1
|
Dong L, Li Y, Song X, Sun C, Song X. SFRP1 mediates cancer-associated fibroblasts to suppress cancer cell proliferation and migration in head and neck squamous cell carcinoma. BMC Cancer 2024; 24:1165. [PMID: 39300373 PMCID: PMC11411997 DOI: 10.1186/s12885-024-12907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), as key cell populations in the tumor microenvironment (TME), play a crucial role in tumor regulation. Previous studies on a prognostic signature of 8 CAF-related genes in head and neck squamous cell carcinoma (HNSCC) revealed that Secreted frizzled-related protein 1 (SFRP1) is one of the hub genes closely related to CAFs. SFRP1 is deficiently expressed in numerous types of cancer and is classified as a tumor suppressor gene. However, the role of SFRP1 in TME regulation in HNSCC remains unclear. This study aimed to explore the role of SFRP1 in the proliferation and migration of HNSCC cells by mediating CAFs and their regulatory mechanisms. METHODS The expression differences, prognosis, and immune infiltration of SFRP1 in HNSCC were analyzed using the TIMER and GEPIA2 databases. The expression of SFRP1 in HNSCC tumor tissues, as well as the expression and secretion of SFRP1 in CAFs and tumor cells, were examined. An indirect co-culture system was constructed to detect the proliferation, migration, and apoptosis of HNSCC cells, and to clarify the effect of SFRP1 on tumor cells by mediating CAFs. Furthermore, the expression and secretion of 10 cytokines derived from CAFs that act on immune cells were verified. RESULTS SFRP1 was differently expressed in HNSCC tumor tissues and highly expressed in CAFs. SFRP1 inhibited the proliferation and migration of tumor cells and promoted apoptosis by mediating CAFs. The detection of CAFs-derived factors suggested that the mechanism of action of SFRP1 was associated with the regulation of immune cells. CONCLUSION SFRP1 inhibits the proliferation and migration of HNSCC cells by mediating CAFs, and the mechanism of action is related to the regulation of immune cells, which may provide new research directions and therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Lei Dong
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaoyu Song
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Qingdao University, Qingdao, China
| | - Caiyu Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
| |
Collapse
|
2
|
Kasoha M, Steinbach AK, Bohle RM, Linxweiler B, Haj Hamoud B, Doerk M, Nigdelis MP, Stotz L, Zimmermann JSM, Solomayer EF, Kaya AC, Radosa JC. Dkk1 as a Prognostic Marker for Neoadjuvant Chemotherapy Response in Breast Cancer Patients. Cancers (Basel) 2024; 16:419. [PMID: 38254908 PMCID: PMC10814026 DOI: 10.3390/cancers16020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
PURPOSE To investigate the role of Dkk1 as a predictor of response to NACT in BC patients. METHODS This retrospective monocentric study included 145 women who had undergone NACT followed by breast surgery. Dkk1 protein expression was assessed using immunohistochemistry staining in core needle biopsies and mammary carcinoma specimens. RESULTS Dkk1 levels were lower in treated BC tumours than in untreated tumours. The outcomes of 68 matched pre- and post-therapy tissues showed that Dkk1 levels in mammary carcinoma tissues were significantly predicted by levels in core needle biopsies and that Dkk1 expression was reduced in 83% of cases. Smaller cT stage, positive Her2 expression, and decreased Dkk1-IRS in core needle biopsy tissues were all independent predictors of regression grade (R4), according to Sinn. However, the percentage of Dkk1 expression differences prior to and following NACT had no effect on PFS or OS. CONCLUSIONS In this study, we demonstrated for the first time that Dkk1 could be identified as an independent predictor of NACT response in BC patients, particularly those with TNBC. Further research with a multicentric expanded (pre-/post-therapy) sample set and better-defined populations in terms of molecular subtypes, therapy modality, and long-term follow-up is recommended to obtain more solid evidence.
