II, D, VI, VII) Reverses Cancer Through Apoptosis, Autophagy, Mitophagy, Inflammation, and Necroptosis. Onco Targets Ther 2021; 14:1821-1841. [PMID: 33732000 PMCID: PMC7956893 DOI: 10.2147/ott.s287354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. Conventional therapies, including surgery, radiation, and chemotherapy, have limited success because of secondary resistance. Therefore, safe, non-resistant, less toxic, and convenient drugs are urgently required. Natural products (NPs), primarily sourced from medicinal plants, are ideal for cancer treatment because of their low toxicity and high success. NPs cure cancer by regulating different pathways, such as PI3K/AKT/mTOR, ER stress, JNK, Wnt, STAT3, MAPKs, NF-kB, MEK-ERK, inflammation, oxidative stress, apoptosis, autophagy, mitophagy, and necroptosis. Among the NPs, steroid saponins, including polyphyllins (I, II, D, VI, and VII), have potent pharmacological, analgesic, and anticancer activities for the induction of cytotoxicity. Recent research has demonstrated that polyphyllins (PPs) possess potent effects against different cancers through apoptosis, autophagy, inflammation, and necroptosis. This review summarizes the available studies on PPs against cancer to provide a basis for future research.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yaser Gamallat
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | | | - Syed Riaz Din
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Muhammad Israr
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,Biochemistry and Molecular Biology, College of Life Science, Hebei Normal University, Hebei, People's Republic of China
| | - Manzoor Ahmad
- Department of Chemistry, Malakand University, Chakdara, KPK, I. R. Pakistan
| | - Naeem Tahir
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Nasir Azam
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Khalil Ur Rahman
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Xin
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Zexu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Peng Linjie
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Pengyu Su
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Liang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical, Dalian City, Liaoning Province, 116011, People's Republic of China
| |
Collapse
|
9
|
Piotrowska Ż, Niezgoda M, Młynarczyk G, Acewicz M, Kasacka I. Comparative Assessment of the WNT/β-Catenin Pathway, CacyBP/SIP, and the Immunoproteasome Subunit LMP7 in Various Histological Types of Renal Cell Carcinoma. Front Oncol 2020; 10:566637. [PMID: 33330038 PMCID: PMC7717951 DOI: 10.3389/fonc.2020.566637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022] Open
Abstract
Objective The Wnt/ß-catenin pathway plays an important role in pathogenesis of variety cancers. Most studies on changes in WNT/β-catenin pathway in renal cell carcinoma (RCC) apply only to clear cell RCC, while there are no comparative assessments of this signaling pathway in various histological types of renal tumors in the available literature. Additionally, considering the close relationship between WNT/β-catenin signaling, CacyBP/SIP and proteasomal activity, it seemed worth comparing WNT/β-catenin pathway, CacyBP/SIP and LMP7 immunoproteasome subunit in human samples of clear cell, papillary, and chromophobe RCC. Methods Tests were performed on sections of three types of kidney tumors together with surrounding unchanged tissue fragments collected from 50 patients. Samples were divided into three groups depending on the histological type of cancer: clear cell, papillary and chromophobe RCC. Immunohistochemistry and PCR methods were used to identify WNT10A, Fzd5, β-catenin, GSK-3ß, CacyBP/SIP, LMP7, and gene expression. Results Immunoreactivity and expression of WNT10A, Fzd5, β-catenin, GSK-3ß, CacyBP/SIP, LMP7 in clear cell RCC was markedly increased compared to non-cancerous kidney tissue. In papillary RCC, immunoreactivity and expression of WNT/β-catenin pathway, CacyBP/SIP, LMP7 was also increased compared to non-malignant kidneys, but it was less pronounced than in clear cell RCC. The least substantial increase in immunoreactivity and expression of WNT/β-catenin pathway, CacyBP/SIP, LMP7 was found in chromophobe RCC, compared to other RCC histological subtypes studied. Conclusions Study results suggest an important role of WNT/β-catenin pathway, CacyBP/SIP and LMP7 in RCC carcinogenesis, and may indicate new aspects of pathomechanisms leading to differences in the biology of clear cell, papillary and chromophobe RCC.
Collapse
Affiliation(s)
- Żaneta Piotrowska
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Michał Niezgoda
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | | | - Magdalena Acewicz
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
10
|
Wu G, Weng W, Xia P, Yan S, Zhong C, Xie L, Xie Y, Fan G. Wnt signalling pathway in bladder cancer. Cell Signal 2020; 79:109886. [PMID: 33340660 DOI: 10.1016/j.cellsig.2020.109886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
Bladder cancer (BC) is one of the most common tumours of the urinary system and is also known as a highly malignant tumour. In addition to conventional diagnosis and treatment methods, recent research has focused on studying the molecular mechanisms related to BC, in the hope that new, less toxic and effective targeted anticancer drugs and new diagnostic markers can be discovered. It is known that the Wingless (Wnt) signalling pathway and its related genes, proteins and other substances are involved in multiple biological processes of various tumours. Clarifying the contribution of the Wnt signalling pathway in bladder tumours will help establish early diagnosis indicators, develop new therapeutic drugs and evaluate the prognosis for BC. This review aims to summarise previous studies related to BC and the Wnt signalling pathway, with a focus on exploring the participating substances and their mechanisms in the regulation of the Wnt signalling pathway to better determine how to promote new chemotherapeutic drugs, potential therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Guanlin Wu
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin 13125, Germany; Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin 13125, Germany.
| | - Weidong Weng
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, Tübingen D-72076, Germany.
| | - Pengfei Xia
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin 13125, Germany; Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin 13125, Germany.
| | - Shixian Yan
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin 13125, Germany; Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin 13125, Germany.
| | - Cheng Zhong
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin 13125, Germany; Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin 10117, Germany.
| | - Lei Xie
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China.
| | - Yu Xie
- Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China.
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China; Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China; The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
11
|
Shokoohmand A, Ren J, Baldwin J, Atack A, Shafiee A, Theodoropoulos C, Wille ML, Tran PA, Bray LJ, Smith D, Chetty N, Pollock PM, Hutmacher DW, Clements JA, Williams ED, Bock N. Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts. Biomaterials 2019; 220:119402. [PMID: 31400612 DOI: 10.1016/j.biomaterials.2019.119402] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023]
Abstract
Representative in vitro models that mimic the native bone tumor microenvironment are warranted to support the development of more successful treatments for bone metastases. Here, we have developed a primary cell 3D model consisting of a human osteoblast-derived tissue-engineered construct (hOTEC) indirectly co-cultured with patient-derived prostate cancer xenografts (PDXs), in order to study molecular interactions in a patient-derived microenvironment context. The engineered biomimetic microenvironment had high mineralization and embedded osteocytes, and supported a high degree of cancer cell osteomimicry at the gene, protein and mineralization levels when co-cultured with prostate cancer PDXs from a lymph node metastasis (LuCaP35) and bone metastasis (BM18) from patients with primary prostate cancer. This fully patient-derived model is a promising tool for the assessment of new molecular mechanisms and as a personalized pre-clinical platform for therapy testing for patients with prostate cancer bone metastases.
Collapse
Affiliation(s)
- Ali Shokoohmand
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Jiongyu Ren
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Jeremy Baldwin
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Anthony Atack
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Abbas Shafiee
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Christina Theodoropoulos
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Marie-Luise Wille
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Phong A Tran
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Laura J Bray
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Deborah Smith
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia; Department of Anatomical Pathology, Mater Hospital Brisbane, QLD, Australia
| | - Naven Chetty
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia; Department of Anatomical Pathology, Mater Hospital Brisbane, QLD, Australia
| | - Pamela M Pollock
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Judith A Clements
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Elizabeth D Williams
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Nathalie Bock
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Wang Q, Ding H, He Y, Li X, Cheng Y, Xu Q, Yang Y, Liao G, Meng X, Huang C, Li J. NLRC5 mediates cell proliferation, migration, and invasion by regulating the Wnt/β-catenin signalling pathway in clear cell renal cell carcinoma. Cancer Lett 2018; 444:9-19. [PMID: 30543814 DOI: 10.1016/j.canlet.2018.11.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/03/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
NLRC5, a newly discovered member of the NLR family, has been reported to regulate immune responses and promote cell proliferation, migration, and invasion in hepatocellular carcinoma. However, to date, the potential regulatory roles and molecular mechanisms by which NLRC5 affects the development and progression of clear cell renal cell carcinoma (ccRCC) remain largely unknown. In this study, human clinical data from The Cancer Genome Atlas database revealed that increased NLRC5 expression was associated with advanced stage and poor prognosis in ccRCC patients. Moreover, experimental results showed that NLRC5 is aberrantly overexpressed in human ccRCC tissues and cell lines. Depletion of NLRC5 attenuated ccRCC cell proliferation, migration, and invasion and suppressed ccRCC growth in a nude mouse model. By contrast, overexpression of NLRC5 promoted the proliferation, migration, and invasion of ccRCC cells in vitro. Additionally, NLRC5 expression is not only positively correlated with β-catenin but also coordinates the activation of the downstream Wnt/β-catenin signalling pathway. Together, our data suggest that NLRC5 may be a potential therapeutic target for ccRCC therapy.
