1
|
Li X, Tao S, Xu Z, Ren Y, Xiang W, He X. SMURF1 activates the cGAS/STING/IFN-1 signal axis by mediating YY1 ubiquitination to accelerate the progression of lupus nephritis. Autoimmunity 2023; 56:2281235. [PMID: 37994046 DOI: 10.1080/08916934.2023.2281235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023]
Abstract
Aggravated endoplasmic reticulum stress (ERS) and apoptosis in podocytes play an important role in lupus nephritis (LN) progression, but its mechanism is still unclear. Herein, the role of SMURF1 in regulating podocytes apoptosis and ERS during LN progression were investigated. MRL/lpr mice was used as LN model in vivo. HE staining was performed to analyze histopathological changes. Mouse podocytes (MPC5 cells) were treated with serum IgG from LN patients (LN-IgG) to construct LN model in vitro. CCK8 assay was adopted to determine the viability. Cell apoptosis was measured using flow cytometry and TUNEL staining. The interactions between SMURF1, YY1 and cGAS were analyzed using ChIP and/or dual-luciferase reporter gene and/or Co-IP assays. YY1 ubiquitination was analyzed by ubiquitination analysis. Our results found that SMURF1, cGAS and STING mRNA levels were markedly increased in serum samples of LN patients, while YY1 was downregulated. YY1 upregulation reduced LN-IgG-induced ERS and apoptosis in podocytes. Moreover, SMURF1 upregulation reduced YY1 protein stability and expression by ubiquitinating YY1 in podocytes. Rescue studies revealed that YY1 knockdown abrogated the inhibition of SMURF1 downregulation on LN-IgG-induced ERS and apoptosis in podocytes. It was also turned out that YY1 alleviated podocytes injury in LN by transcriptional inhibition cGAS/STING/IFN-1 signal axis. Finally, SMURF1 knockdown inhibited LN progression in vivo. In short, SMURF1 upregulation activated the cGAS/STING/IFN-1 signal axis by regulating YY1 ubiquitination to facilitate apoptosis in podocytes during LN progression.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Pediatrics, The Second Xiangya Hospital, Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Sisi Tao
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, Hunan, China
| | - Zhiquan Xu
- Nephropathy Rheumatology Immunology Department, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Yi Ren
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou, Hainan, China
| | - Wei Xiang
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Xiaojie He
- Department of Pediatrics, The Second Xiangya Hospital, Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
2
|
Lyu SY, Xiao W, Cui GZ, Yu C, Liu H, Lyu M, Kuang QY, Xiao EH, Luo YH. Role and mechanism of DNA methylation and its inhibitors in hepatic fibrosis. Front Genet 2023; 14:1124330. [PMID: 37056286 PMCID: PMC10086238 DOI: 10.3389/fgene.2023.1124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Liver fibrosis is a repair response to injury caused by various chronic stimuli that continually act on the liver. Among them, the activation of hepatic stellate cells (HSCs) and their transformation into a myofibroblast phenotype is a key event leading to liver fibrosis, however the mechanism has not yet been elucidated. The molecular basis of HSC activation involves changes in the regulation of gene expression without changes in the genome sequence, namely, via epigenetic regulation. DNA methylation is a key focus of epigenetic research, as it affects the expression of fibrosis-related, metabolism-related, and tumor suppressor genes. Increasing studies have shown that DNA methylation is closely related to several physiological and pathological processes including HSC activation and liver fibrosis. This review aimed to discuss the mechanism of DNA methylation in the pathogenesis of liver fibrosis, explore DNA methylation inhibitors as potential therapies for liver fibrosis, and provide new insights on the prevention and clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shi-Yi Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Wang Xiao
- Department of Gastrointestinal Surgery, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Guang-Zu Cui
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Yu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Huan Liu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Min Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Qian-Ya Kuang
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Yong-Heng Luo
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Moon JH, Oh CM, Kim H. Serotonin in the regulation of systemic energy metabolism. J Diabetes Investig 2022; 13:1639-1645. [PMID: 35762288 PMCID: PMC9533050 DOI: 10.1111/jdi.13879] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Serotonin is a well‐known neurotransmitter that is synthesized from the amino acid, tryptophan. To date, more than 14 different serotonin receptors have been discovered; they exist universally in our body and enable diverse biological functions in different organs. Central serotonin regulates mood and behavior, and impacts the systemic energy balance by decreasing appetite. A number of drugs that modulate central serotonin function (e.g., fenfluramine, sibutramine and lorcaserin) were approved and used as anti‐obesity drugs, but then later withdrawn due to adverse cardiovascular and carcinogenic effects. Over the past decade, the role of peripheral serotonin in regulating systemic energy metabolism has been extensively explored using tissue‐specific knockout animal models. By inhibiting the action of serotonin in liver and adipose tissues, hepatic steatosis was improved and lipid accumulation was mitigated, respectively. Recent findings show that modulation of the serotonergic system is a promising therapeutic target for metabolic diseases. This review summarizes the role of serotonin in regulating energy metabolism in different organs, and discusses the potential of serotonin modulation for treating metabolic diseases.
