1
|
Ubhi T, Zaslaver O, Quaile AT, Plenker D, Cao P, Pham NA, Békési A, Jang GH, O'Kane GM, Notta F, Moffat J, Wilson JM, Gallinger S, Vértessy BG, Tuveson DA, Röst HL, Brown GW. Cytidine deaminases APOBEC3C and APOBEC3D promote DNA replication stress resistance in pancreatic cancer cells. NATURE CANCER 2024; 5:895-915. [PMID: 38448522 DOI: 10.1038/s43018-024-00742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Gemcitabine is a potent inhibitor of DNA replication and is a mainstay therapeutic for diverse cancers, particularly pancreatic ductal adenocarcinoma (PDAC). However, most tumors remain refractory to gemcitabine therapies. Here, to define the cancer cell response to gemcitabine, we performed genome-scale CRISPR-Cas9 chemical-genetic screens in PDAC cells and found selective loss of cell fitness upon disruption of the cytidine deaminases APOBEC3C and APOBEC3D. Following gemcitabine treatment, APOBEC3C and APOBEC3D promote DNA replication stress resistance and cell survival by deaminating cytidines in the nuclear genome to ensure DNA replication fork restart and repair in PDAC cells. We provide evidence that the chemical-genetic interaction between APOBEC3C or APOBEC3D and gemcitabine is absent in nontransformed cells but is recapitulated across different PDAC cell lines, in PDAC organoids and in PDAC xenografts. Thus, we uncover roles for APOBEC3C and APOBEC3D in DNA replication stress resistance and offer plausible targets for improving gemcitabine-based therapies for PDAC.
Collapse
Affiliation(s)
- Tajinder Ubhi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Olga Zaslaver
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Quaile
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Dennis Plenker
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Xilis Inc., Durham, NC, USA
| | - Pinjiang Cao
- Living Biobank, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Living Biobank, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Angéla Békési
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Budapest, Hungary
- Genome Metabolism Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network, Budapest, Hungary
| | - Gun-Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Grainne M O'Kane
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie M Wilson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Budapest, Hungary
- Genome Metabolism Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network, Budapest, Hungary
| | - David A Tuveson
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hannes L Röst
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Hruba L, Das V, Hajduch M, Dzubak P. Nucleoside-based anticancer drugs: Mechanism of action and drug resistance. Biochem Pharmacol 2023; 215:115741. [PMID: 37567317 DOI: 10.1016/j.bcp.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Nucleoside-based drugs, recognized as purine or pyrimidine analogs, have been potent therapeutic agents since their introduction in 1950, deployed widely in the treatment of diverse diseases such as cancers, myelodysplastic syndromes, multiple sclerosis, and viral infections. These antimetabolites establish complex interactions with cellular molecular constituents, primarily via activation of phosphorylation cascades leading to consequential interactions with nucleic acids. However, the therapeutic efficacy of these agents is frequently compromised by the development of drug resistance, a continually emerging challenge in their clinical application. This comprehensive review explores the mechanisms of resistance to nucleoside-based drugs, encompassing a wide spectrum of phenomena from alterations in membrane transporters and activating kinases to changes in drug elimination strategies and DNA damage repair mechanisms. The critical analysis in this review underlines complex interactions of drug and cell and also guides towards novel therapeutic strategies to counteract resistance. The development of targeted therapies, novel nucleoside analogs, and synergistic drug combinations are promising approaches to restore tumor sensitivity and improve patient outcomes.
Collapse
Affiliation(s)
- Lenka Hruba
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic.
| |
Collapse
|
3
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
4
|
Huang S, Bian Y, Huang C, Miao L. Is Monitoring of the Intracellular Active Metabolite Levels of Nucleobase and Nucleoside Analogs Ready for Precision Medicine Applications? Eur J Drug Metab Pharmacokinet 2022; 47:761-775. [PMID: 35915365 DOI: 10.1007/s13318-022-00786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
Nucleobase and nucleoside analogs (NAs) play important roles in cancer therapy. Although there are obvious individual differences in NA treatments, most NAs lack direct relationships between their plasma concentration and efficacy or adverse effects. Accumulating evidence suggests that the intracellular active metabolite levels of NAs predict patient outcomes. This article reviewed the relationships between NA intracellular active metabolite levels and their efficacy or adverse effects. The factors affecting the formation of intracellular active metabolites and combination regimens that elevate intracellular active metabolite levels were also reviewed. Given the mechanism of NA cytotoxicity, NA intracellular active metabolite levels may be predictive of clinical outcomes. Many clinical studies support this hypothesis. Therefore, the monitoring of intracellular active metabolite levels is beneficial for individualized NA treatment. However, to perform clinical monitoring in practice, well-designed studies are needed to explore the optimal threshold or range and the appropriate regimen adjustment strategies based on these parameters.
Collapse
Affiliation(s)
- Shenjia Huang
- Department of Clinical Pharmacy, College of Pharmaceutical Science, Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Yicong Bian
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Clinical Pharmacy, College of Pharmaceutical Science, Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Chenrong Huang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Department of Clinical Pharmacy, College of Pharmaceutical Science, Soochow University, Suzhou, China.
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China.
| | - Liyan Miao
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Department of Clinical Pharmacy, College of Pharmaceutical Science, Soochow University, Suzhou, China.
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Buocikova V, Tyciakova S, Pilalis E, Mastrokalou C, Urbanova M, Matuskova M, Demkova L, Medova V, Longhin EM, Rundén-Pran E, Dusinska M, Rios-Mondragon I, Cimpan MR, Gabelova A, Soltysova A, Smolkova B, Chatziioannou A. Decitabine-induced DNA methylation-mediated transcriptomic reprogramming in human breast cancer cell lines; the impact of DCK overexpression. Front Pharmacol 2022; 13:991751. [PMID: 36278182 PMCID: PMC9585938 DOI: 10.3389/fphar.2022.991751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Decitabine (DAC), a DNA methyltransferase (DNMT) inhibitor, is tested in combination with conventional anticancer drugs as a treatment option for various solid tumors. Although epigenome modulation provides a promising avenue in treating resistant cancer types, more studies are required to evaluate its safety and ability to normalize the aberrant transcriptional profiles. As deoxycytidine kinase (DCK)-mediated phosphorylation is a rate-limiting step in DAC metabolic activation, we hypothesized that its intracellular overexpression could potentiate DAC’s effect on cell methylome and thus increase its therapeutic efficacy. Therefore, two breast cancer cell lines, JIMT-1 and T-47D, differing in their molecular characteristics, were transfected with a DCK expression vector and exposed to low-dose DAC (approximately IC20). Although transfection resulted in a significant DCK expression increase, further enhanced by DAC exposure, no transfection-induced changes were found at the global DNA methylation level or in cell viability. In parallel, an integrative approach was applied to decipher DAC-induced, methylation-mediated, transcriptomic reprogramming. Besides large-scale hypomethylation, accompanied by up-regulation of gene expression across the entire genome, DAC also induced hypermethylation and down-regulation of numerous genes in both cell lines. Interestingly, TET1 and TET2 expression halved in JIMT-1 cells after DAC exposure, while DNMTs’ changes were not significant. The protein digestion and absorption pathway, containing numerous collagen and solute carrier genes, ranking second among membrane transport proteins, was the top enriched pathway in both cell lines when hypomethylated and up-regulated genes were considered. Moreover, the calcium signaling pathway, playing a significant role in drug resistance, was among the top enriched in JIMT-1 cells. Although low-dose DAC demonstrated its ability to normalize the expression of tumor suppressors, several oncogenes were also up-regulated, a finding, that supports previously raised concerns regarding its broad reprogramming potential. Importantly, our research provides evidence about the involvement of active demethylation in DAC-mediated transcriptional reprogramming.
