1
|
Yu L, Qin X, Liang B, Liu J. Traditional Chinese Medicine-Based Nanoformulations for Enhanced Photothermal Therapy of Cancer. ACS Biomater Sci Eng 2025. [PMID: 39844481 DOI: 10.1021/acsbiomaterials.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Photothermal therapy (PTT) has shown promise in the ablation of small, unresectable tumors by boosting the tumor's temperature above 50 °C. However, the high local temperature-induced cancer cell necrosis could create severe local inflammation, which may deteriorate normal tissues and increase tumor spreading. Although mild photothermal therapy (MPTT) at 42-45 °C could avoid the undesired side effect to some extent with minimal nonspecific heat diffusion, the self-protective behavior of tumors during MPTT results in an unsatisfactory therapeutic effect. Inspired by the widespread applications of traditional Chinese medicine (TCM) in various ailments, we also extensively explored the use of TCM in PTT and MPTT. In this Review, we summarize the application and function of TCM in PTT and MPTT, including the following: (1) TCM improves the performance of PTT and MPTT by elevating the photothermal conversion ability of photothermal agents (PTAs) and overcoming the self-protective effect of tumors, (2) PTT enhances TCM-based chemotherapy by improving the sensitivity and cellular uptake of TCM in tumors, and (3) natural TCM and metal-chelated TCM-based nanoparticles could directly act as PTAs for carrier-free combination therapy. We expect this Review will further illuminate TCM's utility and applicability in cancer treatment and create new combination strategies for theragnostic use.
Collapse
Affiliation(s)
- Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Xueying Qin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Bing Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| |
Collapse
|
2
|
Guo M, He M, Zhang Y, Liu W, Qi M, Liu Z, Yi G, Deng S, Li Y, Sun X, Zhao L, Chen T, Liu Y. Nucleo-cytoplasmic shuttling of 14-3-3 epsilon carrying hnRNP C promotes autophagy. Cancer Biol Ther 2023; 24:2246203. [PMID: 37599448 PMCID: PMC10443976 DOI: 10.1080/15384047.2023.2246203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
Translocation of 14-3-3 protein epsilon (14-3-3ε) was found to be involved in Triptolide (Tp)-induced inhibition of colorectal cancer (CRC) cell proliferation. However, the form of cell death induced by 14-3-3ε translocation and mechanisms underlying this effect remain unclear. This study employed label-free LC-MS/MS to identify 14-3-3ε-associated proteins in CRC cells treated with or without Tp. Our results confirmed that heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNP C) were exported out of the nucleus by 14-3-3ε and degraded by ubiquitination. The nucleo-cytoplasmic shuttling of 14-3-3ε carrying hnRNP C mediated Tp-induced proliferation inhibition, cell cycle arrest and autophagic processes. These findings have broad implications for our understanding of 14-3-3ε function, provide an explanation for the mechanism of nucleo-cytoplasmic shuttling of hnRNP C and provide new insights into the complex regulation of autophagy.
Collapse
Affiliation(s)
- Manlan Guo
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Minyi He
- Center for Clinical Medical Education, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, Guizhou Cancer Hospital, Guiyang, Guizhou, China
| | - Weiwen Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Min Qi
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Zhifeng Liu
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, China
| | - Guozhong Yi
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Shengze Deng
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Yaomin Li
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Xuegang Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, China
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| |
Collapse
|
3
|
Yuan C, Liao Y, Liao S, Huang M, Li D, Wu W, Quan Y, Li L, Yu X, Si W. Triptolide inhibits the progression of Glioblastoma U251 cells via targeting PROX1. Front Oncol 2023; 13:1077640. [PMID: 36969058 PMCID: PMC10038275 DOI: 10.3389/fonc.2023.1077640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundGlioblastoma multiforme (GBM) is the most lethal brain cancer in adults, characterized by rapid growth, extensive invasiveness, and poor prognosis, and there is still a lack of effective treatments. Here, we aimed to explore the role of triptolide (TPL), purified from Tripterygium wilfordii Hook F, on glioblastoma cell growth, apoptosis, proliferation, migration and invasion, as well as potential underlying mechanisms.MethodsThe publicly available clinical data of Brain Lower Grade Glioma (LGG) from The Cancer Genome Atlas (TCGA) had been screened to observe PROX1 expression. The Kaplan-Meier analysis was used to analyze the relationship between PROX1 expression and GBM prognosis. CCK8, cell cycle, EDU, apoptosis, wound healing, and transwell assays were performed to detect the effects of TPL on glioblastoma U251 cell viability, cell cycle, proliferation, apoptosis, migration and invasion, respectively. Further, a soft agar colony assay was used to calculate the growth of glioblastoma cells. The qRT-PCR and western blot were conducted to quantify PROX1 mRNA and protein levels. The transcriptional regulation of TPL was detected by Dual luciferase reporter assay.ResultsWe found that TPL inhibited glioblastoma cell viability, proliferation, cell cycle, migration and invasion, but enhanced apoptosis in a dose-dependent manner. The expression of cell cycle inhibitor, P21, and pro-apoptosis factor, Bax was increased, while invasion-related factors MMP2 and MMP9 were silenced after TPL treatments. Mechanistically, TPL showed transcriptional inhibition of PROX1 appearance. Moreover, ectopic expression of PROX1 partially rescued the effects of TPL on glioblastoma cell viability, proliferation, apoptosis, migration and invasion, and on the expression of cell function-related genes.ConclusionThis study verified that TPL inhibited the progression of glioblastoma cells by transcriptionally depressing the expression of PROX1.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Yanli Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Shengjie Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Mi Huang