Collapse
Affiliation(s)
- Joon Ho Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| |
Collapse
|
4
|
Xu L, Wu Q, Yan H, Shu C, Fan W, Tong X, Li Q. Long noncoding RNA KB-1460A1.5 inhibits glioma tumorigenesis via miR-130a-3p/TSC1/mTOR/YY1 feedback loop. Cancer Lett 2022; 525:33-45. [PMID: 34728310 DOI: 10.1016/j.canlet.2021.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to be closely related to cancer progression and therapy. However, the clinical significance of lncRNAs and the mechanisms by which they function in glioma are largely unknown. In this study, using online data sets combined with collected clinical glioma tissues, we determined that the lncRNA KB-1460A1.5 is downregulated and positively correlated with prognosis in glioma. Functional experiments showed that overexpression of KB-1460A1.5 inhibits glioma cell proliferation, migration and invasion in vitro and in vivo, while downregulation of KB-1460A1.5 has the opposite effects. Mechanistically, tandem mass tag (TMT)-based quantitative proteomic analysis revealed that KB-1460A1.5 preferentially affects the Akt/TSC1/mTOR pathway. KB-1460A1.5 was found to function as a competing endogenous RNA (ceRNA) to regulate the expression of TSC1, a key regulatory component of the mTOR pathway, by sponging miR-130a-3p in glioma cells. Furthermore, our data demonstrate that the mTOR pathway regulates the expression of the transcription factor Yin Yang 1 (YY1), which in turn binds directly to the KB-1460A1.5 promoter and affects the expression of KB-1460A1.5. Untargeted metabolomics and quantitative real-time PCR (qRT-PCR) analysis further confirmed the effects of KB-1460A1.5 on amino acid metabolism. In conclusion, this study revealed that lncRNA KB-1460A1.5 inhibits glioma tumorigenesis via miR-130a-3p/TSC1/mTOR/YY1 feedback loop.
Collapse
Affiliation(s)
- Lixia Xu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Qiaoli Wu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Hua Yan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Chang Shu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Weijia Fan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Xiaoguang Tong
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China.
| | - Qingguo Li
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China.
| |
Collapse
|
5
|
TP63 Is Significantly Upregulated in Diabetic Kidney. Int J Mol Sci 2021; 22:ijms22084070. [PMID: 33920782 PMCID: PMC8071143 DOI: 10.3390/ijms22084070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
The role of tumor protein 63 (TP63) in regulating insulin receptor substrate 1 (IRS-1) and other downstream signal proteins in diabetes has not been characterized. RNAs extracted from kidneys of diabetic mice (db/db) were sequenced to identify genes that are involved in kidney complications. RNA sequence analysis showed more than 4- to 6-fold increases in TP63 expression in the diabetic mice’s kidneys, compared to wild-type mice at age 10 and 12 months old. In addition, the kidneys from diabetic mice showed significant increases in TP63 mRNA and protein expression compared to WT mice. Mouse proximal tubular cells exposed to high glucose (HG) for 48 h showed significant decreases in IRS-1 expression and increases in TP63, compared to cells grown in normal glucose (NG). When TP63 was downregulated by siRNA, significant increases in IRS-1 and activation of AMP-activated protein kinase (AMPK (p-AMPK-Th172)) occurred under NG and HG conditions. Moreover, activation of AMPK by pretreating the cells with AICAR resulted in significant downregulation of TP63 and increased IRS-1 expression. Ad-cDNA-mediated over-expression of tuberin resulted in significantly decreased TP63 levels and upregulation of IRS-1 expression. Furthermore, TP63 knockdown resulted in increased glucose uptake, whereas IRS-1 knockdown resulted in a decrease in the glucose uptake. Altogether, animal and cell culture data showed a potential role of TP63 as a new candidate gene involved in regulating IRS-1 that may be used as a new therapeutic target to prevent kidney complications in diabetes.