Collapse
Affiliation(s)
- Verona Buocikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Tyciakova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | - Maria Urbanova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Matuskova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Demkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Medova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Elise Rundén-Pran
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Maria Dusinska
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | | | | | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrea Soltysova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Bozena Smolkova,
| | - Aristotelis Chatziioannou
- e-NIOS Applications P.C., Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
6
|
Yoshida-Sakai N, Watanabe T, Yamamoto Y, Ureshino H, Kamachi K, Kurahashi Y, Fukuda-Kurahashi Y, Kimura S. Adult T-cell leukemia-lymphoma acquires resistance to DNA demethylating agents through dysregulation of enzymes involved in pyrimidine metabolism. Int J Cancer 2021; 150:1184-1197. [PMID: 34913485 PMCID: PMC9303000 DOI: 10.1002/ijc.33901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is an aggressive neoplasm derived from T-cells transformed by human T-cell lymphotropic virus-1 (HTLV-1). Recently, we reported that regional DNA hypermethylation in HTLV-1-infected T-cells reflects the disease status of ATL and the anti-ATL effects of DNA demethylating agents, including azacitidine (AZA), decitabine (DAC) and a new DAC prodrug, OR-2100 (OR21), which we developed. Here, to better understand the mechanisms underlying drug resistance, we generated AZA-, DAC- and OR21-resistant (AZA-R, DAC-R and OR21-R, respectively) cells from the ATL cell line TL-Om1 and the HTLV-1-infected cell line MT-2 via long-term drug exposure. The efficacy of OR21 was almost the same as that of DAC, indicating that the pharmacodynamics of OR21 were due to release of DAC from OR21. Resistant cells did not show cellular responses observed in parental cells induced by treatment with drugs, including growth suppression, depletion of DNA methyltransferase DNMT1 and DNA hypomethylation. We also found that reduced expression of deoxycytidine kinase (DCK) correlated with lower susceptibility to DAC/OR21 and that reduced expression of uridine cytidine kinase2 (UCK2) correlated with reduced susceptibility to AZA. DCK and UCK2 catalyze phosphorylation of DAC and AZA, respectively; reconstitution of expression reversed the resistant phenotypes. A large homozygous deletion in DCK and a homozygous splice donor site mutation in UCK2 were identified in DAC-R TL-Om1 and AZA-R TL-Om1, respectively. Both genomic mutations might lead to loss of protein expression. Thus, inactivation of UCK2 and DCK might be a putative cause of phenotypes that are resistant to AZA and DAC/OR21, respectively.
Collapse
Affiliation(s)
- Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.,OHARA Pharmaceutical Co, Ltd, Tokyo, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,OHARA Pharmaceutical Co, Ltd, Tokyo, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
7
|
Li Y, Luo W, Zhang H, Wang C, Yu C, Jiang Z, Zhang W. Antitumor Mechanism of Hydroxycamptothecin via the Metabolic Perturbation of Ribonucleotide and Deoxyribonucleotide in Human Colorectal Carcinoma Cells. Molecules 2021; 26:4902. [PMID: 34443490 PMCID: PMC8398164 DOI: 10.3390/molecules26164902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Hydroxycamptothecin (SN38) is a natural plant extract isolated from Camptotheca acuminate. It has a broad spectrum of anticancer activity through inhibition of DNA topoisomerase I, which could affect DNA synthesis and lead to DNA damage. Thus, the action of SN38 against cancers could inevitably affect endogenous levels of ribonucleotide (RNs) and deoxyribonucleotide (dRNs) that play critical roles in many biological processes, especially in DNA synthesis and repair. However, the exact impact of SN38 on RNs and dRNs is yet to be fully elucidated. In this study, we evaluated the anticancer effect and associated mechanism of SN38 in human colorectal carcinoma HCT 116 cells. As a result, SN38 could decrease the cell viability and induce DNA damage in a concentration-dependent manner. Furthermore, cell cycle arrest and intracellular nucleotide metabolism were perturbed due to DNA damage response, of which ATP, UTP, dATP, and TTP may be the critical metabolites during the whole process. Combined with the expression of deoxyribonucleoside triphosphates synthesis enzymes, our results demonstrated that the alteration and imbalance of deoxyribonucleoside triphosphates caused by SN38 was mainly due to the de novo nucleotide synthesis at 24 h, and subsequently the salvage pathways at 48 h. The unique features of SN38 suggested that it might be recommended as an effective supplementary drug with an anticancer effect.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China; (Y.L.); (W.L.); (H.Z.); (C.W.)
| | - Wendi Luo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China; (Y.L.); (W.L.); (H.Z.); (C.W.)
| | - Huixia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China; (Y.L.); (W.L.); (H.Z.); (C.W.)
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China; (Y.L.); (W.L.); (H.Z.); (C.W.)
| | - Caiyuan Yu
- Faculty of Agroforestry and Medicine, The Open University of China, Beijing 100039, China;
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China; (Y.L.); (W.L.); (H.Z.); (C.W.)