Collapse
Affiliation(s)
- Mariz Kasoha
- Department of Gynaecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg, Germany; (A.K.S.); (B.L.); (B.H.H.); (M.P.N.); (L.S.); (J.S.M.Z.); (E.-F.S.); (A.C.K.); (J.C.R.)
| | - Anna K. Steinbach
- Department of Gynaecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg, Germany; (A.K.S.); (B.L.); (B.H.H.); (M.P.N.); (L.S.); (J.S.M.Z.); (E.-F.S.); (A.C.K.); (J.C.R.)
| | - Rainer M. Bohle
- Institute of General and Surgical Pathology, University Medical School of Saarland, 66421 Homburg, Germany;
| | - Barbara Linxweiler
- Department of Gynaecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg, Germany; (A.K.S.); (B.L.); (B.H.H.); (M.P.N.); (L.S.); (J.S.M.Z.); (E.-F.S.); (A.C.K.); (J.C.R.)
| | - Bashar Haj Hamoud
- Department of Gynaecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg, Germany; (A.K.S.); (B.L.); (B.H.H.); (M.P.N.); (L.S.); (J.S.M.Z.); (E.-F.S.); (A.C.K.); (J.C.R.)
| | - Merle Doerk
- Department of Gynaecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg, Germany; (A.K.S.); (B.L.); (B.H.H.); (M.P.N.); (L.S.); (J.S.M.Z.); (E.-F.S.); (A.C.K.); (J.C.R.)
| | - Meletios P. Nigdelis
- Department of Gynaecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg, Germany; (A.K.S.); (B.L.); (B.H.H.); (M.P.N.); (L.S.); (J.S.M.Z.); (E.-F.S.); (A.C.K.); (J.C.R.)
| | - Lisa Stotz
- Department of Gynaecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg, Germany; (A.K.S.); (B.L.); (B.H.H.); (M.P.N.); (L.S.); (J.S.M.Z.); (E.-F.S.); (A.C.K.); (J.C.R.)
| | - Julia S. M. Zimmermann
- Department of Gynaecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg, Germany; (A.K.S.); (B.L.); (B.H.H.); (M.P.N.); (L.S.); (J.S.M.Z.); (E.-F.S.); (A.C.K.); (J.C.R.)
| | - Erich-Franz Solomayer
- Department of Gynaecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg, Germany; (A.K.S.); (B.L.); (B.H.H.); (M.P.N.); (L.S.); (J.S.M.Z.); (E.-F.S.); (A.C.K.); (J.C.R.)
| | - Askin C. Kaya
- Department of Gynaecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg, Germany; (A.K.S.); (B.L.); (B.H.H.); (M.P.N.); (L.S.); (J.S.M.Z.); (E.-F.S.); (A.C.K.); (J.C.R.)
| | - Julia C. Radosa
- Department of Gynaecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg, Germany; (A.K.S.); (B.L.); (B.H.H.); (M.P.N.); (L.S.); (J.S.M.Z.); (E.-F.S.); (A.C.K.); (J.C.R.)
| |
Collapse
|
3
|
Gaździcka J, Świętek A, Hudy D, Dąbrowska N, Gołąbek K, Rydel M, Czyżewski D, Strzelczyk JK. Concentration of Secreted Frizzled-Related Proteins (SFRPs) in Non-Small Cell Lung Carcinoma Subtypes-A Preliminary Study. Curr Oncol 2023; 30:9968-9980. [PMID: 37999144 PMCID: PMC10670352 DOI: 10.3390/curroncol30110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common lung cancer worldwide. Secreted frizzled-related proteins (SFRPs) are important tumour suppressors and antagonists of the Wnt signalling pathway, which is linked with cancer development. The aim of this study was to evaluate the concentrations of SFRP1, SFRP2, and SFRP5 proteins in tumour and non-tumour (NT) samples obtained from 65 patients with primary NSCLC. An enzyme-linked immunosorbent assay (ELISA) was used to measure the concentrations of SFRPs in the tissue homogenates. A significantly lower SFRP2 protein concentration was found in the total NSCLC tumour samples and the following NSCLC subtypes: squamous cell carcinoma (SCC) and adenocarcinoma (AC) (p > 0.05, p = 0.028 and p = 0.001, respectively). AC tumour samples had a higher SFRP1 level than NT samples (p = 0.022), while the highest SFRP1 concentration was found in NSCLC samples from patients with clinical stage T4 cancer. Increased concentrations of SFRP1 and SFRP5 were present in stage III NSCLC samples, while the tumour samples with high pleural invasion (PL2) had an increased level of SFRP2. The results from this study suggest that the tumour suppressor or oncogenic roles of SFRPs could be connected with the NSCLC subtype. The levels of SFRPs varied according to the clinicopathological parameters of NSCLC.