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Duanzhuo Li
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Weibin Wu
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Yi Quan
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Liqiang Li
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Xin Yu
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- *Correspondence: Wenxia Si, ; ; Xin Yu, ;
| | - Wenxia Si
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
- *Correspondence: Wenxia Si, ; ; Xin Yu, ;
| |
Collapse
|
4
|
Farag PS, AboulMagd AM, Hemdan MM, Hassaballah AI. Annulated pyrazole derivatives as a novel class of urokinase (uPA) inhibitors: Green synthesis, anticancer activity, DNA-damage evaluation, and molecular modelling study. Bioorg Chem 2022; 130:106231. [DOI: 10.1016/j.bioorg.2022.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022]
|
5
|
Hu L, Dong H, He L, Shi M, Xiang N, Su Y, Wang C, Tian Y, Hu Y, Wang H, Liu H, Wen C, Yang X. Evacetrapib Elicits Antitumor Effects on Colorectal Cancer by Inhibiting the Wnt/β-Catenin Signaling Pathway and Activating the JNK Signaling Pathway. Biol Pharm Bull 2022; 45:1238-1245. [DOI: 10.1248/bpb.b22-00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Limei Hu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Haiyan Dong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Lingyuan He
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Mengchen Shi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Nanlin Xiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Yixi Su
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Chen Wang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Yu Tian
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Yijia Hu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Huihui Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Chuangyu Wen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
6
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
7
|
Cao Z, Liu B, Li L, Lu P, Yan L, Lu C. Detoxification strategies of triptolide based on drug combinations and targeted delivery methods. Toxicology 2022; 469:153134. [PMID: 35202762 DOI: 10.1016/j.tox.2022.153134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Tripterygium wilfordii Hook f. has a long history of use in Chinese medicine. Triptolide (TP), as its main pharmacological component, has been widely explored in various diseases, including systemic lupus erythematosus, rheumatoid arthritis and cancer. However, due to its poor water solubility, limited therapeutic range and multi-organ toxicity, TP's clinical application has been greatly hampered. To improve its clinical potential, many attenuated drug combinations have been developed based on its toxicity mechanism and targeted delivery systems aimed at its water-solubility and structure. This review, conducted a systematic review of TP detoxification strategies including drug combination detoxification strategies from metabolic and toxic mechanisms, as well as drug delivery detoxification strategies from the prodrug strategy and nanotechnology. Many detoxification strategies have demonstrated promising potential in vitro and in vivo due to previous extensive studies on TP. Therefore, summarizing and discussing TP detoxification strategies for clinical problems can serve as a reference for developing novel TP detoxification strategies, and provide opportunities for future clinical applications.
Collapse
Affiliation(s)
- Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
8
|
Zhou J, Hu T, Liu Y, Tu L, Song Y, Lu Y, Zhang Y, Tong Y, Zhao Y, Su P, Wu X, Huang L, Gao W. Cytochrome P450 catalyses the 29-carboxyl group formation of celastrol. PHYTOCHEMISTRY 2021; 190:112868. [PMID: 34273756 DOI: 10.1016/j.phytochem.2021.112868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Celastrol, a potent anticancer and anti-obesity drug, was first isolated from Tripterygium wilfordii Hook. f. and it is produced in small quantities in many members of the Celastraceae family. The heterologous reconstitution of celastrol biosynthesis could be a promising method for the efficient production of celastrol and natural and unnatural derivatives thereof, yet only part of the biosynthetic pathway is known. Here, we report a cytochrome P450 monooxygenase (TwCYP712K1) from T. wilfordii that performs the three-step oxidation of friedelin to polpunonic acid in the celastrol pathway. Heterologous expression of TwCYP712K1 showed that TwCYP712K1 catalyses not only the transformation of friedelin to polpunonic acid but also the oxidation of β-amyrin or α-amyrin. The role of TwCYP712K1 in the biosynthesis of celastrol was further revealed via RNA interference. Some key residues of TwCYP712K1 were also screened by molecular docking and site-directed mutagenesis. Our results lay a solid foundation for further elucidating the biosynthesis of celastrol and related triterpenoids.