Collapse
Affiliation(s)
- Qin Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Handong Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China; Institute of Urology, Anhui Medical University, Hefei, 230032, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, China
| | - Yinghua He
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Yahui Cheng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Qingqing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Yue Yang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Guiyi Liao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China; Institute of Urology, Anhui Medical University, Hefei, 230032, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
13
|
Siddiqui MR, Grant C, Sanford T, Agarwal PK. Current clinical trials in non-muscle invasive bladder cancer. Urol Oncol 2018; 35:516-527. [PMID: 28778250 DOI: 10.1016/j.urolonc.2017.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The treatment options for non-muscle invasive bladder cancer (NMIBC) remain limited. Bacillus Calmette-Guerin (BCG) was the last major breakthrough in bladder cancer therapy almost 4 decades ago. There have been improvements in the understanding of immune therapies and cancer biology, leading to the development of novel agents. This has led to many clinical trials that are currently underway to find the next generation of therapies for NMIBC. METHOD We reviewed clinicaltrials.org and pubmed.gov to find the recently completed and ongoing clinical trials in NIMBC. Included in this review are clinical trials that are currently active and trials that were completed in and after 2014. RESULT Many trials with BCG-naive and BCG-unresponsive/recurrent/refractory/failure patients with NMIBC are either currently underway or have been recently completed. A wide variety of novel therapeutic agents are being investigated that range from cytotoxic agents to immunomodulatory agents to targeted molecular therapies. Other approaches include cancer vaccines, gene therapies, and chemoradiation potentiation agents. Novel drug-delivery methods are also being tested. CONCLUSION This comprehensive update of current trials provides researchers an overview of the current clinical trial landscape for patients with NMIBC.
Collapse
Affiliation(s)
| | - Campbell Grant
- Department of Urology, George Washington University Medical Center, Washington, D.C
| | - Thomas Sanford
- Bladder Cancer Section, Urologic Oncology Branch, National Cancer Institute, NIH, Bathesda, MD
| | - Piyush K Agarwal
- Bladder Cancer Section, Urologic Oncology Branch, National Cancer Institute, NIH, Bathesda, MD.
| |
Collapse
|
14
|
Peixoto A, Fernandes E, Gaiteiro C, Lima L, Azevedo R, Soares J, Cotton S, Parreira B, Neves M, Amaro T, Tavares A, Teixeira F, Palmeira C, Rangel M, Silva AMN, Reis CA, Santos LL, Oliveira MJ, Ferreira JA. Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein O-glycosylation extension. Oncotarget 2018; 7:63138-63157. [PMID: 27542232 PMCID: PMC5325352 DOI: 10.18632/oncotarget.11257] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Invasive bladder tumours express the cell-surface Sialyl-Tn (STn) antigen, which stems from a premature stop in protein O-glycosylation. The STn antigen favours invasion, immune escape, and possibly chemotherapy resistance, making it attractive for target therapeutics. However, the events leading to such deregulation in protein glycosylation are mostly unknown. Since hypoxia is a salient feature of advanced stage tumours, we searched into how it influences bladder cancer cells glycophenotype, with emphasis on STn expression. Therefore, three bladder cancer cell lines with distinct genetic and molecular backgrounds (T24, 5637 and HT1376) were submitted to hypoxia. To disclose HIF-1α-mediated events, experiments were also conducted in the presence of Deferoxamine Mesilate (Dfx), an inhibitor of HIF-1α proteasomal degradation. In both conditions all cell lines overexpressed HIF-1α and its transcriptionally-regulated protein CA-IX. This was accompanied by increased lactate biosynthesis, denoting a shift toward anaerobic metabolism. Concomitantly, T24 and 5637 cells acquired a more motile phenotype, consistent with their more mesenchymal characteristics. Moreover, hypoxia promoted STn antigen overexpression in all cell lines and enhanced the migration and invasion of those presenting more mesenchymal characteristics, in an HIF-1α-dependent manner. These effects were reversed by reoxygenation, demonstrating that oxygen affects O-glycan extension. Glycoproteomics studies highlighted that STn was mainly present in integrins and cadherins, suggesting a possible role for this glycan in adhesion, cell motility and invasion. The association between HIF-1α and STn overexpressions and tumour invasion was further confirmed in bladder cancer patient samples. In conclusion, STn overexpression may, in part, result from a HIF-1α mediated cell-survival strategy to adapt to the hypoxic challenge, favouring cell invasion. In addition, targeting STn-expressing glycoproteins may offer potential to treat tumour hypoxic niches harbouring more malignant cells.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Biomaterials for Multistage Drug and Cell Delivery, INEB-Institute for Biomedical Engineering, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Janine Soares
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Beatriz Parreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Teresina Amaro
- Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Filipe Teixeira
- LAQV-REQUIMTE, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Health School of University Fernando Pessoa, Porto, Portugal
| | - Maria Rangel
- UCIBIO-REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - André M N Silva
- UCIBIO-REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, Porto University, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Health School of University Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - Maria José Oliveira
- New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| |
Collapse
|
15
|
Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K, Tang A. Wnt signaling in cervical cancer? J Cancer 2018; 9:1277-1286. [PMID: 29675109 PMCID: PMC5907676 DOI: 10.7150/jca.22005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer (CC) is the second most common malignant cancer in women. CC is difficult to diagnose, has a high recurrence rate, and is resistant to systemic therapies; as a result, CC patients have a relatively poor prognosis. One potential link to CC is the Wnt signaling pathway and its downstream effectors, which regulate cell differentiation, proliferation, migration, and fate. The aberrant activation of Wnt signaling is associated with various cancers, including CC. Recent studies have shown that activating or inhibiting the intracellular signal transduction in this pathway can regulate cancer cell growth and viability. This review will summarize the experimental evidence supporting the significance of the Wnt signaling pathway in CC, and will also discuss the current clinical role of Wnt signaling in CC diagnosis, therapy, and prognosis.
Collapse
Affiliation(s)
- Min Yang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xianping Li
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yixin Xie
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingjing Tian
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Kan Zhang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Aiguo Tang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
16
|
Wu CL, Ho JY, Hung SH, Yu DS. miR-429 expression in bladder cancer and its correlation with tumor behavior and clinical outcome. Kaohsiung J Med Sci 2018; 34:335-340. [PMID: 29747777 DOI: 10.1016/j.kjms.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 01/18/2023] Open
Abstract
We previously showed that microRNA-429 (miR-429) played an important role in epithelial-mesenchymal transition (EMT) of urothelial cell carcinoma of the bladder. We herein evaluated the expression of miR-429 in bladder cancer and its potential relevance to clinicopathological characteristics and patient survival. Relative expression levels of miR-429 in surgical bladder cancer tissue specimens obtained from 76 patients with bladder cancer were measured by chromogenic in situ hybridization. miR-429 expression was significantly higher in specimens from alive patients than expired patients in both of 5-year overall survival (OS) (0.59 ± 0.09 vs. 0.27 ± 0.12; p < 0.05) and 5-year recurrence-free survival (RFS) (0.63 ± 0.10 vs. 0.33 ± 0.10; p < 0.05). The univariate Cox proportional hazards analysis revealed that tumor grade, stage, and miR-429 expression were significantly associated with patient survival. In multivariate analysis, tumor stage and miR-429 expression were significantly associated with 5-year OS (hazard ratio [HR] 4.70, p < 0.001) and 5-year-RFS (HR 2.20, p < 0.05). The Kaplan-Meier analysis showed that patients with miR-429 expression had significantly better 5-year OS and 5-year RFS rates than those without miR-429 expression (84.4% vs. 61.4%, p < 0.05 and 71.9% vs. 45.5%, p < 0.05, respectively). miR-429 may be considered as an adjunctive prognostic marker in addition to tumor grade and stage in bladder cancer.