Collapse
Affiliation(s)
- Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Agata Świętek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
- Silesia LabMed Research and Implementation Center, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Natalia Dąbrowska
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Mateusz Rydel
- Department of Thoracic Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 13/15 3-Go Maja St., 41-800 Zabrze, Poland
| | - Damian Czyżewski
- Department of Thoracic Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 13/15 3-Go Maja St., 41-800 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
4
|
Wu L, Chu J, Shangguan L, Cao M, Lu F. Discovery and identification of the prognostic significance and potential mechanism of FMO2 in breast cancer. Aging (Albany NY) 2023; 15:12651-12673. [PMID: 37963835 PMCID: PMC10683592 DOI: 10.18632/aging.205204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Flavin containing dimethylaniline monoxygenase 2 (FMO2), is downexpressed in diverse tumors and displays vital roles in tumorigenesis. However, the prognostic value and potential mechanism of FMO2 in breast cancer remain unclear. METHODS The expression of FMO2 was analyzed and the relationship between FMO2 expression level and clinical indicators in breast cancer was analyzed. Then the prognostic value of FMO2 in breast cancer was assessed. The FMO2-correlated genes were obtained, and the highest-ranked gene was chosen. The expression, therapeutic responder analysis, and gene set enrichment analysis of the highest-ranked gene were conducted. RESULTS FMO2 was downregulated in breast cancer and was closely related to clinical indicators. Patients with decreased FMO2 expression showed poor overall survival, post-progression survival, relapse-free survival, and distant metastasis-free survival. FMO2 correlates with N/ER/PR subgroups in breast cancer and patients with high FMO2 levels were sensitive to anti-programmed cell death protein 1, anti-programmed death-ligand 1, and anti-cytotoxic T-lymphocyte antigen 4 immunotherapies. Mechanically, FMO2 was positively and highly correlated with secreted Frizzled-related protein 1 (SFRP1), which was downregulated in breast cancer due to hypermethylation. Moreover, SFRP1 was correlated to pathological complete response and relapse-free survival status at 5 years regardless of any chemotherapy, hormone therapy, and anti-HER2 therapy. Gene set enrichment analysis revealed enrichment of component and coagulation cascades, focal adhesion, protein export, and spliceosome. CONCLUSIONS FMO2 was lower expressed in breast cancer than normal tissues and contributes to subtype classification and prognosis prediction with co-expressed SFRP1.