Collapse
|
6
|
Sheu TC, Holt D, Moole V, Barth D, Nolte R, Swischuk J. Renal artery bypass including aortic graft for renovascular hypertension. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2019. [DOI: 10.1016/j.epsc.2019.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Yang T, Shu F, Yang H, Heng C, Zhou Y, Chen Y, Qian X, Du L, Zhu X, Lu Q, Yin X. YY1: A novel therapeutic target for diabetic nephropathy orchestrated renal fibrosis. Metabolism 2019; 96:33-45. [PMID: 31028762 DOI: 10.1016/j.metabol.2019.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/01/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Renal fibrosis promotes the development of diabetic nephropathy (DN). A growing number of studies have reported that Yin Yang 1 (YY1), which is involved in cellular proliferation and differentiation, plays a crucial role in the pathogenesis of many diseases, such as pulmonary fibrosis, hepatic steatosis and cancer. METHODS We detected the expression of YY1 under various glucose concentration and time gradient conditions. Rapamycin was used to verify the mTORC1/p70S6K/YY1 signaling pathway in HK-2 cells. We used db/db mice to examine the connection between renal fibrosis and YY1. A luciferase assay and chromatin immunoprecipitation (ChIP) assay were used to identify whether YY1 directly regulated α-SMA by binding to the α-SMA promoter. RNA silencing and overexpression were performed by using a YY1 expression/knockdown plasmid to investigate the function of YY1 in renal fibrosis of DN. RESULTS YY1 expression and subsequent nuclear translocation were upregulated in a glucose- and time-dependent manner via the mTORC1/p70S6K signaling pathway in HK-2 cells. YY1 expression and nuclear translocation was significantly upregulated in db/db mice. Furthermore, YY1 upregulated α-SMA expression and activity in high-glucose-cultured HK-2 cells. Overexpression of YY1 promoted renal fibrosis in db/m mice mainly by upregulating α-SMA expression and inducing epithelial-mesenchymal transition (EMT) in vitro and in vivo. Finally, downregulation of YY1 reversed renal fibrosis by improving EMT in vivo and in vitro. CONCLUSIONS These results reveal that upregulation of YY1 plays a critical role in HG-induced deregulation of EMT-associated protein expression, which finally results in renal fibrosis of DN. Therefore, decreasing YY1 expression might represent a new therapeutic target for diabetic nephropathy-induced renal fibrosis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Fanglin Shu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yibing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xuan Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
8
|
Liang S, Medina EA, Li B, Habib SL. Preclinical evidence of the enhanced effectiveness of combined rapamycin and AICAR in reducing kidney cancer. Mol Oncol 2018; 12:1917-1934. [PMID: 30107094 PMCID: PMC6210038 DOI: 10.1002/1878-0261.12370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 12/31/2022] Open
Abstract
Loss of Von Hippel-Lindau in renal carcinoma cells results in upregulation of the activity of hypoxia-inducible factor (HIF-α), a major transcription factor involved in kidney cancer. Rapamycin as mammalian target of rapamycin inhibitor and 5-aminoimidazole-4-carboxamide-riboside (AICAR) as AMPK activator are used separately to treat cancer patients. In the current study, the possible additive effect of drug combinations in reducing kidney tumorigenesis was investigated. Treatment with drug combinations significantly decreased cell proliferation, increased cell apoptosis, and abolished Akt phosphorylation and HIF-2α expression in renal cell carcinoma cells, including primary cells isolated from kidney cancer patients. Significant decreases in cell migration and invasion were detected using drug combinations. Drug combinations effectively abolished binding of HIF-2α to the Akt promoter and effected formation of the DNA-protein complex in nuclear extracts from 786-O cells, as demonstrated using electromobility shift assay and examination of Akt promoter activity. Importantly, we tested the effect of each drug and the combined drugs on kidney tumor size in the nude mouse model. Our data show that treatment with rapamycin, AICAR, and rapamycin+AICAR decreased tumor size by 38%, 36%, and 80%, respectively, suggesting that drug combinations have an additive effect in reducing tumor size compared with use of each drug alone. Drug combinations effectively decreased cell proliferation, increased apoptotic cells, and significantly decreased p-Akt, HIF-2α, and vascular endothelial growth factor expression in tumor kidney tissues from mice. These results show for the first time that drug combinations are more effective than single drugs in reducing kidney tumor progression. This study provides important evidence that may lead to the initiation of pre-clinical trials in patients with kidney cancer.