Collapse
Affiliation(s)
- Chia-Lun Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Jar-Yi Ho
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shun-Hsing Hung
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Dah-Shyong Yu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan; Department of Surgery, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
17
|
A novel non-canonical Wnt signature for prostate cancer aggressiveness. Oncotarget 2018; 8:9572-9586. [PMID: 28030815 PMCID: PMC5354754 DOI: 10.18632/oncotarget.14161] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/23/2016] [Indexed: 01/22/2023] Open
Abstract
Activation of the Canonical Wnt pathway (CWP) has been linked to advanced and metastatic prostate cancer, whereas the Wnt5a-induced non-canonical Wnt pathway (NCWP) has been associated with both good and poor prognosis. A newly discovered NCWP, Wnt5/Fzd2, has been shown to induce epithelial-to-mesenchymal transition (EMT) in cancers, but has not been investigated in prostate cancer. The aim of this study was to investigate if the CWP and NCWP, in combination with EMT, are associated with metabolic alterations, aggressive disease and biochemical recurrence in prostate cancer. An initial analysis was performed using integrated transcriptomics, ex vivo and in vivo metabolomics, and histopathology of prostatectomy samples (n=129), combined with at least five-year follow-up. This analysis detected increased activation of NCWP through Wnt5a/ Fzd2 as the most common mode of Wnt activation in prostate cancer. This activation was associated with increased expression of EMT markers and higher Gleason score. The transcriptional association between NCWP and EMT was confirmed in five other publicly available patient cohorts (1519 samples in total). A novel gene expression signature of concordant activation of NCWP and EMT (NCWP-EMT) was developed, and this signature was significantly associated with metastasis and shown to be a significant predictor of biochemical recurrence. The NCWP-EMT signature was also associated with decreased concentrations of the metabolites citrate and spermine, which have previously been linked to aggressive prostate cancer. Our results demonstrate the importance of NCWP and EMT in prostate cancer aggressiveness, suggest a novel gene signature for improved risk stratification, and give new molecular insight.
Collapse
|
18
|
Rayn KN, Hale GR, Grave GPL, Agarwal PK. New therapies in nonmuscle invasive bladder cancer treatment. Indian J Urol 2018; 34:11-19. [PMID: 29343907 PMCID: PMC5769243 DOI: 10.4103/iju.iju_296_17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction: Nonmuscle invasive bladder cancer (NMIBC) remains a very challenging disease to treat with high rates of recurrence and progression associated with current therapies. Recent technological and biological advances have led to the development of novel agents in NMIBC therapy. Methods: We reviewed existing literature as well as currently active and recently completed clinical trials in NMIBC by querying PubMed.gov and clinicaltrials.gov. Results: A wide variety of new therapies in NMIBC treatment are currently being developed, utilizing recent developments in the understanding of immune therapies and cancer biology. Conclusion: The ongoing efforts to develop new therapeutic approaches for NMIBC look very promising and are continuing to evolve.
Collapse
Affiliation(s)
- Kareem N Rayn
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Graham R Hale
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Piyush K Agarwal
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
19
|
Pyrvinium Sensitizes Clear Cell Renal Cell Carcinoma Response to Chemotherapy Via Casein Kinase 1α-Dependent Inhibition of Wnt/β-Catenin. Am J Med Sci 2017; 355:274-280. [PMID: 29549930 DOI: 10.1016/j.amjms.2017.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Aberrant Wnt/β-catenin activation has been shown to play essential roles in cancer, including renal cell carcinoma (RCC). In this work, we demonstrate that Wnt/β-catenin inhibition by a Food and Drug Administration-approved drug, pyrvinium, effectively targets clear cell RCC and enhances chemotherapy agent's efficacy. MATERIALS AND METHODS We performed in vitro cell culture assays and in vivo xenograft tumor model to evaluate the effects of pyrvinium alone and its combination with paclitaxel, and analyzed the underlying mechanism(s) of pyrvinium's action in RCC. RESULTS We show that pyrvinium inhibits growth and induces apoptosis via caspase pathway in a panel of RCC cell lines. It decreases β-catenin activity and its downstream Wnt-targeted genes transcription via axin-mediated β-catenin protein reduction. Overexpression of β-catenin completely reverses the effects of pyrvinium, demonstrating that β-catenin inhibition is required for pyrvinium's action in clear cell RCC. Furthermore, we found that pyrvinium failed to decrease β-catenin protein level and activity in casein kinase 1α (CK1α)-depleted clear cell RCC cells, demonstrating that pyrvinium inhibits β-catenin in a CK1α-dependent manner. Notably, decreased tumor growth and β-catenin levels were observed in clear cell RCC xenograft mouse model treated with pyrvinium. Combination of pyrvinium and paclitaxel resulted in greater efficacy in in vitro and in vivo. CONCLUSIONS Our findings suggest that pyrvinium is a useful addition to the treatment armamentarium for clear cell RCC. Our work also demonstrate that targeting Wnt/β-catenin is a potential therapeutic strategy in clear cell RCC.
Collapse
|
20
|
Pinkerneil M, Hoffmann MJ, Kohlhof H, Schulz WA, Niegisch G. Evaluation of the Therapeutic Potential of the Novel Isotype Specific HDAC Inhibitor 4SC-202 in Urothelial Carcinoma Cell Lines. Target Oncol 2017; 11:783-798. [PMID: 27250763 PMCID: PMC5153417 DOI: 10.1007/s11523-016-0444-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Targeting of class I histone deacetylases (HDACs) exerts antineoplastic actions in various cancer types by modulation of transcription, upregulation of tumor suppressors, induction of cell cycle arrest, replication stress and promotion of apoptosis. Class I HDACs are often deregulated in urothelial cancer. 4SC-202, a novel oral benzamide type HDAC inhibitor (HDACi) specific for class I HDACs HDAC1, HDAC2 and HDAC3 and the histone demethylase LSD1, shows substantial anti-tumor activity in a broad range of cancer cell lines and xenograft tumor models. Aim The aim of this study was to investigate the therapeutic potential of 4SC-202 in urothelial carcinoma (UC) cell lines. Methods We determined dose response curves of 4SC-202 by MTT assay in seven UC cell lines with distinct HDAC1, HDAC2 and HDAC3 expression profiles. Cellular effects were further analyzed in VM-CUB1 and UM-UC-3 cells by colony forming assay, caspase-3/7 assay, flow cytometry, senescence assay, LDH release assay, and immunofluorescence staining. Response markers were followed by quantitative real-time PCR and western blotting. Treatment with the class I HDAC specific inhibitor SAHA (vorinostat) served as a general control. Results 4SC-202 significantly reduced proliferation of all epithelial and mesenchymal UC cell lines (IC50 0.15–0.51 μM), inhibited clonogenic growth and induced caspase activity. Flow cytometry revealed increased G2/M and subG1 fractions in VM-CUB1 and UM-UC-3 cells. Both effects were stronger than with SAHA treatment. Conclusion Specific pharmacological inhibition of class I HDACs by 4SC-202 impairs UC cell viability, inducing cell cycle disturbances and cell death. Combined inhibition of HDAC1, HDAC2 and HDAC3 seems to be a promising treatment strategy for UC. Electronic supplementary material The online version of this article (doi:10.1007/s11523-016-0444-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Pinkerneil
- Department of Urology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Duesseldorf, Germany
| | | | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Duesseldorf, Germany.
| |
Collapse
|
21
|
Chang J, Li Y, Wang X, Hu S, Wang H, Shi Q, Wang Y, Yang Y. Polyphyllin I suppresses human osteosarcoma growth by inactivation of Wnt/β-catenin pathway in vitro and in vivo. Sci Rep 2017; 7:7605. [PMID: 28790389 PMCID: PMC5548759 DOI: 10.1038/s41598-017-07194-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/27/2017] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma is the most common primary bone cancer in children and adolescents. In spite of aggressive treatment, osteosarcoma has a high mortality rate with minimal improvements in survival over past few decades. Polyphyllin I (PPI), a component in the traditional Chinese medicinal herb Paris polyphylla Smith, has been shown to have anti-tumor properties. However, its mechanism as an anti-osteosarcoma agent has not been well elucidated. In this study, we found that PPI suppressed osteosarcoma cell viability, arrested cell cycle in G2/M phase, induced apoptosis and inhibited invasion and migration of osteosarcoma cells. Moreover, PPI significantly suppressed intratibial primary tumor growth in xenograft orthotopic mouse model without any obvious side effects. These therapeutic efficacies were associated with inactivation of Wnt/β-catenin pathway, as PPI treatment decreased the amount of p-GSK-3β, leading to down-regulated levels of active β-catenin. PPI induced inhibition of osteosarcoma cell viability was abolished upon addition of GSK-3β specific inhibitor, CHIR99021, while PPI induced inhibition of osteosarcoma cell viability and migration were potentiated by β-catenin silencing. These findings suggested that, in vitro and in vivo, PPI treatment inhibited osteosarcoma, at least in part, via the inactivation of Wnt/β-catenin pathway. Thus, PPI could serve a novel therapeutic option for osteosarcoma patients.