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China; (Y.L.); (W.L.); (H.Z.); (C.W.)
| |
Collapse
|
8
|
Liu Y, Chang M, Hu Z, Xu X, Wu W, Ning M, Hang T, Song M. Danggui Buxue Decoction enhances the anticancer activity of gemcitabine and alleviates gemcitabine-induced myelosuppression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113965. [PMID: 33639205 DOI: 10.1016/j.jep.2021.113965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Decoction (DBD) as a traditional Chinese medicine (TCM) has been widely used to treat blood deficiency. With the immune regulation and hematopoietic effect, DBD improved the quality of life in non-small-cell lung cancer (NSCLC) patients. We previously reported that DBD sensitized the response of NSCLC to Gemcitabine (Gem); however, the synergism and attenuation mechanism on the combination of Gem and DBD has not yet been elucidated. AIM OF THE STUDY To investigate the mechanisms of DBD in enhancing the anticancer activity of Gem and alleviating Gem-induced myelosuppression. MATERIALS AND METHODS A549 nude mice model was established to study the effect on the combination of Gem and DBD. The organ indices, peripheral blood cells and the hematopoiesis-related cytokines were analyzed in Gem-induced myelosuppressive mice. Then we studied the whole process from Gem-induced bone marrow suppression to self-healing, and the mechanism of DBD's attenuation by the experiments of bone marrow nucleated cells (BMNCs). RESULTS There were an enhanced anticancer effect and an improvement of hematopoietic function by combining of Gem and DBD in A549 nude mice model. DBD regulated Hu antigen R (HuR), deoxycytidine kinase (dCK) and nuclear factor erythroid 2-related factor (Nrf2), increased the expression of thrombopoietin (TPO) and granulocyte-macrophage colony stimulating factor (GM-CSF). For Gem-induced myelosuppressive mice, DBD improved the number of peripheral blood cells and the levels of hematopoiesis-related cytokines. Moreover, DBD was observed to reduce deoxyribonucleic acid (DNA) content at the G1 phase, promoted BMNCs proliferation and up-regulated cycle-related proteins. CONCLUSIONS The results indicated that DBD not only improved the sensitivity of Gem but also alleviated Gem-induced myelosuppression. This study may provide a pharmacological basis for the combination of DBD and Gem in clinical application.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ming Chang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhaoliang Hu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Xu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Manru Ning
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Taijun Hang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Min Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Pola R, Pokorná E, Vočková P, Böhmová E, Pechar M, Karolová J, Pankrác J, Šefc L, Helman K, Trněný M, Etrych T, Klener P. Cytarabine nanotherapeutics with increased stability and enhanced lymphoma uptake for tailored highly effective therapy of mantle cell lymphoma. Acta Biomater 2021; 119:349-359. [PMID: 33186784 DOI: 10.1016/j.actbio.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Mantle cell lymphoma (MCL) is a rare subtype of B-cell non-Hodgkin lymphoma (B-NHL) with chronically relapsing clinical course. Implementation of cytarabine (araC) into induction and salvage regimen became standard of care for majority of MCL patients. In this study, tailored N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer nanotherapeutics containing covalently bound araC (araC co-polymers) were designed, synthesized and evaluated for their anti-lymphoma efficacy in vivo using a panel of six patient-derived lymphoma xenografts (PDX) derived from newly diagnosed and relapsed / refractory (R/R) MCL. While free araC led to temporary inhibition of growth of MCL tumors, araC co-polymers induced long-term disappearance of the engrafted lymphomas with no observed toxicity even in the case of PDX models derived from patients, who relapsed after high-dose araC-based treatments. The results provide sound preclinical rationale for the use of HPMA-based araC co-polymers in induction, salvage or palliative therapy of MCL patients.
Collapse
|
10
|
Ogrodzinski MP, Teoh ST, Lunt SY. Targeting Subtype-Specific Metabolic Preferences in Nucleotide Biosynthesis Inhibits Tumor Growth in a Breast Cancer Model. Cancer Res 2020; 81:303-314. [PMID: 33115804 DOI: 10.1158/0008-5472.can-20-1666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
Investigating metabolic rewiring in cancer can lead to the discovery of new treatment strategies for breast cancer subtypes that currently lack targeted therapies. In this study, we used MMTV-Myc-driven tumors to model breast cancer heterogeneity, investigating the metabolic differences between two histologic subtypes, the epithelial-mesenchymal transition (EMT) and the papillary subtypes. A combination of genomic and metabolomic techniques identified differences in nucleotide metabolism between EMT and papillary subtypes. EMT tumors preferentially used the nucleotide salvage pathway, whereas papillary tumors preferred de novo nucleotide biosynthesis. CRISPR/Cas9 gene editing and mass spectrometry-based methods revealed that targeting the preferred pathway in each subtype resulted in greater metabolic impact than targeting the nonpreferred pathway. Knocking out the preferred nucleotide pathway in each subtype has a deleterious effect on in vivo tumor growth, whereas knocking out the nonpreferred pathway has a lesser effect or may even result in increased tumor growth. Collectively, these data suggest that significant differences in metabolic pathway utilization distinguish EMT and papillary subtypes of breast cancer and identify said pathways as a means to enhance subtype-specific diagnoses and treatment strategies. SIGNIFICANCE: These findings uncover differences in nucleotide salvage and de novo biosynthesis using a histologically heterogeneous breast cancer model, highlighting metabolic vulnerabilities in these pathways as promising targets for breast cancer subtypes.
Collapse
Affiliation(s)
- Martin P Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.,Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan. .,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| |
Collapse
|
11
|
Qi W, Yan X, Xu X, Song B, Sun L, Zhao D, Sun L. The effects of cytarabine combined with ginsenoside compound K synergistically induce DNA damage in acute myeloid leukemia cells. Biomed Pharmacother 2020; 132:110812. [PMID: 33059263 DOI: 10.1016/j.biopha.2020.110812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
AML is a kind of hematological malignant tumor that urgently requires different treatment options in order to increase the cure rate and survival rate. Cytarabine (ara-C) is currently the main drug used to treat AML patients and is usually combined with different chemotherapeutic agents. However, due to resistance to ara-C, a new combination is needed to reduce ara-C resistance and improve treatment outcome. As is known to all, ginseng is a traditional Chinese herb; compound K is the principal metabolic product of ginsenoside which also has anti-cancer activity in some cancer cells, while the mechanism is unclear. In our previous study, we found that compound K inhibited AML cell viability and induced apoptosis, and compound K combined with ara-C synergistically induced AML cell proliferation arrest. Thus, we sought to investigate the reason for this by focusing on the mitochondrial dysfunction and DNA damage. In this paper, our results provide a foundation for the clinical evaluation of concomitant administration of compound K and ara-C in order to reduce the resistance to ara-C and improve AML treatment.
Collapse
Affiliation(s)
- Wenxiu Qi
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiuci Yan
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bailin Song
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liping Sun
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, Jilin, China.
| |
Collapse
|
12
|
Arian R, Hariri A, Mehridehnavi A, Fassihi A, Ghasemi F. Protein kinase inhibitors' classification using K-Nearest neighbor algorithm. Comput Biol Chem 2020; 86:107269. [PMID: 32413830 DOI: 10.1016/j.compbiolchem.2020.107269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Protein kinases are enzymes acting as a source of phosphate through ATP to regulate protein biological activities by phosphorylating groups of specific amino acids. For that reason, inhibiting protein kinases with an active small molecule plays a significant role in cancer treatment. To achieve this aim, computational drug design, especially QSAR model, is one of the best economical approaches to reduce time and save in costs. In this respect, active inhibitors are attempted to be distinguished from inactive ones using hybrid QSAR model. Therefore, genetic algorithm and K-Nearest Neighbor method were suggested as a dimensional reduction and classification model, respectively. Finally, to evaluate the proposed model's performance, support vector machine and Naïve Bayesian algorithm were examined. The outputs of the proposed model demonstrated significant superiority to other QSAR models.