Collapse
Affiliation(s)
- Lichun Wu
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Chu
- The First People’s Hospital of Ziyang, Ziyang, China
| | - Lijuan Shangguan
- Outpatient Department, People’s Hospital of Jianyang, Jianyang, China
| | - Mingfei Cao
- Department of Clinical Laboratory, Chuankong Hospital of Jianyang, Jianyang, China
| | - Feng Lu
- Department of Experimental Medicine, The People’s Hospital of Jianyang City, Jianyang, China
| |
Collapse
|
5
|
Zhang W, Zhang K, Ma Y, Song Y, Qi T, Xiong G, Zhang Y, Kan C, Zhang J, Han F, Sun X. Secreted frizzled-related proteins: A promising therapeutic target for cancer therapy through Wnt signaling inhibition. Biomed Pharmacother 2023; 166:115344. [PMID: 37634472 DOI: 10.1016/j.biopha.2023.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
The Wnt signaling system is a critical pathway that regulates embryonic development and adult homeostasis. Secreted frizzled-related proteins (SFRPs) are extracellular inhibitors of Wnt signaling that act by binding directly to Wnt ligands or Frizzled receptors. SFRPs can act as anti-Wnt agents and suppress cancer growth by blocking the action of Wnt ligands. However, SFRPs are often silenced by promoter methylation in cancer cells, resulting in hyperactivation of the Wnt pathway. Epigenetic modifiers can reverse this silencing and restore SFRPs expression. Despite the potential of SFRPs as a therapeutic target, the effects of SFRPs on tumor development remain unclear. Therefore, a review of the expression of various members of the SFRPs family in different cancers and their potential as therapeutic targets is warranted. This review aims to summarize the current knowledge of SFRPs in cancer, focusing on their expression patterns and their potential as novel therapeutic targets.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yuanzhu Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| |
Collapse
|
6
|
Wang GZ, Yang LH, Gao C. SEPTIN3 Promotes Progression of Triple-Negative Breast Cancer via Activating Wnt Pathway. Int J Gen Med 2023; 16:4155-4164. [PMID: 37720177 PMCID: PMC10505033 DOI: 10.2147/ijgm.s419827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Background There is a lack of targeted therapies for triple-negative breast cancer (TNBC), necessitating the search for novel targets. Patients with TNBC exhibit elevated expression of neuron-specific septin-3 (SEPTIN3), leading to poor prognosis. This study aimed to investigate the modulation of SEPTIN3 expression in TNBC cells. Methods The relative expression levels of SEPTIN3 in TNBC tissues and cell lines were determined using Western blotting and qRT-PCR. We generated lentivirally transduced TNBC cell lines so such that SEPTIN3 was overexpressed or knocked down. Next, the effect of SEPTIN3 on the biological behavior of TNBC cells was detected using a series of functional assays, including CCK8, colony formation, scratch, and transwell assays. We monitored the tumorigenicity of SEPTIN3 overexpressed cells and performed Ki-67 immunostaining in mice. The mechanism mediated by SEPTIN3 was studied using functional enrichment analysis and Western blotting. Results Protein and mRNA expression levels of SEPTIN3 were observed to be increased in TNBC tissues and cell lines. SEPTIN3 knockdown reduced cell growth, invasion, and migration, whereas SEPTIN3 overexpression exerted the opposite effects. SEPTIN3 was observed to favor cell growth and tumorigenicity in vivo. In addition, SEPTIN3 promoted TNBC cell aggressiveness and proliferation via activation of the Wnt signaling pathway. Conclusion SEPTIN3 emerged as an oncogene that accelerates tumor progression by regulating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Guo-Zhou Wang
- Department of Breast Tumor Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei Province, 435000, People’s Republic of China
| | - Li-Hua Yang
- Department of Breast Tumor Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei Province, 435000, People’s Republic of China
| | - Chao Gao
- Department of General Practitioner, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei Province, 435000, People’s Republic of China
| |
Collapse
|
7
|
Sahni S, Nahm C, Ahadi MS, Sioson L, Byeon S, Chou A, Maloney S, Moon E, Pavlakis N, Gill AJ, Samra J, Mittal A. Gene expression profiling of pancreatic ductal adenocarcinomas in response to neoadjuvant chemotherapy. Cancer Med 2023; 12:18050-18061. [PMID: 37533202 PMCID: PMC10523964 DOI: 10.1002/cam4.6411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