Collapse
Affiliation(s)
- Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Yimian Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Xianyang Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Shaopu Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Hongshen Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China. .,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China. .,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China. .,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China. .,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China. .,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
22
|
Shin S, Im HJ, Kwon YJ, Ye DJ, Baek HS, Kim D, Choi HK, Chun YJ. Human steroid sulfatase induces Wnt/β-catenin signaling and epithelial-mesenchymal transition by upregulating Twist1 and HIF-1α in human prostate and cervical cancer cells. Oncotarget 2017; 8:61604-61617. [PMID: 28977889 PMCID: PMC5617449 DOI: 10.18632/oncotarget.18645] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022] Open
Abstract
Steroid sulfatase (STS) catalyzes the hydrolysis of estrone sulfate and dehydroepiandrosterone sulfate (DHEAS) to their unconjugated biologically active forms. Although STS is considered a therapeutic target for estrogen-dependent diseases, the cellular functions of STS remain unclear. We found that STS induces Wnt/β-catenin s Delete ignaling in PC-3 and HeLa cells. STS increases levels of β-catenin, phospho-β-catenin, and phospho-GSK3β. Enhanced translocation of β-catenin to the nucleus by STS might activate transcription of target genes such as cyclin D1, c-myc, and MMP-7. STS knockdown by siRNA resulted in downregulation of Wnt/β-catenin signaling. β-Catenin/TCF-mediated transcription was also enhanced by STS. STS induced an epithelial-mesenchymal transition (EMT) as it reduced the levels of E-cadherin, whereas levels of mesenchymal markers such as N-cadherin and vimentin were enhanced. We found that STS induced Twist1 expression through HIFα activation as HIF-1α knockdown significantly blocks the ability of STS to induce Twist1 transcription. Furthermore, DHEA, but not DHEAS is capable of inducing Twist1. Treatment with a STS inhibitor prevented STS-mediated Wnt/β-catenin signaling and Twist1 expression. Interestingly, cancer cell migration, invasion, and MMPs expression induced by STS were also inhibited by a STS inhibitor. Taken together, these results suggest that STS induces Wnt/β-catenin signaling and EMT by upregulating Twist1 and HIF-1α. The ability of STS to induce the Wnt/β-catenin signaling and EMT has profound implications on estrogen-mediated carcinogenesis in human cancer cells.
Collapse
Affiliation(s)
- Sangyun Shin
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hee-Jung Im
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Jin Ye
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
23
|
miR-106b-5p promotes renal cell carcinoma aggressiveness and stem-cell-like phenotype by activating Wnt/β-catenin signalling. Oncotarget 2017; 8:21461-21471. [PMID: 28423523 PMCID: PMC5400598 DOI: 10.18632/oncotarget.15591] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/06/2017] [Indexed: 12/04/2022] Open
Abstract
PURPOSE To examine the role of miR-106b-5p in regulating the cancer stem-cell-like phenotype in clear cell renal cell carcinomas (ccRCC). EXPERIMENTAL DESIGN Real-time PCR was performed to evaluate miR-106b-5p levels in ccRCC cell lines and patients specimens. A series of in vivo and in vitro assays were performed to confirm the effect of miR-106b-5p on ccRCC stemness phenotype. RESULTS ccRCC cells and tissues expressed more miR-106b-5p than normal controls. Gain- and loss-of-function studies demonstrated that overexpression of miR-106b-5p in ccRCC cells increased the spheres formation ability and the proportion of side population cells. Ectopic expression of miR-106b-5p in ccRCC cells increased tumour growth rates and the number of metastatic colonies in the lungs by using an orthotopic kidney cancer model and a tail vein injection model, respectively. Mechanistic studies revealed that, miR-106b-5p has an activating effect on Wnt/β-catenin signalling. miR-106p-5p overexpression simultaneously targets multiple negative regulators of the Wnt/β-catenin pathway, namely, LZTFL1, SFRP1 and DKK2. In addition, we also confirmed that miR-106b-5p and its targets expression correlates with the overall-survival of ccRCC patients from TCGA. CONCLUSIONS These findings suggest that miR-106b-5p mediates the constitutive activation of Wnt/β-catenin signalling, likely serving as a potential therapeutic target for ccRCC.
Collapse
|
24
|
Olkhov-Mitsel E, Savio AJ, Kron KJ, Pethe VV, Hermanns T, Fleshner NE, van Rhijn BW, van der Kwast TH, Zlotta AR, Bapat B. Epigenome-Wide DNA Methylation Profiling Identifies Differential Methylation Biomarkers in High-Grade Bladder Cancer. Transl Oncol 2017; 10:168-177. [PMID: 28167242 PMCID: PMC5293735 DOI: 10.1016/j.tranon.2017.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 01/22/2023] Open
Abstract
Epigenetic changes, including CpG island hypermethylation, occur frequently in bladder cancer (BC) and may be exploited for BC detection and distinction between high-grade (HG) and low-grade (LG) disease. Genome-wide methylation analysis was performed using Agilent Human CpG Island Microarrays to determine epigenetic differences between LG and HG cases. Pathway enrichment analysis and functional annotation determined that the most frequently methylated pathways in HG BC were enriched for anterior/posterior pattern specification, embryonic skeletal system development, neuron fate commitment, DNA binding, and transcription factor activity. We identified 990 probes comprising a 32-gene panel that completely distinguished LG from HG based on methylation. Selected genes from this panel, EOMES, GP5, PAX6, TCF4, and ZSCAN12, were selected for quantitative polymerase chain reaction–based validation by MethyLight in an independent series (n = 84) of normal bladder samples and LG and HG cases. GP5 and ZSCAN12, two novel methylated genes in BC, were significantly hypermethylated in HG versus LG BC (P ≤ .03). We validated our data in a second independent cohort of LG and HG BC cases (n = 42) from The Cancer Genome Atlas (TCGA). Probes representing our 32-gene panel were significantly differentially methylated in LG versus HG tumors (P ≤ .04). These results indicate the ability to distinguish normal tissue from cancer, as well as LG from HG, based on methylation and reveal important pathways dysregulated in HG BC. Our findings were corroborated using publicly available data sets from TCGA. Ultimately, the creation of a methylation panel, including GP5 and ZSCAN12, able to distinguish between disease phenotypes will improve disease management and patient outcomes.
Collapse
Affiliation(s)
- Ekaterina Olkhov-Mitsel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Andrea J Savio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Ken J Kron
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Vaijayanti V Pethe
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9.
| | - Thomas Hermanns
- Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Neil E Fleshner
- Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Bas W van Rhijn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Theodorus H van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1; Department of Pathology, University Health Network, 200 Elizabeth St., Toronto, Ontario, Canada, M5G 2C4.
| | - Alexandre R Zlotta
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Surgery, Division of Urology, Sinai Health System, 600 University Ave., Toronto, Ontario, Canada, M5G 1X5.
| | - Bharati Bapat
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1; Department of Pathology, University Health Network, 200 Elizabeth St., Toronto, Ontario, Canada, M5G 2C4.
| |
Collapse
|
25
|
Zhao J, He Q, Gong Z, Chen S, Cui L. Niclosamide suppresses renal cell carcinoma by inhibiting Wnt/β-catenin and inducing mitochondrial dysfunctions. SPRINGERPLUS 2016; 5:1436. [PMID: 27652012 PMCID: PMC5005241 DOI: 10.1186/s40064-016-3153-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/24/2016] [Indexed: 11/10/2022]
Abstract
PURPOSE To investigate the effects of anthelminthic drug niclosamide in renal cell carcinoma (RCC) and the underlying mechanisms of its action. METHODS The effects of niclosamide on the proliferation and apoptosis of RCC cells were examined in vitro and in vivo by using MTS, colony formation assay, flow cytometry and xenograft cancer mouse model. Mechanism studies were performed by analyzing Wnt/β-catenin signaling and mitochondrial functions in a panel of RCC cell lines. RESULTS We show that niclosamide effectively targets two RCC cell lines through inhibiting proliferation and anchorage-independent colony formation, and inducing apoptosis. It also enhances the inhibitory effects of chemotherapeutic drug cisplatin in two independent in vivo RCC xenograft mouse models. Mechanistically, niclosamide decreases β-catenin levels and therefore suppresses Wnt/β-catenin activities. Overexpression of β-catenin partially reverses the inhibitory effects of niclosamide in RCC cells, demonstrating that besides β-catenin, other mechanisms are involved in niclosamide's anti-cancer activity. Indeed, we further show that niclosamide induces mitochondrial dysfunctions as shown by the decreased level of mitochondrial membrane potential and respiration, resulting in decreased ATP levels and increased reactive oxygen species (ROS) levels. CONCLUSIONS Our findings support the inhibitory effects of niclosamide in cancer and provide better understanding on its underlying mechanism. Our data suggests that niclosamide is a useful addition to the treatment armamentarium for RCC.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Oncology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, 441021 People's Republic of China
| | - Qiushan He
- Department of Oncology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, 441021 People's Republic of China
| | - Zhimin Gong
- Department of Oncology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, 441021 People's Republic of China
| | - Sen Chen
- Department of Academic Affairs, Hubei University of Medicine, Shiyan, 441021 People's Republic of China
| | - Long Cui
- Department of Nephrology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Science, 39 Jingzhou Street, Xiangyang, 441021 People's Republic of China
| |
Collapse
|
26
|
Wnt Signaling in Renal Cell Carcinoma. Cancers (Basel) 2016; 8:cancers8060057. [PMID: 27322325 PMCID: PMC4931622 DOI: 10.3390/cancers8060057] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers.