Collapse
Affiliation(s)
- Roya Arian
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirali Hariri
- School of Pharmacology and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Mehridehnavi
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- School of Pharmacology and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Ghasemi
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Byun WS, Kim WK, Yoon JS, Jarhad DB, Jeong LS, Lee SK. Antiproliferative and Antimigration Activities of Fluoro-Neplanocin A via Inhibition of Histone H3 Methylation in Triple-Negative Breast Cancer. Biomolecules 2020; 10:biom10040530. [PMID: 32244385 PMCID: PMC7226301 DOI: 10.3390/biom10040530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is among the most aggressive and potentially metastatic malignancies. Most affected patients have poor clinical outcomes due to the lack of specific molecular targets on tumor cells. The upregulated expression of disruptor of telomeric silencing 1-like (DOT1L), a histone methyltransferase specific for the histone H3 lysine 79 residue (H3K79), is strongly correlated with TNBC cell aggressiveness. Therefore, DOT1L is considered a potential molecular target in TNBC. Fluoro-neplanocin A (F-NepA), an inhibitor of S-adenosylhomocysteine hydrolase, exhibited potent antiproliferative activity against various types of cancer cells, including breast cancers. However, the molecular mechanism underlying the anticancer activity of F-NepA in TNBC cells remains to be elucidated. We determined that F-NepA exhibited a higher growth-inhibitory activity against TNBC cells relative to non-TNBC breast cancer and normal breast epithelial cells. Moreover, F-NepA effectively downregulated the level of H3K79me2 in MDA-MB-231 TNBC cells by inhibiting DOT1L activity. F-NepA also significantly inhibited TNBC cell migration and invasion. These activities of F-NepA might be associated with the upregulation of E-cadherin and downregulation of N-cadherin and Vimentin in TNBC cells. Taken together, these data highlight F-NepA as a strong potential candidate for the targeted treatment of high-DOT1L-expressing TNBC.
Collapse
Affiliation(s)
- Woong Sub Byun
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Korea; (W.S.B.); (W.K.K.)
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Korea; (W.S.B.); (W.K.K.)
| | - Ji-seong Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.-s.Y.); (D.B.J.); (L.S.J.)
| | - Dnyandev B. Jarhad
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.-s.Y.); (D.B.J.); (L.S.J.)
| | - Lak Shin Jeong
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (J.-s.Y.); (D.B.J.); (L.S.J.)
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Korea; (W.S.B.); (W.K.K.)
- Correspondence: ; Tel.: +82-2-880-2475
| |
Collapse
|
14
|
Drug Resistance in Non-Hodgkin Lymphomas. Int J Mol Sci 2020; 21:ijms21062081. [PMID: 32197371 PMCID: PMC7139754 DOI: 10.3390/ijms21062081] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
Non-Hodgkin lymphomas (NHL) are lymphoid tumors that arise by a complex process of malignant transformation of mature lymphocytes during various stages of differentiation. The WHO classification of NHL recognizes more than 90 nosological units with peculiar pathophysiology and prognosis. Since the end of the 20th century, our increasing knowledge of the molecular biology of lymphoma subtypes led to the identification of novel druggable targets and subsequent testing and clinical approval of novel anti-lymphoma agents, which translated into significant improvement of patients’ outcome. Despite immense progress, our effort to control or even eradicate malignant lymphoma clones has been frequently hampered by the development of drug resistance with ensuing unmet medical need to cope with relapsed or treatment-refractory disease. A better understanding of the molecular mechanisms that underlie inherent or acquired drug resistance might lead to the design of more effective front-line treatment algorithms based on reliable predictive markers or personalized salvage therapy, tailored to overcome resistant clones, by targeting weak spots of lymphoma cells resistant to previous line(s) of therapy. This review focuses on the history and recent advances in our understanding of molecular mechanisms of resistance to genotoxic and targeted agents used in clinical practice for the therapy of NHL.
Collapse
|
15
|
Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer. Nat Commun 2019; 10:5492. [PMID: 31792210 PMCID: PMC6889377 DOI: 10.1038/s41467-019-13420-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Gemcitabine is the first-line treatment for locally advanced and metastatic gallbladder cancer (GBC), but poor gemcitabine response is universal. Here, we utilize a genome-wide CRISPR screen to identify that loss of ELP5 reduces the gemcitabine-induced apoptosis in GBC cells in a P53-dependent manner through the Elongator complex and other uridine 34 (U34) tRNA-modifying enzymes. Mechanistically, loss of ELP5 impairs the integrity and stability of the Elongator complex to abrogate wobble U34 tRNA modification, and directly impedes the wobble U34 modification-dependent translation of hnRNPQ mRNA, a validated P53 internal ribosomal entry site (IRES) trans-acting factor. Downregulated hnRNPQ is unable to drive P53 IRES-dependent translation, but rescuing a U34 modification-independent hnRNPQ mutant could restore P53 translation and gemcitabine sensitivity in ELP5-depleted GBC cells. GBC patients with lower ELP5, hnRNPQ, or P53 expression have poor survival outcomes after gemcitabine chemotherapy. These results indicate that the Elongator/hnRNPQ/P53 axis controls gemcitabine sensitivity in GBC cells. Gemcitabine is used to treat gallbaldder cancer but patient responses are variable. Here, the authors use a genome-wide CRISPR screen and identify the translational elongator protein ELP5 as a protein that is important for mediating gemcitabine-induced apoptosis.
Collapse
|
16
|
Dalin S, Sullivan MR, Lau AN, Grauman-Boss B, Mueller HS, Kreidl E, Fenoglio S, Luengo A, Lees JA, Vander Heiden MG, Lauffenburger DA, Hemann MT. Deoxycytidine Release from Pancreatic Stellate Cells Promotes Gemcitabine Resistance. Cancer Res 2019; 79:5723-5733. [PMID: 31484670 PMCID: PMC7357734 DOI: 10.1158/0008-5472.can-19-0960] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/29/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer deaths in the United States. The deoxynucleoside analogue gemcitabine is among the most effective therapies to treat PDAC, however, nearly all patients treated with gemcitabine either fail to respond or rapidly develop resistance. One hallmark of PDAC is a striking accumulation of stromal tissue surrounding the tumor, and this accumulation of stroma can contribute to therapy resistance. To better understand how stroma limits response to therapy, we investigated cell-extrinsic mechanisms of resistance to gemcitabine. Conditioned media from pancreatic stellate cells (PSC), as well as from other fibroblasts, protected PDAC cells from gemcitabine toxicity. The protective effect of PSC-conditioned media was mediated by secretion of deoxycytidine, but not other deoxynucleosides, through equilibrative nucleoside transporters. Deoxycytidine inhibited the processing of gemcitabine in PDAC cells, thus reducing the effect of gemcitabine and other nucleoside analogues on cancer cells. These results suggest that reducing deoxycytidine production in PSCs may increase the efficacy of nucleoside analog therapies. SIGNIFICANCE: This study provides important new insight into mechanisms that contribute to gemcitabine resistance in PDAC and suggests new avenues for improving gemcitabine efficacy.