AIM Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate of all major cancers. Chemotherapy is the mainstay systemic therapy for PDAC, and chemoresistance is a major clinical problem leading to therapeutic failure. This study aimed to identify key differences in gene expression profile in tumors from chemoresponsive and chemoresistant patients. METHODS Archived formalin-fixed paraffin-embedded tumor tissue samples from patients treated with neoadjuvant chemotherapy were obtained during surgical resection. Specimens were macrodissected and gene expression analysis was performed. Multi- and univariate statistical analysis was performed to identify differential gene expression profile of tumors from good (0%-30% residual viable tumor [RVT]) and poor (>30% RVT) chemotherapy-responders. RESULTS Initially, unsupervised multivariate modeling was performed by principal component analysis, which demonstrated a distinct gene expression profile between good- and poor-chemotherapy responders. There were 396 genes that were significantly (p < 0.05) downregulated (200 genes) or upregulated (196 genes) in tumors from good responders compared to poor responders. Further supervised multivariate analysis of significant genes by partial least square (PLS) demonstrated a highly distinct gene expression profile between good- and poor responders. A gene biomarker of panel (IL18, SPA17, CD58, PTTG1, MTBP, ABL1, SFRP1, CHRDL1, IGF1, and CFD) was selected based on PLS model, and univariate regression analysis of individual genes was performed. The identified biomarker panel demonstrated a very high ability to diagnose good-responding PDAC patients (AUROC: 0.977, sensitivity: 82.4%; specificity: 87.0%). CONCLUSION A distinct tumor biological profile between PDAC patients who either respond or not respond to chemotherapy was identified.
Collapse
Affiliation(s)
- Sumit Sahni
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
| | - Christopher Nahm
- Western Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Mahsa S. Ahadi
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Loretta Sioson
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Sooin Byeon
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Angela Chou
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Sarah Maloney
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Elizabeth Moon
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Nick Pavlakis
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Sydney Cancer Center, Royal North Shore HospitalSt LeonardsNew South WalesAustralia
- Northern Cancer InstituteSt LeonardsNew South WalesAustralia
| | - Anthony J. Gill
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
- Upper Gastrointestinal Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
- Upper Gastrointestinal Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
- The University of Notre Dame AustraliaSydneyNew South WalesAustralia
| |
Collapse
|
8
|
Wang Y, Ali MA, Vallon-Christersson J, Humphreys K, Hartman J, Rantalainen M. Transcriptional intra-tumour heterogeneity predicted by deep learning in routine breast histopathology slides provides independent prognostic information. Eur J Cancer 2023; 191:112953. [PMID: 37494846 DOI: 10.1016/j.ejca.2023.112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Intra-tumour heterogeneity (ITH) causes diagnostic challenges and increases the risk for disease recurrence. Quantification of ITH is challenging and has not been demonstrated in large studies. It has previously been shown that deep learning can enable spatially resolved prediction of molecular phenotypes from digital histopathology whole slide images (WSIs). Here we propose a novel method (Deep-ITH) to predict and measure ITH, and we evaluate its prognostic performance in breast cancer. METHODS Deep convolutional neural networks were used to spatially predict gene-expression (PAM50 set) from WSIs. For each predicted transcript, 12 measures of heterogeneity were extracted in the training data set (N = 931). A prognostic score to dichotomise patients into Deep-ITH low- and high-risk groups was established using an elastic-net regularised Cox proportional hazards model (recurrence-free survival). Prognostic performance was evaluated in two independent data sets: SöS-BC-1 (N = 1358) and SCAN-B-Lund (N = 1262). RESULTS We observed an increase in risk of recurrence in the high-risk group with hazard ratio (HR) 2.11 (95%CI:1.22-3.60; p = 0.007) using nested cross-validation. Subgroup analyses confirmed the prognostic performance in oestrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative, grade 3, and large tumour subgroups. The prognostic value was confirmed in the independent SöS-BC-1 cohort (HR=1.84; 95%CI:1.03-3.3; p = 3.99 ×10-2). In the other external cohort, significant HR was observed in the subgroup of histological grade 2 patients, as well as in the subgroup of patients with small tumours (<20 mm). CONCLUSION We developed a novel method for an automated, scalable, and cost-efficient measure of ITH from WSIs that provides independent prognostic value for breast cancer. SIGNIFICANCE Transcriptional ITH predicted by deep learning models enables prediction of patient survival from routine histopathology WSIs in breast cancer.