Collapse
|
27
|
Wu K, Hu L, Hou J. Selective suppression of Notch1 inhibits proliferation of renal cell carcinoma cells through JNK/p38 pathway. Oncol Rep 2016; 35:2795-800. [PMID: 26986634 DOI: 10.3892/or.2016.4687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/14/2016] [Indexed: 11/06/2022] Open
Abstract
The present study was performed to explore the effects of Notch1 inhibition selectively by siRNA on the proliferation and cell cycle of renal carcinoma cells. Human renal carcinoma cell lines, 786-0 and Caki-1, were treated with Si-Notch1 or negative control (NC). RT-PCR and western blotting were used to confirm the efficiency of siRNA on Notch1 expression. MTT, cell cycle analysis, colony formation as well as migration and invasion assays were performed. The expression levels of p38 and SAPK/JNK were measured by western blotting. For both cell lines, as compared with the NC group, the cell growth was markedly reduced, and colony formation was restricted in the Si-Notch1‑treated group. After incubated with Si-Notch1 or NC for 48 h, Si-Notch1-treated cells arrested the cell cycle at G1/S phase. The Si-Notch1 group also had a reduced rate of migration as well as invasion. Moreover, we observed a reduction in p-SAPK/JNK and p-p38 in Si-Notch1 transfected cells. The present study indicated that Notch signaling is important in the tumorigenesis of renal cell carcinoma. Notch1 may be a potential therapeutic regimen towards renal cell carcinoma, and JNK/p38 may serve as an important molecular mechanism for Notch1-mediated carcinogenesis.
Collapse
Affiliation(s)
- Kerong Wu
- Department of Urology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Linkun Hu
- Department of Urology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jianquan Hou
- Department of Urology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
28
|
Motawi TK, Rizk SM, Ibrahim TM, Ibrahim IAR. Circulating microRNAs, miR-92a, miR-100 and miR-143, as non-invasive biomarkers for bladder cancer diagnosis. Cell Biochem Funct 2016; 34:142-8. [PMID: 26916216 DOI: 10.1002/cbf.3171] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/15/2022]
Abstract
The application of microRNAs (miRNAs) as potential biomarkers and therapy targets has been widely investigated in many kinds of cancers. Recent advantages of serum miRNAs open a new realm of possibilities for non-invasive diagnosis and prognosis of bladder cancer (BC). The aim of our study was to identify plasma miR-92a, miR-100 and miR-143 expression signatures in patients with BC to introduce new markers for establishing BC diagnosis and prognosis. Blood samples were collected from 70 BC patients and 62 controls. An expression of three target miRNAs (miR-92a, miR-100 and miR-143) was measured using quantitative real-time PCR method. Results were correlated with clinicopathological data and analysed. Plasma levels of miR-92a, miR-100 and miR-143 were significantly lower in BC patients than in control group. Receiver operator characteristic analysis revealed that the sensitivity and specificity values of miR-92a were 97·1% and 76·7%, respectively, with a cut-off value of 0·573. The sensitivity and specificity values of miR-100 were 90% and 66·7%, respectively, with a cut-off value of 0·644. The sensitivity and specificity values of miR-143 were 78·6% and 93·3%, respectively, with a cut-off value of 0·164. This study explores the existence of specific plasma miRNAs as early diagnostic biomarkers for BC in Egyptian patients; and these findings suggest that plasma miR-92a, miR-100 and miR-143 could be promising novel circulating biomarkers in clinical detection of BC.
Collapse
|
29
|
The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J Nutr Biochem 2015; 32:1-19. [PMID: 27142731 DOI: 10.1016/j.jnutbio.2015.11.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/13/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022]
Abstract
The cytoprotective and anticancer action of dietary in-taken natural polyphenols has for long been attributed only to their direct radical scavenging activities. Currently it is well supported that those compounds display a broad spectrum of biological and pharmacological outcomes mediated by their complex metabolism, interaction with gut microbiota as well as direct interactions of their metabolites with key cellular signaling proteins. The beneficial effects of natural polyphenols and their synthetic derivatives are extensively studied in context of cancer prophylaxis and therapy. Herein we focus on cell signaling to explain the beneficial role of polyphenols at the three stages of cancer development: we review the recent proceedings about the impact of polyphenols on the cytoprotective antioxidant response and their proapoptotic action at the premalignant stage, and finally we present data showing how phenolic acids (e.g., caffeic, chlorogenic acids) and flavonols (e.g., quercetin) hamper the development of metastatic cancer.
Collapse
|
30
|
Cabral de Almeida Cardoso L, Rodriguez-Laguna L, del Carmen Crespo M, Vallespín E, Palomares-Bralo M, Martin-Arenas R, Rueda-Arenas I, Silvestre de Faria PA, García-Miguel P, Lapunzina P, Regla Vargas F, Seuanez HN, Martínez-Glez V. Array CGH Analysis of Paired Blood and Tumor Samples from Patients with Sporadic Wilms Tumor. PLoS One 2015; 10:e0136812. [PMID: 26317783 PMCID: PMC4552764 DOI: 10.1371/journal.pone.0136812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/07/2015] [Indexed: 11/24/2022] Open
Abstract
Wilms tumor (WT), the most common cancer of the kidney in infants and children, has a complex etiology that is still poorly understood. Identification of genomic copy number variants (CNV) in tumor genomes provides a better understanding of cancer development which may be useful for diagnosis and therapeutic targets. In paired blood and tumor DNA samples from 14 patients with sporadic WT, analyzed by aCGH, 22% of chromosome abnormalities were novel. All constitutional alterations identified in blood were segmental (in 28.6% of patients) and were also present in the paired tumor samples. Two segmental gains (2p21 and 20q13.3) and one loss (19q13.31) present in blood had not been previously described in WT. We also describe, for the first time, a small, constitutive partial gain of 3p22.1 comprising 2 exons of CTNNB1, a gene associated to WT. Among somatic alterations, novel structural chromosomal abnormalities were found, like gain of 19p13.3 and 20p12.3, and losses of 2p16.1-p15, 4q32.5-q35.1, 4q35.2-q28.1 and 19p13.3. Candidate genes included in these regions might be constitutively (SIX3, SALL4) or somatically (NEK1, PIAS4, BMP2) operational in the development and progression of WT. To our knowledge this is the first report of CNV in paired blood and tumor samples in sporadic WT.
Collapse
Affiliation(s)
| | - Lara Rodriguez-Laguna
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - María del Carmen Crespo
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Elena Vallespín
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - María Palomares-Bralo
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Rubén Martin-Arenas
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Inmaculada Rueda-Arenas
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Section of Clinical Genetics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Fernando Regla Vargas
- Genetics Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Birth Defects Epidemiology Laboratory, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Hector N. Seuanez
- Genetics Division, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Genetics Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Víctor Martínez-Glez
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- * E-mail:
| |
Collapse
|
31
|
Kroon J, in 't Veld LS, Buijs JT, Cheung H, van der Horst G, van der Pluijm G. Glycogen synthase kinase-3β inhibition depletes the population of prostate cancer stem/progenitor-like cells and attenuates metastatic growth. Oncotarget 2015; 5:8986-94. [PMID: 25344861 PMCID: PMC4253412 DOI: 10.18632/oncotarget.1510] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer cells with stem or progenitor properties play a pivotal role in the initiation, recurrence and metastatic potential of solid tumors, including those of the human prostate. Cancer stem cells are generally more resistant to conventional therapies thus requiring the characterization of key pathways involved in the formation and/or maintenance of this malignant cellular subpopulation. To this end, we identified Glycogen Synthase Kinase-3β (GSK-3β) as a crucial kinase for the maintenance of prostate cancer stem/progenitor-like cells and pharmacologic inhibition of GSK-3β dramatically decreased the size of this cellular subpopulation. This was paralleled by impaired clonogenicity, decreased migratory potential and dramatic morphological changes. In line with our in vitro observations, treatment with a GSK-3β inhibitor leads to a complete loss of tumorigenicity and a decrease in metastatic potential in preclinical in vivo models. These observed anti-tumor effects appear to be largely Wnt-independent as simultaneous Wnt inhibition does not reverse the observed antitumor effects of GSK-3β blockage. We found that GSK-3β activity is linked to cytoskeletal protein F-actin and inhibition of GSK-3β leads to disturbance of F-actin polymerization. This may underlie the dramatic effects of GSK-3β inhibition on prostate cancer migration. Furthermore, GSK-3β inhibition led to strongly decreased expression of several integrin types including the cancer stem cell-associated α2β1 integrin. Taken together, our mechanistic observations highlight the importance of GSK-3β activity in prostate cancer stemness and may facilitate the development of novel therapy for advanced prostate cancer.