Collapse
Affiliation(s)
- Simona Dalin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mark R Sullivan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Allison N Lau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Beatrice Grauman-Boss
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Helen S Mueller
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Emanuel Kreidl
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Silvia Fenoglio
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alba Luengo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jacqueline A Lees
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matthew G Vander Heiden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael T Hemann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
17
|
Klener P. Advances in Molecular Biology and Targeted Therapy of Mantle Cell Lymphoma. Int J Mol Sci 2019; 20:ijms20184417. [PMID: 31500350 PMCID: PMC6770169 DOI: 10.3390/ijms20184417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a heterogeneous malignancy with a broad spectrum of clinical behavior from indolent to highly aggressive cases. Despite the fact that MCL remains in most cases incurable by currently applied immunochemotherapy, our increasing knowledge on the biology of MCL in the last two decades has led to the design, testing, and approval of several innovative agents that dramatically changed the treatment landscape for MCL patients. Most importantly, the implementation of new drugs and novel treatment algorithms into clinical practice has successfully translated into improved outcomes of MCL patients not only in the clinical trials, but also in real life. This review focuses on recent advances in our understanding of the pathogenesis of MCL, and provides a brief survey of currently used treatment options with special focus on mode of action of selected innovative anti-lymphoma molecules. Finally, it outlines future perspectives of patient management with progressive shift from generally applied immunotherapy toward risk-stratified, patient-tailored protocols that would implement innovative agents and/or procedures with the ultimate goal to eradicate the lymphoma and cure the patient.
Collapse
Affiliation(s)
- Pavel Klener
- First Dept. of Medicine-Hematology, General University Hospital in Prague, 128 08 Prague, Czech Republic.
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 53 Prague, Czech Republic.
| |
Collapse
|
18
|
Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers (Basel) 2018; 10:cancers10070240. [PMID: 30041457 PMCID: PMC6071274 DOI: 10.3390/cancers10070240] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Antimetabolites, in particular nucleobase and nucleoside analogues, are cytotoxic drugs that, starting from the small field of paediatric oncology, in combination with other chemotherapeutics, have revolutionised clinical oncology and transformed cancer into a curable disease. However, even though combination chemotherapy, together with radiation, surgery and immunotherapy, can nowadays cure almost all types of cancer, we still fail to achieve this for a substantial proportion of patients. The understanding of differences in metabolism, pharmacokinetics, pharmacodynamics, and tumour biology between patients that can be cured and patients that cannot, builds the scientific basis for rational therapy improvements. Here, we summarise current knowledge of how tumour-specific and patient-specific factors can dictate resistance to nucleobase/nucleoside analogues, and which strategies of re-sensitisation exist. We revisit well-established hurdles to treatment efficacy, like the blood-brain barrier and reduced deoxycytidine kinase activity, but will also discuss the role of novel resistance factors, such as SAMHD1. A comprehensive appreciation of the complex mechanisms that underpin the failure of chemotherapy will hopefully inform future strategies of personalised medicine.
Collapse
Affiliation(s)
- Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Cynthia B J Paulin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Sean G Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
- Paediatric Oncology, Theme of Children's and Women's Health, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.
| |
Collapse
|
19
|
Freiburghaus C, Emruli VK, Johansson A, Eskelund CW, Grønbæk K, Olsson R, Ek F, Jerkeman M, Ek S. Bortezomib prevents cytarabine resistance in MCL, which is characterized by down-regulation of dCK and up-regulation of SPIB resulting in high NF-κB activity. BMC Cancer 2018; 18:466. [PMID: 29695239 PMCID: PMC5918903 DOI: 10.1186/s12885-018-4346-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/08/2018] [Indexed: 12/04/2022] Open
Abstract
Background The addition of high-dose cytarabine to the treatment of mantle cell lymphoma (MCL) has significantly prolonged survival of patients, but relapses are common and are normally associated with increased resistance. To elucidate the mechanisms responsible for cytarabine resistance, and to create a tool for drug discovery investigations, we established a unique and molecularly reproducible cytarabine resistant model from the Z138 MCL cell line. Methods Effects of different substances on cytarabine-sensitive and resistant cells were evaluated by assessment of cell proliferation using [methyl-14C]-thymidine incorporation and molecular changes were investigated by protein and gene expression analyses. Results Gene expression profiling revealed that major transcriptional changes occur during the initial phase of adaptation to cellular growth in cytarabine containing media, and only few key genes, including SPIB, are deregulated upon the later development of resistance. Resistance was shown to be mediated by down-regulation of the deoxycytidine kinase (dCK) protein, responsible for activation of nucleoside analogue prodrugs. This key event, emphasized by cross-resistance to other nucleoside analogues, did not only effect resistance but also levels of SPIB and NF-κB, as assessed through forced overexpression in resistant cells. Thus, for the first time we show that regulation of drug resistance through prevention of conversion of pro-drug into active drug are closely linked to increased proliferation and resistance to apoptosis in MCL. Using drug libraries, we identify several substances with growth reducing effect on cytarabine resistant cells. We further hypothesized that co-treatment with bortezomib could prevent resistance development. This was confirmed and show that the dCK levels are retained upon co-treatment, indicating a clinical use for bortezomib treatment in combination with cytarabine to avoid development of resistance. The possibility to predict cytarabine resistance in diagnostic samples was assessed, but analysis show that a majority of patients have moderate to high expression of dCK at diagnosis, corresponding well to the initial clinical response to cytarabine treatment. Conclusion We show that cytarabine resistance potentially can be avoided or at least delayed through co-treatment with bortezomib, and that down-regulation of dCK and up-regulation of SPIB and NF-κB are the main molecular events driving cytarabine resistance development. Electronic supplementary material The online version of this article (10.1186/s12885-018-4346-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Kirsten Grønbæk
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - Roger Olsson
- Department of Experimental Medical Science, Chemical Biology & Therapeutics, Lund University, Lund, Sweden
| | - Fredrik Ek
- Department of Experimental Medical Science, Chemical Biology & Therapeutics, Lund University, Lund, Sweden
| | - Mats Jerkeman
- Department of Oncology, Lund University, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Lund, Sweden.