Collapse
Affiliation(s)
- Jiawei Zhou
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Tianyuan Hu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Lichan Tu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yadi Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yujun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Bijani F, Zabihi E, Bijani A, Nouri HR, Nafarzadeh S, Seyedmajidi M. Evaluation of apoptotic effect of crocin, cisplatin, and their combination in human oral squamous cell carcinoma cell line HN5. Dent Res J (Isfahan) 2021; 18:70. [PMID: 34584648 PMCID: PMC8428283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/23/2020] [Accepted: 09/20/2020] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SCC) is the most common oral malignancy with high rate of mortality. Cisplatin, as the most effective chemotherapy drug, has side effects. Considering the studies on the use of crocin in saffron in the treatment of various malignancies, this study aimed at investigating the effects of crocin and cisplatin and their combination on SCC and fibroblast cell lines. MATERIALS AND METHODS In this interventional study, HN5 and fibroblast cell lines were treated with different concentrations of crocin (12.5-50 μg/mL) and cisplatin (2, 4, 8, 16, and 32 μg/mL), and the cells were counted after 24, 48, and 72 h by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Data were analyzed with SPSS Version 17, and P < 0.05 was considered the level of significance. In the final stage, flow cytometry after 24 h in terms of the pattern of cell death was done. RESULTS Both drugs had a toxic effect on malignant cells. One point was the high toxic effect of 8 μg/mL cisplatin not only on cancer cells (P < 0.001) but also on fibroblasts. However, combination with 12.5 μg/mL of crocin had the same effect on HN5 cell line, despite the less toxic effect in fibroblasts in comparison with cisplatin alone (P = 0.012). Apoptosis was the pattern of cell death showed by flow cytometry. CONCLUSION Crocin in high concentrations can have not only significant toxicity in cancer cells but also side effects in healthy tissue. It seems that lower doses of crocin, in combination with cisplatin, besides having anticancer effect, can reduce the toxicity of cisplatin in healthy tissue.
Collapse
Affiliation(s)
- Fatima Bijani
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Bijani
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shima Nafarzadeh
- Oral Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Seyedmajidi
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Address for correspondence: Dr. Maryam Seyedmajidi, Dental Materials Research Center, Faculty of Dentistry, Babol University of Medical Sciences, Babol, Iran. E-mail:
| |
Collapse
|
10
|
Yuan C, Guo Z, Yu S, Jiang L, Huang M. Development of inhibitors for uPAR: blocking the interaction of uPAR with its partners. Drug Discov Today 2021; 26:1076-1085. [PMID: 33486111 DOI: 10.1016/j.drudis.2021.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) mediates a multitude of biological activities, has key roles in several clinical indications, including malignancies and inflammation, and, thus, has attracted intensive research over the past few decades. The pleiotropic functions of uPAR can be attributed to its interaction with an array of partners. Many inhibitors have been developed to intervene with the interaction of uPAR with these partners. Here, we review the development of these classes of uPAR inhibitor and their inhibitory mechanisms to promote the translation of these inhibitors to clinical applications.
Collapse
Affiliation(s)
- Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhanzhi Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fujian, 350116, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian, 350116, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian, 350116, China.
| |
Collapse
|
11
|
Seyedmajidi M, Bijani F, Zabihi E, Bijani A, Nouri H, Nafarzadeh S. Evaluation of apoptotic effect of crocin, cisplatin, and their combination in human oral squamous cell carcinoma cell line HN5. Dent Res J (Isfahan) 2021. [DOI: 10.4103/1735-3327.324029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Jiang W, Cai F, Xu H, Lu Y, Chen J, Liu J, Cao N, Zhang X, Chen X, Huang Q, Zhuang H, Hua ZC. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner. Protein Cell 2020; 11:825-845. [PMID: 32144580 PMCID: PMC7647985 DOI: 10.1007/s13238-020-00701-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
This study was designed to evaluate ERK5 expression in lung cancer and malignant melanoma progression and to ascertain the involvement of ERK5 signaling in lung cancer and melanoma. We show that ERK5 expression is abundant in human lung cancer samples, and elevated ERK5 expression in lung cancer was linked to the acquisition of increased metastatic and invasive potential. Importantly, we observed a significant correlation between ERK5 activity and FAK expression and its phosphorylation at the Ser910 site. Mechanistically, ERK5 increased the expression of the transcription factor USF1, which could transcriptionally upregulate FAK expression, resulting in FAK signaling activation to promote cell migration. We also provided evidence that the phosphorylation of FAK at Ser910 was due to ERK5 but not ERK1/2, and we then suggested a role for Ser910 in the control of cell motility. In addition, ERK5 had targets in addition to FAK that regulate epithelial-to-mesenchymal transition and cell motility in cancer cells. Taken together, our findings uncover a cancer metastasis-promoting role for ERK5 and provide the rationale for targeting ERK5 as a potential therapeutic approach.