Collapse
Affiliation(s)
- Jan Kroon
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lars S in 't Veld
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen T Buijs
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henry Cheung
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
32
|
Ren X, Zheng D, Guo F, Liu J, Zhang B, Li H, Tian W. PPARγ suppressed Wnt/β-catenin signaling pathway and its downstream effector SOX9 expression in gastric cancer cells. Med Oncol 2015; 32:91. [PMID: 25720524 DOI: 10.1007/s12032-015-0536-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/13/2015] [Indexed: 12/13/2022]
Abstract
Wnt signaling pathway activation plays a critical role in biological processes of tumor progression. SOX9 belongs to the sry-related high-mobility group box (SOX) family and is a key transcription factor in the development and differentiation of multiple cell lineages. The purpose of this study was to investigate whether suppression of Wnt signaling pathway by PPARγ gene affects target SOX9 gene expression. The pEGFP-N1-PPARγ overexpression recombinant plasmid was structured by molecular biology technology. The overexpression plasmid and empty vector pEGFP-N1 were transfected into three types of human gastric cancer cell lines, with different levels of differentiation, MKN-28, SGC-7901 and BGC-823. The PPARγ, β-catenin and SOX9 mRNA levels and proteins were examined by real-time PCR and Western blot analysis. The pEGFP-N1-PPARγ recombinant plasmid was constructed and transfected into MKN-28, SGC-7901 and BGC-823 successfully. High expression of PPARγ (p < 0.05) for transfection recombinant plasmid group induced obviously decreased expression of β-catenin (p < 0.05), whereas SOX9 expression decreased significantly (p < 0.05) compared with the transfection empty vector group and normal comparison group. PPARγ can suppress β-catenin expression in Wnt signaling pathway and its downstream effector SOX9 expression in gastric cancer cells.
Collapse
Affiliation(s)
- Xiyun Ren
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Braicu C, Cojocneanu-Petric R, Chira S, Truta A, Floares A, Petrut B, Achimas-Cadariu P, Berindan-Neagoe I. Clinical and pathological implications of miRNA in bladder cancer. Int J Nanomedicine 2015; 10:791-800. [PMID: 25653521 PMCID: PMC4309789 DOI: 10.2147/ijn.s72904] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20–22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anamaria Truta
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Medical Genetics, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Floares
- Solutions of Artificial Intelligence Applications, Cluj-Napoca, Romania
| | - Bogdan Petrut
- Department of Urology, The Oncology Institute "Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania ; Department of Urology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patriciu Achimas-Cadariu
- Department of Surgery, The Oncology Institute "Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania ; Department of Surgical Oncology and Gynaecological Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Immunology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania ; Department of Experimental Therapeutics M.D. Anderson Cancer Center Houston, TX, USA
| |
Collapse
|
34
|
Ganguly SS, Li X, Miranti CK. The host microenvironment influences prostate cancer invasion, systemic spread, bone colonization, and osteoblastic metastasis. Front Oncol 2014; 4:364. [PMID: 25566502 PMCID: PMC4266028 DOI: 10.3389/fonc.2014.00364] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/29/2014] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men worldwide. Most PCa deaths are due to osteoblastic bone metastases. What triggers PCa metastasis to the bone and what causes osteoblastic lesions remain unanswered. A major contributor to PCa metastasis is the host microenvironment. Here, we address how the primary tumor microenvironment influences PCa metastasis via integrins, extracellular proteases, and transient epithelia-mesenchymal transition (EMT) to promote PCa progression, invasion, and metastasis. We discuss how the bone-microenvironment influences metastasis; where chemotactic cytokines favor bone homing, adhesion molecules promote colonization, and bone-derived signals induce osteoblastic lesions. Animal models that fully recapitulate human PCa progression from primary tumor to bone metastasis are needed to understand the PCa pathophysiology that leads to bone metastasis. Better delineation of the specific processes involved in PCa bone metastasize is needed to prevent or treat metastatic PCa. Therapeutic regimens that focus on the tumor microenvironment could add to the PCa pharmacopeia.
Collapse
Affiliation(s)
- Sourik S Ganguly
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Tumor Microenvironment and Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA ; Program for Skeletal Disease and Tumor Metastasis, Laboratory of Integrin Signaling and Tumorigenesis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| | - Xiaohong Li
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Tumor Microenvironment and Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| | - Cindy K Miranti
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Integrin Signaling and Tumorigenesis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| |
Collapse
|
35
|
Wong YH, Li CW, Chen BS. Evolution of network biomarkers from early to late stage bladder cancer samples. BIOMED RESEARCH INTERNATIONAL 2014; 2014:159078. [PMID: 25309904 PMCID: PMC4189772 DOI: 10.1155/2014/159078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 11/29/2022]
Abstract
We use a systems biology approach to construct protein-protein interaction networks (PPINs) for early and late stage bladder cancer. By comparing the networks of these two stages, we find that both networks showed very significantly different mechanisms. To obtain the differential network structures between cancer and noncancer PPINs, we constructed cancer PPIN and noncancer PPIN network structures for the two bladder cancer stages using microarray data from cancer cells and their adjacent noncancer cells, respectively. With their carcinogenesis relevance values (CRVs), we identified 152 and 50 significant proteins and their PPI networks (network markers) for early and late stage bladder cancer by statistical assessment. To investigate the evolution of network biomarkers in the carcinogenesis process, primary pathway analysis showed that the significant pathways of early stage bladder cancer are related to ordinary cancer mechanisms, while the ribosome pathway and spliceosome pathway are most important for late stage bladder cancer. Their only intersection is the ubiquitin mediated proteolysis pathway in the whole stage of bladder cancer. The evolution of network biomarkers from early to late stage can reveal the carcinogenesis of bladder cancer. The findings in this study are new clues specific to this study and give us a direction for targeted cancer therapy, and it should be validated in vivo or in vitro in the future.
Collapse
Affiliation(s)
- Yung-Hao Wong
- Lab of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Wei Li
- Lab of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bor-Sen Chen
- Lab of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
36
|
Drake I, Wallström P, Hindy G, Ericson U, Gullberg B, Bjartell A, Sonestedt E, Orho-Melander M, Wirfält E. TCF7L2 type 2 diabetes risk variant, lifestyle factors, and incidence of prostate cancer. Prostate 2014; 74:1161-70. [PMID: 24961829 DOI: 10.1002/pros.22832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/08/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Variation in transcription factor 7-like 2 (TCF7L2), the strongest genetic risk factor for type 2 diabetes (T2D), may play a role in prostate cancer (PCa) depending on lifestyle factors. The aims of this study were to determine if TCF7L2 rs7903146 is associated with risk of PCa and if the association is modified by lifestyle factors independently of T2D status. METHODS We prospectively followed 8,558 men in the Malmö Diet and Cancer Study from baseline 1991-1996 until end of 2009. Cox regression models were used to assess the association between rs7903146 T2D-risk allele (T) and PCa. Effect modification by incident T2D status, fasting glucose levels, dietary, and lifestyle risk factors were tested. RESULTS During follow-up 855 incident PCa cases were registered. We observed a non-significant tendency for the TCF7L2 variant to associate with higher risk of PCa, which was unaffected by adjustment for incident T2D (HR = 1.24; 95% CI: 0.96, 1.60; P = 0.079) but more pronounced among subjects who developed T2D (HR = 1.91, 95% CI: 0.88, 4.14; P = 0.064). In a sub-sample of hyperglycemic men we observed an increased risk of PCa among T-allele carriers (HR = 2.72, 95% CI: 1.22, 6.04; P = 0.014; P(interaction) = 0.056). T-allele carriers with higher number of lifestyle risk factors had an increased risk of PCa (P(interaction) = 0.006). CONCLUSIONS We found no independent association between TCF7L2 rs7903146 and PCa risk. However, among hyperglycemic men we observed that the risk allele may increase risk of PCa. The association between rs7903146 and PCa risk may also be modified by lifestyle factors.