| |
Collapse
|
20
|
Bar-Zeev M, Livney YD, Assaraf YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist Updat 2017; 31:15-30. [PMID: 28867241 DOI: 10.1016/j.drup.2017.05.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Malani D, Murumägi A, Yadav B, Kontro M, Eldfors S, Kumar A, Karjalainen R, Majumder MM, Ojamies P, Pemovska T, Wennerberg K, Heckman C, Porkka K, Wolf M, Aittokallio T, Kallioniemi O. Enhanced sensitivity to glucocorticoids in cytarabine-resistant AML. Leukemia 2016; 31:1187-1195. [PMID: 27833094 PMCID: PMC5420795 DOI: 10.1038/leu.2016.314] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
We sought to identify drugs that could counteract cytarabine resistance in acute myeloid leukemia (AML) by generating eight resistant variants from MOLM-13 and SHI-1 AML cell lines by long-term drug treatment. These cells were compared with 66 ex vivo chemorefractory samples from cytarabine-treated AML patients. The models and patient cells were subjected to genomic and transcriptomic profiling and high-throughput testing with 250 emerging and clinical oncology compounds. Genomic profiling uncovered deletion of the deoxycytidine kinase (DCK) gene in both MOLM-13- and SHI-1-derived cytarabine-resistant variants and in an AML patient sample. Cytarabine-resistant SHI-1 variants and a subset of chemorefractory AML patient samples showed increased sensitivity to glucocorticoids that are often used in treatment of lymphoid leukemia but not AML. Paired samples taken from AML patients before treatment and at relapse also showed acquisition of glucocorticoid sensitivity. Enhanced glucocorticoid sensitivity was only seen in AML patient samples that were negative for the FLT3 mutation (P=0.0006). Our study shows that development of cytarabine resistance is associated with increased sensitivity to glucocorticoids in a subset of AML, suggesting a new therapeutic strategy that should be explored in a clinical trial of chemorefractory AML patients carrying wild-type FLT3.
Collapse
Affiliation(s)
- D Malani
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - A Murumägi
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - B Yadav
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - M Kontro
- Hematology Research Unit Helsinki, Department of Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Eldfors
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - A Kumar
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - R Karjalainen
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - M M Majumder
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - P Ojamies
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - T Pemovska
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - K Wennerberg
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - C Heckman
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - K Porkka
- Hematology Research Unit Helsinki, Department of Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - M Wolf
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - T Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - O Kallioniemi
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland.,Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
22
|
Ciccolini J, Serdjebi C, Le Thi Thu H, Lacarelle B, Milano G, Fanciullino R. Nucleoside analogs: ready to enter the era of precision medicine? Expert Opin Drug Metab Toxicol 2016; 12:865-77. [DOI: 10.1080/17425255.2016.1192128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Joseph Ciccolini
- SMARTc Unit, Inserm S_911 CRO2 Aix-Marseille University, Marseille, France
| | - Cindy Serdjebi
- Assistance Publique Hôpitaux de Marseille. Multidisciplinary Oncology & Therapeutic Innovations dpt, Aix Marseille University, Marseille, France
| | - Hau Le Thi Thu
- SMARTc Unit, Inserm S_911 CRO2 Aix-Marseille University, Marseille, France
| | - Bruno Lacarelle
- SMARTc Unit, Inserm S_911 CRO2 Aix-Marseille University, Marseille, France
| | - Gerard Milano
- Oncopharmacology Unit, Centre Antoine Lacassagne, Nice, France
| | | |
Collapse
|
23
|
Bicket A, Mehrabi P, Naydenova Z, Wong V, Donaldson L, Stagljar I, Coe IR. Novel regulation of equlibrative nucleoside transporter 1 (ENT1) by receptor-stimulated Ca2+-dependent calmodulin binding. Am J Physiol Cell Physiol 2016; 310:C808-20. [PMID: 27009875 DOI: 10.1152/ajpcell.00243.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/09/2016] [Indexed: 01/25/2023]
Abstract
Equilibrative nucleoside transporters (ENTs) facilitate the flux of nucleosides, such as adenosine, and nucleoside analog (NA) drugs across cell membranes. A correlation between adenosine flux and calcium-dependent signaling has been previously reported; however, the mechanistic basis of these observations is not known. Here we report the identification of the calcium signaling transducer calmodulin (CaM) as an ENT1-interacting protein, via a conserved classic 1-5-10 motif in ENT1. Calcium-dependent human ENT1-CaM protein interactions were confirmed in human cell lines (HEK293, RT4, U-87 MG) using biochemical assays (HEK293) and the functional assays (HEK293, RT4), which confirmed modified nucleoside uptake that occurred in the presence of pharmacological manipulations of calcium levels and CaM function. Nucleoside and NA drug uptake was significantly decreased (∼12% and ∼39%, respectively) by chelating calcium (EGTA, 50 μM; BAPTA-AM, 25 μM), whereas increasing intracellular calcium (thapsigargin, 1.5 μM) led to increased nucleoside uptake (∼26%). Activation of N-methyl-d-aspartate (NMDA) receptors (in U-87 MG) by glutamate (1 mM) and glycine (100 μM) significantly increased nucleoside uptake (∼38%) except in the presence of the NMDA receptor antagonist, MK-801 (50 μM), or CaM antagonist, W7 (50 μM). These data support the existence of a previously unidentified novel receptor-dependent regulatory mechanism, whereby intracellular calcium modulates nucleoside and NA drug uptake via CaM-dependent interaction of ENT1. These findings suggest that ENT1 is regulated via receptor-dependent calcium-linked pathways resulting in an alteration of purine flux, which may modulate purinergic signaling and influence NA drug efficacy.
Collapse
Affiliation(s)
- Alex Bicket
- Department of Biology, York University, Toronto, Canada
| | - Pedram Mehrabi
- Department of Biology, York University, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Zlatina Naydenova
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Victoria Wong
- Donnelly Centre, Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Imogen R Coe
- Department of Biology, York University, Toronto, Canada; Department of Chemistry and Biology, Ryerson University, Toronto, Canada;
| |
Collapse
|
24
|
Pandzic T, Larsson J, He L, Kundu S, Ban K, Akhtar-Ali M, Hellström AR, Schuh A, Clifford R, Blakemore SJ, Strefford JC, Baumann T, Lopez-Guillermo A, Campo E, Ljungström V, Mansouri L, Rosenquist R, Sjöblom T, Hellström M. Transposon Mutagenesis Reveals Fludarabine Resistance Mechanisms in Chronic Lymphocytic Leukemia. Clin Cancer Res 2016; 22:6217-6227. [PMID: 26957556 DOI: 10.1158/1078-0432.ccr-15-2903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE To identify resistance mechanisms for the chemotherapeutic drug fludarabine in chronic lymphocytic leukemia (CLL), as innate and acquired resistance to fludarabine-based chemotherapy represents a major challenge for long-term disease control. EXPERIMENTAL DESIGN We used piggyBac transposon-mediated mutagenesis, combined with next-generation sequencing, to identify genes that confer resistance to fludarabine in a human CLL cell line. RESULTS In total, this screen identified 782 genes with transposon integrations in fludarabine-resistant pools of cells. One of the identified genes is a known resistance mediator DCK (deoxycytidine kinase), which encodes an enzyme that is essential for the phosphorylation of the prodrug to the active metabolite. BMP2K, a gene not previously linked to CLL, was also identified as a modulator of response to fludarabine. In addition, 10 of 782 transposon-targeted genes had previously been implicated in treatment resistance based on somatic mutations seen in patients refractory to fludarabine-based therapy. Functional characterization of these genes supported a significant role for ARID5B and BRAF in fludarabine sensitivity. Finally, pathway analysis of transposon-targeted genes and RNA-seq profiling of fludarabine-resistant cells suggested deregulated MAPK signaling as involved in mediating drug resistance in CLL. CONCLUSIONS To our knowledge, this is the first forward genetic screen for chemotherapy resistance in CLL. The screen pinpointed novel genes and pathways involved in fludarabine resistance along with previously known resistance mechanisms. Transposon screens can therefore aid interpretation of cancer genome sequencing data in the identification of genes modifying sensitivity to chemotherapy. Clin Cancer Res; 22(24); 6217-27. ©2016 AACR.