Collapse
Affiliation(s)
- Weiwei Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Huangru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yanyan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jia Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Nini Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiangyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qilai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China. .,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China.
| |
Collapse
|
13
|
Haiaty S, Rashidi MR, Akbarzadeh M, Maroufi NF, Yousefi B, Nouri M. Targeting vasculogenic mimicry by phytochemicals: A potential opportunity for cancer therapy. IUBMB Life 2020; 72:825-841. [PMID: 32026601 DOI: 10.1002/iub.2233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
Vasculogenic mimicry (VM) is regarded as a process where very aggressive cancer cells generate vascular-like patterns without the presence of endothelial cells. It is considered as the main mark of malignant cancer and has pivotal role in cancer metastasis and progression in various types of cancers. On the other hand, resistance to the antiangiogenesis therapies leads to the cancer recurrence. Therefore, development of novel chemotherapies and their combinations is urgently needed for abolition of VM structures and also for better tumor therapy. Hence, identifying compounds that target VM structures might be superior therapeutic factors for cancers treatment and controlling the recurrence and metastasis. In recent times, naturally occurring compounds, especially phytochemicals have obtained great attention due to their safe properties. Phytochemicals are also capable of targeting VM structure and also their main signaling pathways. Consequently, in this review article, we illustrated key signaling pathways in VM, and the phytochemicals that affect these structures including curcumin, genistein, lycorine, luteolin, columbamine, triptolide, Paris polyphylla, dehydroeffusol, jatrorrhizine hydrochloride, grape seed proanthocyanidins, resveratrol, isoxanthohumol, dehydrocurvularine, galiellalactone, oxacyclododecindione, brucine, honokiol, ginsenoside Rg3, and norcantharidin. The recognition of these phytochemicals and their safety profile may lead to new therapeutic agents' development for VM elimination in different types of tumors.
Collapse
Affiliation(s)
- Sanya Haiaty
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nazila F Maroufi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Yao C, Li H, Zhang W. Triptolide inhibits benign prostatic epithelium viability and migration and induces apoptosis via upregulation of microRNA-218. Int J Immunopathol Pharmacol 2019; 32:2058738418812349. [PMID: 30453799 PMCID: PMC6247479 DOI: 10.1177/2058738418812349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Benign prostatic hypertrophy (BPH) has become a troublesome disease for elder
men. Triptolide (TPL) has been reported to be a potential anticancer agent.
However, the potential effects of TPL on BPH have not been shown out. BPH-1
cells were treated with different concentrations of TPL and/or transfected with
microRNA-218 (miR-218) inhibitor, pc-survivin, sh-survivin, or their
corresponding controls (NC). Thereafter, cell viability was determined by CCK-8
assay. Cell migration was accessed by modified two-chamber migration assay. Cell
apoptosis was checked by propidium iodide (PI) and fluorescein isothiocyanate
(FITC)-conjugated Annexin V staining. In addition, messenger RNA (mRNA) and
protein levels were detected using quantitative real-time polymerase chain
reaction (qRT-PCR) and western blot analysis, respectively. BPH-1 cell viability
and migration were significantly decreased, while cell apoptosis and expression
of miR-218 were statistically enhanced by TPL (P < 0.05 or
P < 0.01). However, downregulation of miR-218 increased
cell viability and migration, while decreased cell apoptosis compared with the
negative control group (P < 0.05 or
P < 0.01). Furthermore, the expression of cell cycle–related
proteins and cell apoptosis–related proteins were also led to the opposite
results with NC. In addition, we found that miR-218 negatively regulated the
expression of survivin (P < 0.01) and suppression of
survivin significantly enhanced cell apoptosis (P < 0.01).
Moreover, the results demonstrated that TPL could inactivate mammalian target of
rapamycin (mTOR) pathway, while inhibition of miR-218 alleviated the effects.
TPL inhibits viability and migration of BPH-1 cells and induces cell apoptosis
and also inactivates mTOR signal pathway via upregulation of miR-218. This study
provides evidence for the further studies representing triptolide as a potential
agent in the treatment of human BPH.