Collapse
Affiliation(s)
- Sitai Liang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, USA
| | - Edward A Medina
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | - Boajie Li
- Bio-X Institutes, Shanghai Jiao Tong University, China
| | - Samy L Habib
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, TX, USA.,South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
9
|
Liang S, Cuellar T, Nowacki M, Nayak BK, Dong L, Li B, Sharma K, Habib SL. A new drug combination significantly reduces kidney tumor progression in kidney mouse model. Oncotarget 2018; 9:32900-32916. [PMID: 30250638 PMCID: PMC6152473 DOI: 10.18632/oncotarget.26004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/27/2018] [Indexed: 11/25/2022] Open
Abstract
Tuberous sclerosis complex (TSC) disease is associated with tumors in many organs, particularly angiomyolipoma (AML) in the kidneys. Loss or inactivation of TSC1/2 results in high levels of HIF-α activity and VEGF expression. mTOR inhibitor (rapamycin) and the AMPK activator 5-aminoimidazole-4-carboxamide (AICA)-riboside (AICAR) are currently used separately to treat cancer patients. Here, we investigated the effect of a novel combination of rapamycin and AICAR on tumor progression. Our data show that treatment of AML human cells with drug combinations resulted in 5-7-fold increase in cell apoptosis compared to each drug alone. In addition, drug combinations resulted in 4-5-fold decrease in cell proliferation compared to each drug alone. We found that drug combinations abolished Akt and HIF activity in AML cells. The drug combinations resulted in decrease in cell invasion and cell immigration by 70% and 84%, respectively in AML cells. The combined drugs also significantly decreased the VEGF expression compare to each drug alone in AML cells. Drug combinations effectively abolished binding of HIF-2α to the putative Akt site in the nuclear extracts isolated from AML cells. Treatment TSC mice with drug combinations resulted in 75% decrease in tumor number and 88% decrease in tumor volume compared to control TSC mice. This is first evidence that drug combinations are effective in reducing size and number of kidney tumors without any toxic effect on kidney. These data will provide evidence for initiating a new clinical trial for treatment of TSC patients.
Collapse
Affiliation(s)
- Sitai Liang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Tiffanie Cuellar
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Maciej Nowacki
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Bijaya K. Nayak
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Lily Dong
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Boajie Li
- Shanghai Jiao Tong University, Shanghai, China
| | - Kumar Sharma
- Department of Medicine, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Samy L. Habib
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
10
|
Tampe B, Tampe D, Nyamsuren G, Klöpper F, Rapp G, Kauffels A, Lorf T, Zeisberg EM, Müller GA, Kalluri R, Hakroush S, Zeisberg M. Pharmacological induction of hypoxia-inducible transcription factor ARNT attenuates chronic kidney failure. J Clin Invest 2018; 128:3053-3070. [PMID: 29664738 DOI: 10.1172/jci89632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/12/2018] [Indexed: 01/05/2023] Open
Abstract
Progression of chronic kidney disease associated with progressive fibrosis and impaired tubular epithelial regeneration is still an unmet biomedical challenge because, once chronic lesions have manifested, no effective therapies are available as of yet for clinical use. Prompted by various studies across multiple organs demonstrating that preconditioning regimens to induce endogenous regenerative mechanisms protect various organs from later incurring acute injuries, we here aimed to gain insights into the molecular mechanisms underlying successful protection and to explore whether such pathways could be utilized to inhibit progression of chronic organ injury. We identified a protective mechanism controlled by the transcription factor ARNT that effectively inhibits progression of chronic kidney injury by transcriptional induction of ALK3, the principal mediator of antifibrotic and proregenerative bone morphogenetic protein-signaling (BMP-signaling) responses. We further report that ARNT expression itself is controlled by the FKBP12/YY1 transcriptional repressor complex and that disruption of such FKBP12/YY1 complexes by picomolar FK506 at subimmunosuppressive doses increases ARNT expression, subsequently leading to homodimeric ARNT-induced ALK3 transcription. Direct targeting of FKBP12/YY1 with in vivo morpholino approaches or small molecule inhibitors, including GPI-1046, was equally effective for inducing ARNT expression, with subsequent activation of ALK3-dependent canonical BMP-signaling responses and attenuated chronic organ failure in models of chronic kidney disease, and also cardiac and liver injuries. In summary, we report an organ-protective mechanism that can be pharmacologically modulated by immunophilin ligands FK506 and GPI-1046 or therapeutically targeted by in vivo morpholino approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne Kauffels