Collapse
Affiliation(s)
- Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Jimmy Larsson
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Snehangshu Kundu
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Kenneth Ban
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden.,Department of Biochemistry, Yong Loo Lin School of Medicine, NUS, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Muhammad Akhtar-Ali
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Anders R Hellström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Schuh
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Ruth Clifford
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Stuart J Blakemore
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tycho Baumann
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Elias Campo
- Unitat de Hematología, Hospital Clíınic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Mats Hellström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
25
|
Czuczman NM, Barth MJ, Gu J, Neppalli V, Mavis C, Frys SE, Hu Q, Liu S, Klener P, Vockova P, Czuczman MS, Hernandez-Ilizaliturri FJ. Pevonedistat, a NEDD8-activating enzyme inhibitor, is active in mantle cell lymphoma and enhances rituximab activity in vivo. Blood 2016; 127:1128-37. [PMID: 26675347 PMCID: PMC4778163 DOI: 10.1182/blood-2015-04-640920] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Mantle cell lymphoma (MCL) is characterized by an aggressive clinical course and inevitable development of refractory disease, stressing the need to develop alternative therapeutic strategies. To this end, we evaluated pevonedistat (MLN4924), a novel potent and selective NEDD8-activating enzyme inhibitor in a panel of MCL cell lines, primary MCL tumor cells, and 2 distinct murine models of human MCL. Pevonedistat exposure resulted in a dose-, time-, and caspase-dependent cell death in the majority of the MCL cell lines and primary tumor cells tested. Of interest, in the MCL cell lines with lower half-maximal inhibitory concentration (0.1-0.5 μM), pevonedistat induced G1-phase cell cycle arrest, downregulation of Bcl-xL levels, decreased nuclear factor (NF)-κB activity, and apoptosis. In addition, pevonedistat exhibited additive/synergistic effects when combined with cytarabine, bendamustine, or rituximab. In vivo, as a single agent, pevonedistat prolonged the survival of 2 MCL-bearing mouse models when compared with controls. Pevonedistat in combination with rituximab led to improved survival compared with rituximab or pevonedistat monotherapy. Our data suggest that pevonedistat has significant activity in MCL preclinical models, possibly related to effects on NF-κB activity, Bcl-xL downregulation, and G1 cell cycle arrest. Our findings support further investigation of pevonedistat with or without rituximab in the treatment of MCL.
Collapse
Affiliation(s)
| | - Matthew J Barth
- Department of Pediatrics, Departments of Medicine and Immunology
| | - Juan Gu
- Departments of Medicine and Immunology
| | | | | | - Sarah E Frys
- Department of Pediatrics, Departments of Medicine and Immunology
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY
| | - Pavel Klener
- Department of Pediatrics, University of Buffalo, Buffalo, NY; and Clinical Department of Hematology, Institute of Pathophysiology, Charles University in Prague, Prague, Czech Republic
| | - Petra Vockova
- Department of Pediatrics, University of Buffalo, Buffalo, NY; and Clinical Department of Hematology, Institute of Pathophysiology, Charles University in Prague, Prague, Czech Republic
| | | | | |
Collapse
|
26
|
Klanova M, Andera L, Brazina J, Svadlenka J, Benesova S, Soukup J, Prukova D, Vejmelkova D, Jaksa R, Helman K, Vockova P, Lateckova L, Molinsky J, Maswabi BCL, Alam M, Kodet R, Pytlik R, Trneny M, Klener P. Targeting of BCL2 Family Proteins with ABT-199 and Homoharringtonine Reveals BCL2- and MCL1-Dependent Subgroups of Diffuse Large B-Cell Lymphoma. Clin Cancer Res 2015; 22:1138-49. [PMID: 26467384 DOI: 10.1158/1078-0432.ccr-15-1191] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/04/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the roles of BCL2, MCL1, and BCL-XL in the survival of diffuse large B-cell lymphoma (DLBCL). EXPERIMENTAL DESIGNS Immunohistochemical analysis of 105 primary DLBCL samples, and Western blot analysis of 18 DLBCL cell lines for the expression of BCL2, MCL1, and BCL-XL. Pharmacologic targeting of BCL2, MCL1, and BCL-XL with ABT-199, homoharringtonine (HHT), and ABT-737. Analysis of DLBCL clones with manipulated expressions of BCL2, MCL1, and BCL-XL. Immunoprecipitation of MCL1 complexes in selected DLBCL cell lines. Experimental therapy aimed at inhibition of BCL2 and MCL1 using ABT-199 and HHT, single agent, or in combination, in vitro and in vivo on primary cell-based murine xenograft models of DLBCL. RESULTS By the pharmacologic targeting of BCL2, MCL1, and BCL-XL, we demonstrated that DLBCL can be divided into BCL2-dependent and MCL1-dependent subgroups with a less pronounced role left for BCL-XL. Derived DLBCL clones with manipulated expressions of BCL2, MCL1, and BCL-XL, as well as the immunoprecipitation experiments, which analyzed MCL1 protein complexes, confirmed these findings at the molecular level. We demonstrated that concurrent inhibition of BCL2 and MCL1 with ABT-199 and HHT induced significant synthetic lethality in most BCL2-expressing DLBCL cell lines. The marked cytotoxic synergy between ABT-199 and HHT was also confirmed in vivo using primary cell-based murine xenograft models of DLBCL. CONCLUSIONS As homoharringtonine is a clinically approved antileukemia drug, and ABT-199 is in advanced phases of diverse clinical trials, our data might have direct implications for novel concepts of early clinical trials in patients with aggressive DLBCL.