Collapse
Affiliation(s)
- Changlei Yao
- 1 Department of Urinary Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Hongfa Li
- 1 Department of Urinary Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Weitao Zhang
- 2 Department of Urinary Surgery, Affiliated Hospital of Taishan Medical University, Taian, China
| |
Collapse
|
15
|
Jiang W, Jin G, Cai F, Chen X, Cao N, Zhang X, Liu J, Chen F, Wang F, Dong W, Zhuang H, Hua ZC. Extracellular signal-regulated kinase 5 increases radioresistance of lung cancer cells by enhancing the DNA damage response. Exp Mol Med 2019; 51:1-20. [PMID: 30804322 PMCID: PMC6389946 DOI: 10.1038/s12276-019-0209-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is a frequent mode of cancer treatment, although the development of radioresistance limits its effectiveness. Extensive investigations indicate the diversity of the mechanisms underlying radioresistance. Here, we aimed to explore the effects of extracellular signal-regulated kinase 5 (ERK5) on lung cancer radioresistance and the associated mechanisms. Our data showed that ERK5 is activated during solid lung cancer development, and ectopic expression of ERK5 promoted cell proliferation and G2/M cell cycle transition. In addition, we found that ERK5 is a potential regulator of radiosensitivity in lung cancer cells. Mechanistic investigations revealed that ERK5 could trigger IR-induced activation of Chk1, which has been implicated in DNA repair and cell cycle arrest in response to DNA double-strand breaks (DSBs). Subsequently, ERK5 knockdown or pharmacological inhibition selectively inhibited colony formation of lung cancer cells and enhanced IR-induced G2/M arrest and apoptosis. In vivo, ERK5 knockdown strongly radiosensitized A549 and LLC tumor xenografts to inhibition, with a higher apoptotic response and reduced tumor neovascularization. Taken together, our data indicate that ERK5 is a novel potential target for the treatment of lung cancer, and its expression might be used as a biomarker to predict radiosensitivity in NSCLC patients. Resistance to radiotherapy in patients with lung cancer may be countered by targeting a protein involved in promoting DNA repair. Radiotherapy causes DNA double-stranded breaks in lung cancer cells in order to kill them. However, cancer cells can show improved DNA repair and responses to damage, resulting in resistance to treatment. Zi-Chun Hua, Hongqin Zhuang at Nanjing University in China and co-workers examined the activity of the extracellular signal-related kinase 5 (ERK5) protein in response to the stress of ionizing radiation. They found that after radiation exposure ERK5 increased expression of another protein involved in DNA repair, facilitating cancer cell recovery. Knocking out ERK5 suppressed this resistance to radiotherapy. ERK5 could be a valuable target for treating lung cancer, and ERK5 expression level could be used as a biomarker for patient sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Weiwei Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Guanghui Jin
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China.,Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, PR China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Nini Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xiangyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jia Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Fei Chen
- Department of Nuclear Medicine, The Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Feng Wang
- Department of Nuclear Medicine, The Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Wei Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China. .,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, 213164, PR China.
| |
Collapse
|
16
|
Zhou J, Zhang Y, Hu T, Su P, Zhang Y, Liu Y, Huang L, Gao W. Functional characterization of squalene epoxidase genes in the medicinal plant Tripterygium wilfordii. Int J Biol Macromol 2018; 120:203-212. [DOI: 10.1016/j.ijbiomac.2018.08.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022]
|
17
|
Cai F, Chen M, Zha D, Zhang P, Zhang X, Cao N, Wang J, He Y, Fan X, Zhang W, Fu Z, Lai Y, Hua ZC, Zhuang H. Curcumol potentiates celecoxib-induced growth inhibition and apoptosis in human non-small cell lung cancer. Oncotarget 2017; 8:115526-115545. [PMID: 29383179 PMCID: PMC5777791 DOI: 10.18632/oncotarget.23308] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
Combinatorial therapies that target multiple signaling pathways may provide improved therapeutic responses over monotherapies. Celecoxib and curcumol are two highly hydrophobic drugs which show bioavailability problems due to their poor aqueous solubility. In the present study, we evaluated the effects of celecoxib and curcumol alone and in combination on cell proliferation, invasion, migration, cell cycle and apoptosis induction in non-small cell lung cancer (NSCLC) cells using in vitro and in vivo experiments. Our data showed that the sensitivity of a combined therapy using low concentration of celecoxib and curcumol was higher than that of celecoxib or curcumol alone. Suppression of NF-κB transcriptional activity, activation of caspase-9/caspase-3, cell cycle G1 arrest, and inhibition of survival MAPK and PI3K/AKT signaling pathway contributed to the synergistic effects of this combination therapy for induction of apoptosis. Additionally, either celecoxib alone or in combination with curcumol inhibited NSCLC cell migration and invasion by suppressing FAK and matrix metalloproteinase-9 activities. Furthermore, the combined treatment reduced tumor volume and weight in xenograft mouse model, and significantly decreased tumor metastasis nodules in lung tissues by tail vein injection. Our results confirm and provide mechanistic insights into the prominent anti-proliferative activities of celecoxib and/or curcumol on NSCLC cells, which provide a rationale for further detailed preclinical and potentially clinical studies of this combination for the therapy of lung cancer.