Collapse
Affiliation(s)
- Isabel Drake
- Department of Clinical Sciences in Malmö, Research Group in Nutritional Epidemiology, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liang YY, Zheng LS, Wu YZ, Peng LX, Cao Y, Cao X, Xie P, Huang BJ, Qian CN. RASSF6 promotes p21(Cip1/Waf1)-dependent cell cycle arrest and apoptosis through activation of the JNK/SAPK pathway in clear cell renal cell carcinoma. Cell Cycle 2014; 13:1440-9. [PMID: 24626183 DOI: 10.4161/cc.28416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a highly aggressive and common pathological subtype of renal cancer. This cancer is characterized by biallelic inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene, which leads to the accumulation of hypoxia-inducible factors (HIFs). Although therapies targeted at HIFs can significantly improve survival, nearly all patients with advanced ccRCC eventually succumb to the disease. Thus, additional oncogenic events are thought to be involved in the development of ccRCC tumors. In this study, we investigated the role of RASSF6 in ccRCC. Downregulation of RASSF6 was commonly observed in primary tumors relative to matched adjacent normal tissues. Moreover, functional studies established that ectopic re-expression of RASSF6 in ccRCC cells inhibited cell proliferation, clonogenicity, and tumor growth in mice, whereas silencing of RASSF6 dramatically enhanced cell proliferation in vitro and in vivo. Mechanistic investigation suggested that RASSF6 triggers p21(Cip1/Waf1) accumulation to induce G 1 cell cycle arrest and promote apoptosis upon exposure to pro-apoptotic agents, and both of these mechanisms appear to be mediated by activated JNK signaling. Together, these findings suggest that RASSF6 may play a tumor suppressor role in the progression of ccRCC.
Collapse
Affiliation(s)
- Ying-Ying Liang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Yuan-Zhong Wu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Yun Cao
- Department of Pathology; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Xue Cao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ping Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou, China
| |
Collapse
|
38
|
De Meulder B, Berger F, Bareke E, Depiereux S, Michiels C, Depiereux E. Meta-analysis and gene set analysis of archived microarrays suggest implication of the spliceosome in metastatic and hypoxic phenotypes. PLoS One 2014; 9:e86699. [PMID: 24497970 PMCID: PMC3908947 DOI: 10.1371/journal.pone.0086699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/10/2013] [Indexed: 12/17/2022] Open
Abstract
We propose to make use of the wealth of underused DNA chip data available in public repositories to study the molecular mechanisms behind the adaptation of cancer cells to hypoxic conditions leading to the metastatic phenotype. We have developed new bioinformatics tools and adapted others to identify with maximum sensitivity those genes which are expressed differentially across several experiments. The comparison of two analytical approaches, based on either Over Representation Analysis or Functional Class Scoring, by a meta-analysis-based approach, led to the retrieval of known information about the biological situation - thus validating the model - but also more importantly to the discovery of the previously unknown implication of the spliceosome, the cellular machinery responsible for mRNA splicing, in the development of metastasis.
Collapse
Affiliation(s)
- Bertrand De Meulder
- Microorganism Biology Research Unit -NARILIS, University of Namur, Namur, Belgium
| | - Fabrice Berger
- Microorganism Biology Research Unit -NARILIS, University of Namur, Namur, Belgium
| | - Eric Bareke
- Sainte Justine University Hospital Center Research Center, University of Montreal, Montreal, Canada
| | - Sophie Depiereux
- Environmental and Evolutional Research Unit, University of Namur, Namur, Belgium
| | - Carine Michiels
- Cellular Biology Research Unit - NARILIS, University of Namur, Namur, Belgium
| | - Eric Depiereux
- Microorganism Biology Research Unit -NARILIS, University of Namur, Namur, Belgium
- * E-mail:
| |
Collapse
|
39
|
Sarkar S, Mandal C, Sangwan R, Mandal C. Coupling G2/M arrest to the Wnt/β-catenin pathway restrains pancreatic adenocarcinoma. Endocr Relat Cancer 2014; 21:113-25. [PMID: 24402132 DOI: 10.1530/erc-13-0315] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
β-catenin plays a pivotal role in organogenesis and oncogenesis. Alterations in β-catenin expression are common in pancreatic cancer, which is an extremely aggressive malignancy with a notably poor prognosis. In this report, we analyzed the apoptotic activity of withanolide-D (witha-D), a steroidal lactone that was purified from an Indian medicinal plant, Withania somnifera, and its underlying mechanism of action. Witha-D induced apoptosis in pancreatic ductal adenocarcinoma cells by prompting cell-cycle arrest at the G2/M phase. This lactone abrogated β-catenin signaling in these cells regardless of disease grade, mutational status, and gemcitabine sensitivity. Witha-D also upregulated E-cadherin in most cells, thereby supporting the inversion of the epithelial-mesenchymal transition. Furthermore, the Akt/Gsk3β kinase cascade was identified as a critical mediator of G2/M regulation and β-catenin signaling. Witha-D deactivated Akt, which failed to promote Gsk3β deactivation phosphorylation. Consequently, activated Gsk3β facilitated β-catenin destruction in pancreatic carcinoma cells. The knockdown of Chk1 and Chk2 further activated Akt and reversed the molecular signal. Taken together, the results of the current study represent the first evidence of β-catenin signal crosstalk during the G2/M phase by functionally inactivating Akt via witha-D treatment in pancreatic cancer cells. In conclusion, this finding suggests the potential identification of a new lead molecule in the treatment of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Sayantani Sarkar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, West Bengal, India Bio-Processing Unit, Department of Bio-Technology, Govt. of India, Mohali, Punjab, India
| | | | | | | |
Collapse
|
40
|
Lau A, Kollara A, St John E, Tone AA, Virtanen C, Greenblatt EM, King WA, Brown TJ. Altered expression of inflammation-associated genes in oviductal cells following follicular fluid exposure: implications for ovarian carcinogenesis. Exp Biol Med (Maywood) 2013; 239:24-32. [PMID: 24186266 DOI: 10.1177/1535370213508216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Evidence indicates that high-grade serous ovarian carcinoma (HGSOC) may originate from lesions within the distal fallopian tube epithelium (FTE). Our previous studies indicate that fallopian tube epithelial cells from carriers of germline mutations in breast cancer susceptibility genes exhibit a pro-inflammatory gene expression signature during the luteal phase, suggesting that delayed resolution of postovulatory inflammatory signaling may contribute to predisposition to this ovarian cancer histotype. To determine whether exposure of tubal epithelial cells to periovulatory follicular fluid alters expression of inflammation-associated genes, we used an ex vivo culture system of bovine oviductal epithelial cells. Oviductal cells grown on collagen IV-coated transwell membranes assumed a cobblestone appearance and immunocytochemistry for FoxJ1 and Pax8 indicated that both ciliated and secretory epithelial cells were maintained in the cultures. Oviductal cells were exposed to human follicular fluid or culture medium for 24 h following which total cellular RNA was extracted at various time points. Expression of genes associated with inflammation was determined by quantitative real-time RT-PCR. Exposure to follicular fluid transiently increased the transcript levels of interleukin 8 (IL8) and cyclooxygenase 2 (PTGS2), and decreased the expression of mitochondrial superoxide dismutase (SOD2), glutathione peroxidase 3 (GPX3), disabled homolog 2 (DAB2), and glucocorticoid receptor (NR3C1). Tumor necrosis factor (TNF) and IL6 levels were also decreased while those of nicotinomide phosphoribosyltransferase (NAMPT) were unaffected. This study demonstrates that periovulatory follicular fluid can act directly upon oviductal epithelial cells to alter gene expression that might contribute to early carcinogenic events. Furthermore, these findings illustrate the potential use of bovine oviductal cells to study signaling events implicated in ovarian carcinogenesis.