Collapse
Affiliation(s)
- Magdalena Klanova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic. First Department of Medicine - Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic.
| | - Ladislav Andera
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Czech Republic
| | - Jan Brazina
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Czech Republic
| | - Jan Svadlenka
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Czech Republic
| | - Simona Benesova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Czech Republic
| | - Jan Soukup
- Department of Patology and Molecular Medicine, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Dana Prukova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Dana Vejmelkova
- First Department of Medicine - Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Radek Jaksa
- Institute of Pathology, General University Hospital, Charles University in Prague, Prague, Czech Republic
| | - Karel Helman
- Faculty of Informatics and Statistics, University of Economics, Prague, Czech Republic
| | - Petra Vockova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic. First Department of Medicine - Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Lucie Lateckova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic. First Department of Medicine - Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Jan Molinsky
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic. First Department of Medicine - Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | | | - Mahmudul Alam
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Roman Kodet
- Department of Patology and Molecular Medicine, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Robert Pytlik
- First Department of Medicine - Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Marek Trneny
- First Department of Medicine - Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic. First Department of Medicine - Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
27
|
Lorkova L, Scigelova M, Arrey TN, Vit O, Pospisilova J, Doktorova E, Klanova M, Alam M, Vockova P, Maswabi B, Klener P, Petrak J. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells. PLoS One 2015; 10:e0135314. [PMID: 26285204 PMCID: PMC4540412 DOI: 10.1371/journal.pone.0135314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/20/2015] [Indexed: 11/28/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a chronically relapsing aggressive type of B-cell non-Hodgkin lymphoma considered incurable by currently used treatment approaches. Fludarabine is a purine analog clinically still widely used in the therapy of relapsed MCL. Molecular mechanisms of fludarabine resistance have not, however, been studied in the setting of MCL so far. We therefore derived fludarabine-resistant MCL cells (Mino/FR) and performed their detailed functional and proteomic characterization compared to the original fludarabine sensitive cells (Mino). We demonstrated that Mino/FR were highly cross-resistant to other antinucleosides (cytarabine, cladribine, gemcitabine) and to an inhibitor of Bruton tyrosine kinase (BTK) ibrutinib. Sensitivity to other types of anti-lymphoma agents was altered only mildly (methotrexate, doxorubicin, bortezomib) or remained unaffacted (cisplatin, bendamustine). The detailed proteomic analysis of Mino/FR compared to Mino cells unveiled over 300 differentially expressed proteins. Mino/FR were characterized by the marked downregulation of deoxycytidine kinase (dCK) and BTK (thus explaining the observed crossresistance to antinucleosides and ibrutinib), but also by the upregulation of several enzymes of de novo nucleotide synthesis, as well as the up-regulation of the numerous proteins of DNA repair and replication. The significant upregulation of the key antiapoptotic protein Bcl-2 in Mino/FR cells was associated with the markedly increased sensitivity of the fludarabine-resistant MCL cells to Bcl-2-specific inhibitor ABT199 compared to fludarabine-sensitive cells. Our data thus demonstrate that a detailed molecular analysis of drug-resistant tumor cells can indeed open a way to personalized therapy of resistant malignancies.
Collapse
Affiliation(s)
- Lucie Lorkova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | - Ondrej Vit
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jana Pospisilova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Eliska Doktorova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Magdalena Klanova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- First Department of Medicine—Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Mahmudul Alam
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Petra Vockova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- First Department of Medicine—Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Bokang Maswabi
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- First Department of Medicine—Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Jiri Petrak
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
28
|
Barth MJ, Mavis C, Czuczman MS, Hernandez-Ilizaliturri FJ. Ofatumumab Exhibits Enhanced In Vitro and In Vivo Activity Compared to Rituximab in Preclinical Models of Mantle Cell Lymphoma. Clin Cancer Res 2015; 21:4391-7. [PMID: 25964296 DOI: 10.1158/1078-0432.ccr-15-0056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/01/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE Mantle cell lymphoma (MCL) is a mature B-cell lymphoma considered to be incurable with current treatments, including first-line rituximab in combination with multiagent chemotherapy and for those eligible, high-dose chemotherapy and stem cell support or rituximab maintenance. On the other hand, achieving a complete remission by high-sensitive flow cytometry is associated with prolonged duration of remission, stressing the need to develop and/or incorporate novel agents into the management of MCL. To this end, we examined the activity of ofatumumab, an anti-CD20 monoclonal antibody with distinct binding and immunologic properties compared to rituximab, in MCL preclinical models. EXPERIMENTAL DESIGN MCL cells were labeled with (51)Cr before incubation with rituximab or ofatumumab (10 μg/mL) plus human serum or effector cells. (51)Cr-release was measured and the percentage of lysis was calculated. Surface CD20, CD55, and CD59 were measured by Imagestream analysis. SCID mice inoculated subcutaneously with Z138 cells were assigned to control versus four doses of ofatumumab or rituximab (10 mg/kg/dose). RESULTS Ofatumumab exhibited enhanced in vitro complement-dependent cytotoxicity activity compared with rituximab in MCL cell lines, despite a high degree of in vitro resistance to rituximab associated with low CD20 levels and/or high expression of complement inhibitory proteins. Ofatumumab also delayed tumor progression and prolonged survival in a murine model of MCL. CONCLUSIONS Our results demonstrate that ofatumumab is more effective than rituximab in MCL preclinical models, including in the presence of rituximab resistance, and support the clinical investigation of ofatumumab in combination with standard systemic chemotherapy in MCL (NCT01527149).
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antigens, CD20/metabolism
- Antineoplastic Agents/pharmacology
- CD55 Antigens/metabolism
- CD59 Antigens/metabolism
- Cell Line, Tumor
- Complement Activation/drug effects
- Complement Activation/immunology
- Complement System Proteins/immunology
- Cytotoxicity, Immunologic/drug effects
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Drug Resistance, Neoplasm
- Humans
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/immunology
- Lymphoma, Mantle-Cell/mortality
- Mice
- Mice, SCID
- Rituximab/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Matthew J Barth
- Department of Pediatrics, Roswell Park Cancer Institute, Buffalo, New York.
| | - Cory Mavis
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York. Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Myron S Czuczman
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York. Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Francisco J Hernandez-Ilizaliturri
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York. Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
29
|
Lachmann N, Czarnecki K, Brennig S, Phaltane R, Heise M, Heinz N, Kempf H, Dilloo D, Kaever V, Schambach A, Heuser M, Moritz T. Deoxycytidine-kinase knockdown as a novel myeloprotective strategy in the context of fludarabine, cytarabine or cladribine therapy. Leukemia 2015; 29:2266-9. [PMID: 25921248 DOI: 10.1038/leu.2015.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- N Lachmann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - K Czarnecki
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - S Brennig
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - R Phaltane
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - M Heise
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - N Heinz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - H Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - D Dilloo
- Department of Pediatric Hematology and Oncology, Center for Child and Adolescent Medicine, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - V Kaever
- Institute of Pharmacology, Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - A Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - T Moritz
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|