Collapse
Affiliation(s)
- Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Minghui Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Daolong Zha
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Peng Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xiangyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Nini Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jishuang Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yan He
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xinxin Fan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Wenjing Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Zhongping Fu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yueyang Lai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Nanjing Industrial Innovation Center for Pharmaceutical Biotechnology, Nanjing, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
18
|
The synergistic antitumor effect of cinobufagin and cisplatin in human osteosarcoma cell line in vitro and in vivo. Oncotarget 2017; 8:85150-85168. [PMID: 29156710 PMCID: PMC5689600 DOI: 10.18632/oncotarget.19554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/24/2017] [Indexed: 01/01/2023] Open
Abstract
Cisplatin (CDDP) has been shown to be a promising anticancer drug that is effective against many types of cancer, which include osteosarcoma (OS). However, its therapeutic application is restricted by its toxicity in normal tissues and by side effects caused in patients. Reduction of the toxicity of CDDP is necessary to improve cancer treatment. In the present study, we attempted to clarify how cinobufagin, a traditional Chinese medicine, enhances CDDP-induced cytotoxicity in OS cells. OS 143B cells were treated with cinobufagin and CDDP alone or in combination. After low dose combined treatments with cinobufagin and CDDP, the effects of these therapeutics on cell proliferation, apoptosis, cell cycle, migration, invasion, and involvement in Notch pathway, as well as tumor growth and metastatic capability were determined. It was found that the combination of low doses of cinobufagin and CDDP markedly inhibited cell activity, motility, and induced apoptosis and cell cycle arrest in S phase, as well as suppressing tumor growth, metastasis and prolonging longer survival of nude mice in OS xenograft models compared with the actions of either drug alone or vehicle. The results also demonstrated that cinobufagin plus CDDP significantly suppressed the Notch pathway. The anticancer mechanism of these two drugs may involve intervention in the Notch signaling, which may contribute to inhibit tumor growth. All of these results suggest that application of lower concentration cinobufagin plus CDDP could produce a synergistic antitumor effect and this finding warrants further investigation for its potential clinical applications in human OS patients.
Collapse
|
19
|
Crocetin treatment inhibits proliferation of colon cancer cells through down-regulation of genes involved in the inflammation. Saudi J Biol Sci 2017; 25:1767-1771. [PMID: 30591798 PMCID: PMC6303136 DOI: 10.1016/j.sjbs.2017.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/03/2017] [Accepted: 04/09/2017] [Indexed: 01/09/2023] Open
Abstract
Background The current study was designed to investigate the effect of crocetin on the proliferation inhibition of colon cancer cells and the underlying mechanism. Methods MTT assay showed inhibition of proliferation of colon cancer cells in a dose based manner by crocetin treatment. At 30 µM concentration of crocetin proliferation rate of colon cancer cells was reduced to 14% after 24 h. Flow cytometry and fluorescence microscopy revealed induction of apoptosis in colon cancer cells on treatment with crocetin. The tube formation was suppressed significantly in the cultures of HUVEC treated with 30 µM concentration of crocetin compared to the control cultures. Results The results from transwell assay revealed a significant reduction in the population of DU-145 cells passing through filters of transwell on treatment with crocetin compared to the control cells. Treatment of the DU-145 cells with crocetin caused a significant reduction in the expression levels of NF-κB, VEGF and MMP-9. The results from RT-PCR analysis revealed a significant reduction in the expression of genes involved in inflammation including, HMGB1, IL-6 and IL-8 on treatment of DU-145 cells with crocetin. However, the expression of NAG-1 gene was increased by crocetin treatment in DU-145 cells significantly compared to the control cells. Conclusion Crocetin inhibits growth of colon cancer cells and prevents tube formation through induction of apoptosis. Therefore, crocetin can be used efficiently for the treatment of colon cancer.
Collapse
|
20
|
Zhang W, Li F, Gao W. Tripterygium wilfordii Inhibiting Angiogenesis for Rheumatoid Arthritis Treatment. J Natl Med Assoc 2017; 109:142-148. [PMID: 28599756 DOI: 10.1016/j.jnma.2017.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/11/2017] [Accepted: 02/18/2017] [Indexed: 01/01/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease with a serious pre-vascular inflammatory phase, followed by significant increase in vessel growth. Inhibition of angiogenesis is a novel therapeutic strategy against RA. The Chinese herbal remedy Tripterygium wilfordii, Hook. f. (TwHf) has been reported to be therapeutically efficacious in the treatment of RA. Recent studies have revealed that treatment with TwHf extracts inhibit angiogenesis of RA, thereby elaborately attenuation RA symptom. This review mainly addresses the anti-angiogenesis effect of TwHf in treatment of RA.
Collapse
Affiliation(s)
- Weisan Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300020, China
| | - Fengtan Li
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300020, China.
| | - Wenyuan Gao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300020, China.