Collapse
Affiliation(s)
- Angela Lau
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3H7 Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sun X, He Y, Huang C, Ma TT, Li J. Distinctive microRNA signature associated of neoplasms with the Wnt/β-catenin signaling pathway. Cell Signal 2013; 25:2805-11. [PMID: 24041653 DOI: 10.1016/j.cellsig.2013.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/06/2013] [Indexed: 12/29/2022]
Abstract
As the crucial biological regulators, microRNAs that act by suppressing their target genes are involved in a variety of pathophysiological processes. It is generally accepted that microRNAs are often dysregulated in many types of neoplasm and other human diseases. In neoplasm, microRNAs may function as oncogenes or tumor suppressors. As constitutive activation of the Wnt signaling pathway is a common feature of neoplasm and contributes to its development, progression and metastasis in various cancers, numerous studies have revealed that microRNA-mediated gene regulation are interconnected with the Wnt/β-catenin signaling pathway, forming a Wnt/β-catenin-microRNA regulatory network, which is critical to successful targeting of the Wnt/β-catenin pathway for oncotherapy. In this review, we aim to accumulate recent advances on microRNAs that work in tandem with Wnt/β-catenin signaling in tumorigenesis, with particular focus on how microRNAs affect Wnt/β-catenin activity as well as how microRNAs are regulated through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xu Sun
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, China
| | | | | | | | | |
Collapse
|
42
|
Msaouel P, Nandikolla G, Pneumaticos SG, Koutsilieris M. Bone microenvironment-targeted manipulations for the treatment of osteoblastic metastasis in castration-resistant prostate cancer. Expert Opin Investig Drugs 2013; 22:1385-400. [PMID: 24024652 DOI: 10.1517/13543784.2013.824422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Most patients with advanced prostate cancer will develop incurable bone metastasis. Although prostate cancer is the quintessential androgen-dependent neoplastic disease in males, the tumor will ultimately become refractory to androgen ablation treatment. Understanding the complex dialog between prostate cancer and the bone microenvironment has allowed the development of promising treatment strategies. AREAS COVERED The present review summarizes the pathophysiology of prostate cancer bone metastasis and provides a concise update on bone microenvironment-targeted therapies for prostate cancer. The current and future prospects and challenges of these strategies are also discussed. EXPERT OPINION A wide variety of signaling pathways, bone turnover homeostatic mechanisms and immunoregulatory networks are potential targets for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Anti-survival factor therapy can enhance the efficacy of existing treatment regimens for mCRPC by exploiting the interaction between the bone microenvironment and androgen signaling networks. In addition, many novel bone microenvironment-targeted strategies have produced promising objective clinical responses. Further elucidation of the complex interactions between prostate cancer cells and the bone stroma will open up new avenues for treatment interventions that can produce sustained cancer suppression.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Jacobi Medical Center, Department of Internal Medicine, Albert Einstein College of Medicine , Bronx, NY , USA
| | | | | | | |
Collapse
|
43
|
Larkin S, Kyprianou N. Molecular signatures in urologic tumors. Int J Mol Sci 2013; 14:18421-36. [PMID: 24018887 PMCID: PMC3794787 DOI: 10.3390/ijms140918421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/05/2013] [Accepted: 08/15/2013] [Indexed: 12/26/2022] Open
Abstract
Urologic tumors continue to represent a huge fraction of cancer cases in the United States, with over 376,310 estimated new diagnoses in 2013. As with many types of tumors, urologic tumors vary greatly in their phenotype, ranging from minimally invasive to malignancies possessing great metastatic potential. The increasing need for more efficient and less invasive methods of cancer detection, as well as the ability to predict severity of the disease phenotype is readily evident--yet reliable methods remain elusive in a clinical setting today. Comprehensive panels of gene clusters are being developed toward the generation of molecular signatures in order to better diagnose urologic malignancies, and identify effective treatment strategies in the emerging era of personalized medicine. In this review, we discuss the current literature on the credibility and biomarker value of such molecular signatures in the context of clinical significance relating to the pathological aggressiveness of urologic tumors (prostate, bladder and renal cancer)--also exploiting their predictive potential in the response to treatment.
Collapse
Affiliation(s)
- Spencer Larkin
- Departments of Urology, University of Kentucky College of Medicine, Lexington, Kentucky, KY 40536, USA; E-Mail:
| | - Natasha Kyprianou
- Departments of Urology, University of Kentucky College of Medicine, Lexington, Kentucky, KY 40536, USA; E-Mail:
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, KY 40536, USA
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, KY 40536, USA
- Department of Pathology, University of Kentucky College of Medicine, Lexington, Kentucky, KY 40536, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-859-323-9812; Fax: +1-859-323-1944
| |
Collapse
|
44
|
Rasmussen NR, Wright TM, Brooks SA, Hacker KE, Debebe Z, Sendor AB, Walker MP, Major MB, Green J, Wahl GM, Rathmell WK. Receptor tyrosine kinase-like orphan receptor 2 (Ror2) expression creates a poised state of Wnt signaling in renal cancer. J Biol Chem 2013; 288:26301-26310. [PMID: 23893409 DOI: 10.1074/jbc.m113.466086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the receptor tyrosine kinase-like orphan receptor 2 (Ror2) has been identified in an increasing array of tumor types and is known to play a role as an important mediator of Wnt signaling cascades. In this study, we aimed to clarify Ror2 interactions with the Wnt pathways within the context of renal cell carcinoma (RCC). An examination of Ror2 expression in primary human RCC tumors showed a significant correlation with several Wnt signaling genes, including the classical feedback target gene Axin2. We provide evidence that Ror2 expression results in a partially activated state for canonical Wnt signaling through an increased signaling pool of β-catenin, leading to an enhancement of downstream target genes following Wnt3a stimulation in both renal and renal carcinoma-derived cells. Additionally, inhibition of low-density lipoprotein receptor-related protein 6 (LRP6) with either siRNA or dickkopf decreased the response to Wnt3a stimulation, but no change was seen in the increased β-catenin pool associated with Ror2 expression, suggesting that LRP6 cofactor recruitment is necessary for a Wnt3a-induced signal but that it does not participate in the Ror2 effect on β-catenin signaling. These results highlight a new role for Ror2 in conveying a tonic signal to stabilize soluble β-catenin and create a poised state of enhanced responsiveness to Wnt3a exogenous signals in RCC.
Collapse
Affiliation(s)
- Neal R Rasmussen
- From the Curriculum in Genetics and Molecular Biology,; Lineberger Comprehensive Cancer Center
| | - Tricia M Wright
- From the Curriculum in Genetics and Molecular Biology,; Lineberger Comprehensive Cancer Center
| | - Samira A Brooks
- Lineberger Comprehensive Cancer Center,; Curriculum in Toxicology
| | - Kathryn E Hacker
- From the Curriculum in Genetics and Molecular Biology,; Lineberger Comprehensive Cancer Center
| | | | | | | | - Michael Ben Major
- Lineberger Comprehensive Cancer Center,; Department of Cell Biology and Physiology, and
| | - Jennifer Green
- the Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Geoffrey M Wahl
- the Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center,; Departments of Medicine and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and.
| |
Collapse
|
45
|
Ovatodiolide Targets β -Catenin Signaling in Suppressing Tumorigenesis and Overcoming Drug Resistance in Renal Cell Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:161628. [PMID: 23781255 PMCID: PMC3677612 DOI: 10.1155/2013/161628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/17/2013] [Indexed: 12/20/2022]
Abstract
Dysregulated β-catenin signaling is intricately involved in renal cell carcinoma (RCC) carcinogenesis and progression. Determining potential β-catenin signaling inhibitors would be helpful in ameliorating drug resistance in advanced or metastatic RCC. Screening for β-catenin signaling inhibitors involved in silico inquiry of the PubChem Bioactivity database followed by TCF/LEF reporter assay. The biological effects of ovatodiolide were evaluated in 4 RCC cell lines in vitro and 2 RCC cell lines in a mouse xenograft model. The synergistic effects of ovatodiolide and sorafenib or sunitinib were examined in 2 TKI-resistant RCC cell lines. Ovatodiolide, a pure compound of Anisomeles indica, inhibited β-catenin signaling and reduced RCC cell viability, survival, migration/invasion, and in vitro cell or in vivo mouse tumorigenicity. Cytotoxicity was significantly reduced in a normal kidney epithelial cell line with the treatment. Ovatodiolide reduced phosphorylated β-catenin (S552) that inhibited β-catenin nuclear translocation. Moreover, ovatodiolide decreased β-catenin stability and impaired the association of β-catenin and transcription factor 4. Ovatodiolide combined with sorafenib or sunitinib overcame drug resistance in TKI-resistant RCC cells. Ovatodiolide may be a potent β-catenin signaling inhibitor, with synergistic effects with sorafenib or sunitinib, and therefore, a useful candidate for improving RCC therapy.
Collapse
|
46
|
Dissecting Major Signaling Pathways throughout the Development of Prostate Cancer. Prostate Cancer 2013; 2013:920612. [PMID: 23738079 PMCID: PMC3657461 DOI: 10.1155/2013/920612] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 01/28/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies found in males. The development of PCa involves several mutations in prostate epithelial cells, usually linked to developmental changes, such as enhanced resistance to apoptotic death, constitutive proliferation, and, in some cases, to differentiation into an androgen deprivation-resistant phenotype, leading to the appearance of castration-resistant PCa (CRPCa), which leads to a poor prognosis in patients. In this review, we summarize recent findings concerning the main deregulations into signaling pathways that will lead to the development of PCa and/or CRPCa. Key mutations in some pathway molecules are often linked to a higher prevalence of PCa, by directly affecting the respective cascade and, in some cases, by deregulating a cross-talk node or junction along the pathways. We also discuss the possible environmental and nonenvironmental inducers for these mutations, as well as the potential therapeutic strategies targeting these signaling pathways. A better understanding of how some risk factors induce deregulation of these signaling pathways, as well as how these deregulated pathways affect the development of PCa and CRPCa, will further help in the development of new treatments and prevention strategies for this disease.
Collapse
|