- Department of General, Visceral, and Pediatric Surgery, and
| | - Thomas Lorf
- Department of General, Visceral, and Pediatric Surgery, and
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | | | - Raghu Kalluri
- Department of Cancer Biology and the Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology.,German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| |
Collapse
|
11
|
Berman AY, Manna S, Schwartz NS, Katz YE, Sun Y, Behrmann CA, Yu JJ, Plas DR, Alayev A, Holz MK. ERRα regulates the growth of triple-negative breast cancer cells via S6K1-dependent mechanism. Signal Transduct Target Ther 2017; 2. [PMID: 28890840 PMCID: PMC5589335 DOI: 10.1038/sigtrans.2017.35] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Estrogen-related receptor alpha (ERRα) is an orphan nuclear factor that is a master regulator of cellular energy metabolism. ERRα is overexpressed in a variety of tumors, including ovarian, prostate, colorectal, cervical and breast, and is associated with a more aggressive tumor and a worse outcome. In breast cancer, specifically, high ERRα expression is associated with an increased rate of recurrence and a poor prognosis. Because of the common functions of ERRα and the mTORC1/S6K1 signaling pathway in regulation of cellular metabolism and breast cancer pathogenesis, we focused on investigating the biochemical relationship between ERRα and S6K1. We found that ERRα negatively regulates S6K1 expression by directly binding to its promoter. Downregulation of ERRα expression sensitized ERα-negative breast cancer cells to mTORC1/S6K1 inhibitors. Therefore, our results show that combinatorial inhibition of ERRα and mTORC1/S6K1 may have clinical utility in treatment of triple-negative breast cancer, and warrants further investigation.
Collapse
Affiliation(s)
- Adi Y Berman
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Subrata Manna
- Department of Biology, Yeshiva University, New York, NY, USA
| | | | - Yardena E Katz
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Yang Sun
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Jane J Yu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David R Plas
- Department of Cancer Biology; University of Cincinnati, Cincinnati, OH, USA
| | - Anya Alayev
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Marina K Holz
- Department of Biology, Yeshiva University, New York, NY, USA.,Department of Molecular Pharmacology and the Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
12
|
Habib SL, Abboud HE. Tuberin regulates reactive oxygen species in renal proximal cells, kidney from rodents, and kidney from patients with tuberous sclerosis complex. Cancer Sci 2016; 107:1092-100. [PMID: 27278252 PMCID: PMC4982584 DOI: 10.1111/cas.12984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/30/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) are an important endogenous source of DNA damage and oxidative stress in all cell types. Deficiency in tuberin resulted in increased oxidative DNA damage in renal cells. In this study, the role of tuberin in the regulating of ROS and NADPH oxidases was investigated. Formation of ROS and activity of NADPH oxidases were significantly higher in mouse embryonic fibroblasts and in primary culture of rat renal proximal tubular epithelial tuberin‐deficient cells compared to wild‐type cells. In addition, expression of NADPH oxidase (Nox)1, Nox2, and Nox4 (Nox isoforms) was higher in mouse embryonic fibroblasts and renal proximal tubular epithelial tuberin‐deficient cells compared to wild‐type cells. Furthermore, activity levels of NADPH oxidases and protein expression of all Nox isoforms were higher in the renal cortex of rat deficient in tuberin. However, treatment of tuberin‐deficient cells with rapamycin showed significant decrease in protein expression of all Nox. Significant increase in protein kinase C βII expression was detected in tuberin‐deficient cells, whereas inhibition of protein kinase C βII by bisindolylmaleimide I resulted in decreased protein expression of all Nox isoforms. In addition, treatment of mice deficient in tuberin with rapamycin resulted in significant decrease in all Nox protein expression. Moreover, protein and mRNA expression of all Nox were highly expressed in tumor kidney tissue of patients with tuberous sclerosis complex compared to control kidney tissue of normal subjects. These data provide the first evidence that tuberin plays a novel role in regulating ROS generation, NADPH oxidase activity, and Nox expression that may potentially be involved in development of kidney tumor in patients with tuberous sclerosis complex.