| |
Collapse
|
21
|
The triptolide derivative MRx102 inhibits Wnt pathway activation and has potent anti-tumor effects in lung cancer. BMC Cancer 2016; 16:439. [PMID: 27400883 PMCID: PMC4939706 DOI: 10.1186/s12885-016-2487-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The natural compound triptolide has been shown to decrease cell proliferation and induce apoptosis and cellular senescence. We previously demonstrated that triptolide decreases tumor formation and metastasis of human non-small cell lung cancer cells (NSCLC). Due to the toxicity of triptolide, derivatives of the natural compound have been developed that show more favorable toxicity profiles and pharmacokinetics in animal models. The purpose of this study was to evaluate MRx102 as a novel therapeutic for lung cancer. METHODS Mice injected subcutaneously with H460 lung cancer cells were treated with MRx102 or carboplatin to determine the effect of MRx102 on tumor formation in comparison to standard treatment. Patient-derived xenografts (PDX) with different WIF1 expression levels were treated with MRx102 or cisplatin. We tested the effects of MRx102 treatment on migration and invasion of lung cancer cells using Transwell filters coated with fibronectin and Matrigel, respectively. Tail vein injections using H460 and A549 cells were performed. RESULTS Here we report that the triptolide derivative MRx102 significantly decreases NSCLC proliferation and stimulates apoptosis. Further, MRx102 potently inhibits NSCLC haptotactic migration and invasion through Matrigel. In vivo, NSCLC tumor formation and metastasis were greatly decreased by MRx102 treatment. The decrease in tumor formation by MRx102 in the patient-derived xenograft model was WIF1-dependent, demonstrating that MRx102 is a potent inhibitor of the Wnt pathway in low WIF1 expressing NSCLC patient tumors. CONCLUSIONS These results indicate that MRx102 has potent antitumor effects both in vitro and in vivo, and is a potential novel therapy for the treatment of NSCLC.
Collapse
|
22
|
Ismail NS, Ali EM, Ibrahim DA, Serya RA, Abou El Ella DA. Pyrazolo[3,4-d]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2016. [DOI: 10.1016/j.fjps.2016.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
23
|
Zhang QB, Meng XT, Jia QA, Bu Y, Ren ZG, Zhang BH, Tang ZY. Herbal Compound Songyou Yin and Moderate Swimming Suppress Growth and Metastasis of Liver Cancer by Enhancing Immune Function. Integr Cancer Ther 2015; 15:368-75. [PMID: 26699805 PMCID: PMC5739186 DOI: 10.1177/1534735415622011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective. Both the Chinese herbal compound Songyou Yin (SYY) and swimming exercise have been shown to have protective effects against liver cancer in animal models. In this study, we investigated whether SYY and moderate swimming (MS) have enhanced effect on suppressing progression of liver cancer by immunomodulation. Methods. C57BL/6 mice were transplanted with Hepa1-6 murine liver cancer cell lines and received treatment with SYY alone or SYY combined with MS. The green fluorescent protein (GFP)-positive metastatic foci in lungs were imaged with a stereoscopic fluorescence microscope. Flow cytometry was used to test the proportion of CD4 +, CD8 + T cells in peripheral blood and the proportions of CD4 + CD25 + Foxp3 + Treg cells in peripheral blood, spleen, and tumor tissues. Cytokine transforming growth factor (TGF)-β1 level in serum was detected by ELISA. Results. SYY plus MS significantly suppressed the growth and lung metastasis of liver cancer and prolonged survival in tumor-burdened mice. SYY plus MS markedly raised the CD4 to CD8 ratio in peripheral blood and lowered the serum TGF-β1 level and the proportions of Treg cells in peripheral blood, spleen, and tumor tissue. The effects of the combined intervention were significantly superior to SYY or MS alone. Conclusion. The combined application of SYY and MS exerted an enhanced effect on suppressing growth and metastasis of liver cancer by strengthening immunity.
Collapse
Affiliation(s)
- Quan-Bao Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China Cancer Metastasis Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang-Ting Meng
- School of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Qing-An Jia
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yang Bu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng-Gang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo-Heng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-You Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma. Tumour Biol 2015; 37:3543-8. [PMID: 26453119 DOI: 10.1007/s13277-015-3884-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022] Open
Abstract
The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.
Collapse
|
25
|
Li S, Jiang S, Jiang W, Zhou Y, Shen XY, Luo T, Kong LP, Wang HQ. Anticancer effects of crocetin in human esophageal squamous cell carcinoma KYSE-150 cells. Oncol Lett 2015; 9:1254-1260. [PMID: 25663893 PMCID: PMC4315057 DOI: 10.3892/ol.2015.2869] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/09/2014] [Indexed: 12/01/2022] Open
Abstract
Crocetin is the main pharmacologically-active component of saffron and has been considered as a promising candidate for cancer chemoprevention. The purpose of the present study was to investigate the anticancer effects of crocetin and the possible mechanisms of these properties in the esophageal squamous cell carcinoma cell line KYSE-150. The KYSE-150 cells were cultured in Dulbecco’s modified Eagle’s medium and incubated with 0, 12.5, 25, 50, 100 or 200 μmol/l crocetin for 48 h. Cell proliferation was measured using an MTT assay. Hoechst 33258 staining and observation under fluorescent microscopy were used to analyze the proapoptotic effects of crocetin. The migration rate was assessed by a wound-healing assay. The cell cycle distribution was analyzed using flow cytometry analysis subsequent to propidium iodide staining. The expression of B-cell lymphoma-2-associated X protein (Bax) and cleaved caspase 3 was determined by western blot analysis. It was found that treatment of KYSE-150 cells with crocetin for 48 h significantly inhibited the proliferation of the cells in a concentration-dependent manner, and the inhibition of proliferation was associated with S phase arrest. Crocetin was also found to induce morphological changes and cell apoptosis in a dose-dependent manner through increased expression of proapoptotic Bax and activated caspase 3. In addition, crocetin suppressed the migration of KYSE-150 cells. The present study provides evidence that crocetin exerts a prominent chemopreventive effect against esophageal cancer through the inhibition of cell proliferation, migration and induction of apoptosis. These findings reveal that crocetin may be considered to be a promising future chemotherapeutic agent for esophageal cancer therapy.
Collapse
Affiliation(s)
- Sheng Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Sheng Jiang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China ; Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515000, P.R. China
| | - Wei Jiang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yue Zhou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiu-Yin Shen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Luo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ling-Ping Kong
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hua-Qiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
26
|
Shamroukh AH, Rashad AE, Abdel-Megeid RE, Ali HS, Ali MM. Some Pyrazole and Pyrazolo[3,4-d]pyrimidine Derivatives: Synthesis and Anticancer Evaluation. Arch Pharm (Weinheim) 2014; 347:559-65. [DOI: 10.1002/ardp.201400064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Ahmed H. Shamroukh
- Photochemistry Department; National Research Center; Dokki Cairo Egypt
- Chemistry Department; Faculty of Science; Hail University; Kingdom of Saudi Arabia
| | - Aymn E. Rashad
- Photochemistry Department; National Research Center; Dokki Cairo Egypt
- Chemistry Department; Faculty of Science and Human Studies, Huraiymla, Shaqra University; Kingdom of Saudi Arabia
| | - Randa E. Abdel-Megeid
- Photochemistry Department; National Research Center; Dokki Cairo Egypt
- Chemistry Department; Faculty of Education, Afif, Shaqra University; Kingdom of Saudi Arabia
| | - Hatem S. Ali
- Food Science and Nutrition Department; College of Food Science and Agriculture; King Saud University; Kingdom of Saudi Arabia
| | - Mamdouh M. Ali
- Biochemistry Department; Division of Genetic Engeneering and Biotechnology; National Research Center Dokki Cairo Egypt
| |
Collapse
|
27
|
Sai K, Li WY, Chen YS, Wang J, Guan S, Yang QY, Guo CC, Mou YG, Li WP, Chen ZP. Triptolide Synergistically Enhances Temozolomide-Induced Apoptosis and Potentiates Inhibition of NF-κB Signaling in Glioma Initiating Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:485-503. [DOI: 10.1142/s0192415x14500323] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glioblastoma multiforme (GBM) is a lethal solid cancer in adults. Temozolomide (TMZ) is a first-line chemotherapeutic agent but the efficacy is limited by intrinsic and acquired resistance in GBM. Triptolide (TPL), a derivative from traditional Chinese medicine, demonstrated anti-tumor activity. In this study, we explored the interaction of TPL and TMZ in glioma-initiating cells (GICs) and the potential mechanism. A GIC line (GIC-1) was successfully established. Cell viability of GIC-1 after treatment was measured using a CCK-8 assay. The interaction between TPL and TMZ was calculated from Chou–Talalay equations and isobologram. Self-renewal was evaluated with tumor sphere formation assay. Apoptosis was assessed with flow cytometry and western blot. Luciferase assay was employed to measure NF-κB transcriptional activity. The expression of NF-κB downstream genes, NF-κB nuclear translocalization and phoshorylation of IκBα and p65 were evaluated using western blot. We found that GIC-1 cells were resistant to TMZ, with the expected IC50 of 705.7 μmol/L. Co-treatment with TPL yielded a more than three-fold dose reduction of TMZ. TPL significantly increased the percentage of apoptotic cells and suppressed the tumor sphere formation when combined with TMZ. Phosphorylation of IκBα and p65 coupled with NF-κB nuclear translocalization were notably inhibited after a combined treatment. Co-incubation synergistically repressed NF-κB transcriptional activity and downstream gene expression. TPL sensitizes GICs to TMZ by synergistically enhancing apoptosis, which is likely resulting from the augmented repression of NF-κB signaling. TPL is therefore a potential chemosensitizer in the treatment of GBM.
Collapse
Affiliation(s)
- Ke Sai
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Wen-Yu Li
- Guangzhou Medical University, Guangzhou 510182, China
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen 518029, China
| | - Yin-Sheng Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Su Guan
- School of Bioscience and Bioengineering, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
| | - Qun-Ying Yang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Cheng-Cheng Guo
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yong-Gao Mou
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Wei-Ping Li
- Guangzhou Medical University, Guangzhou 510182, China
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen 518029, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| |
Collapse
|
28
|
Shamroukh AH, El-Shahat M, Drabowicz J, Ali MM, Rashad AE, Ali HS. Anticancer evaluation of some newly synthesized N-nicotinonitrile derivative. Eur J Med Chem 2013; 69:521-6. [DOI: 10.1016/j.ejmech.2013.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 01/07/2023]
|