Collapse
Affiliation(s)
- Samy L Habib
- Geriatric Research, Education and Clinical Department, South Texas Veterans Health Care System, San Antonio, Texas, USA.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hanna E Abboud
- Geriatric Research, Education and Clinical Department, South Texas Veterans Health Care System, San Antonio, Texas, USA.,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
13
|
Habib SL, Mohan S, Liang S, Li B, Yadav M. Novel mechanism of transcriptional regulation of cell matrix protein through CREB. Cell Cycle 2015; 14:2598-608. [PMID: 26115221 DOI: 10.1080/15384101.2015.1064204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The transcription mechanism(s) of renal cell matrix accumulation in diabetes does not explored. Phosphorylation of the transcription factor cAMP-responsive element binding protein (CREB) significantly increased in cells treated with high glucose (HG) compared to cell grown in normal glucose (NG). Cells pretreated with rapamycin before exposure to HG showed significant decrease phosphorylation of CREB, increase in AMPK activity and decrease protein/mRNA and promoter activity of fibronectin. In addition, cells transfected with siRNA against CREB showed significant increase in AMPK activity, decrease in protein/mRNA and promoter activity of fibronectin. Cells treated with HG showed nuclear localization of p-CREB while pretreated cells with rapamycin reversed HG effect. Moreover, gel shift analysis shows increase binding of CREB to fibronectin promoter in cells treated with HG while cells pretreated with rapamycin reversed the effect of HG. Furthermore, db/db mice treated with rapamycin showed significant increase in AMPK activity, decrease in expression of p-CREB and protein/mRNA of fibronectin. Strong staining of fibronectin and p-CREB was detected in kidney cortex of db/db mice while treated mice with rapamycin reversed hyperglycemia effect. In summary, our data provide a novel mechanism of transcriptional regulation of fibronectin through CREB that may be used as therapeutic approach to prevent diabetes complications.
Collapse
Affiliation(s)
- Samy L Habib
- a South Texas Veterans Health Care System ; San Antonio , TX USA
| | | | | | | | | |
Collapse
|
14
|
Tuberin-deficiency downregulates N-cadherin and upregulates vimentin in kidney tumor of TSC patients. Oncotarget 2015; 5:6936-46. [PMID: 25149531 PMCID: PMC4196174 DOI: 10.18632/oncotarget.2206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Angiomyolipomas (AMLs) are associated with cell fibrosis in kidney of Tuberous Sclerosis Complex patients. The mechanism by which the fibrotic proteins accumulated in AMLs has not been explored. In the present study, we investigated the role of Akt/tuberin/mTOR pathway in the regulation cell fibrosis proteins. AML cells that expressed low levels of tuberin showed less expression of N-cadherin and higher of vimentin proteins compared to HEK293 cells. AML cells infected with Ad-tuberin showed a significant decrease in vimentin and an increase in N-cadherin protein expression. In addition, cells treated with rapamycin showed a significant increase in p-Akt and a decrease in p-p70S6K that was associated with a decrease expression of vimentin and a slight increase expression in N-cadherin. On the other hand, cells treated with Akt inhibitor revealed a significant decrease in p-Akt and p-p70S6K that was associated with a significant decrease in vimentin and an increase in N-cadherin expression. In addition, cells transfected with DN-Akt or DN-S6K show significant increase expression in N-cadherin and a decrease in vimentin. Moreover, cells transfected with siRNA against rictor or siRNA against raptor resulted in a decrease in vimentin and an increase N-cadherin expression. Kidney tumors from TSC patients showed significant decrease in N-cadherin and significant increased in vimentin protein expression compared to control kidney tissues. These data comprise the first report to provide the role of Akt/tuberin/mTORC1/2 in the regulation of N-cadherin and vimentin that are involved in the progression of fibrosis in kidney tumor of TSC patients.
Collapse
|