Collapse
Affiliation(s)
- Yinxi Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Maya Alsheh Ali
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden; MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden
| | - Mattias Rantalainen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
9
|
Stubbe BE, Madsen PH, Larsen AC, Krarup HB, Pedersen IS, Hansen CP, Johansen JS, Henriksen SD, Thorlacius-Ussing O. Promoter hypermethylation of SFRP1 as a prognostic and potentially predictive blood-based biomarker in patients with stage III or IV pancreatic ductal adenocarcinoma. Pancreatology 2023; 23:512-521. [PMID: 37230892 DOI: 10.1016/j.pan.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma remains one of the major causes of cancer-related mortality globally. Unfortunately, current prognostic biomarkers are limited, and no predictive biomarkers exist. This study examined promoter hypermethylation of secreted frizzled-related protein 1 (phSFRP1) in cfDNA as a prognostic biomarker and predictor of treatment effect in patients with metastatic FOLFIRINOX-treated PDAC and locally advanced PDAC. METHODS We performed methylation-specific PCR of the SFRP1 genes' promoter region, based on bisulfite treatment. Survival was assessed as time-to-event data using the pseudo-observation method and analyzed with Kaplan-Meier curves and generalized linear regressions. RESULTS The study included 52 patients with FOLFIRINOX-treated metastatic PDAC. Patients with unmethylated (um) SFRP1 (n = 29) had a longer median overall survival (15.7 months) than those with phSFRP1 (6.8 months). In crude regression, phSFRP1 was associated with an increased risk of death of 36.9% (95% CI 12.0%-61.7%) and 19.8% (95% CI 1.9-37.6) at 12 and 24-months, respectively. In supplementary regression analysis, interaction terms between SFRP1 methylation status and treatment were significant, indicating reduced benefit of chemotherapy. Forty-four patients with locally advanced PDAC were included. phSFRP1 was associated with an increased risk of death at 24-months CONCLUSIONS: This indicates that phSFRP1 is a clinically useful prognostic biomarker in metastatic PDAC and possibly in locally advanced PDAC. Together with existing literature, results could indicate the value of cfDNA-measured phSFRP1 as a predictive biomarker of standard palliative chemotherapy in patients with metastatic PDAC. This could facilitate personalized treatment of patients with metastatic PDAC.
Collapse
Affiliation(s)
- Benjamin E Stubbe
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Denmark.
| | - Poul H Madsen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Molecular Diagnostics, Aalborg University Hospital, Denmark
| | - Anders C Larsen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| | - Henrik B Krarup
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Molecular Diagnostics, Aalborg University Hospital, Denmark
| | - Inge S Pedersen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Molecular Diagnostics, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| | - Carsten P Hansen
- Department of Surgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Stine D Henriksen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| |
Collapse
|
10
|
Stubbe BE, Larsen AC, Madsen PH, Krarup HB, Pedersen IS, Lundbye-Christensen S, Hansen CP, Hasselby JP, Johansen AZ, Thorlacius-Ussing O, Johansen JS, Henriksen SD. Promoter hypermethylation of SFRP1 as a prognostic and potentially predictive blood-based biomarker in patients with localized pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1211292. [PMID: 37333823 PMCID: PMC10272559 DOI: 10.3389/fonc.2023.1211292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Current prognostic blood-based biomarkers for pancreatic adenocarcinoma (PDAC) are limited. Recently, promoter hypermethylation of SFRP1 (phSFRP1) has been linked to poor prognosis in patients with gemcitabine-treated stage IV PDAC. This study explores the effects of phSFRP1 in patients with lower stage PDAC. Methods Based on a bisulfite treatment process, the promoter region of the SFRP1 gene was analyzed with methylation-specific PCR. Kaplan-Meier curves, log-rank tests, and generalized linear regression analysis were used to assess restricted mean survival time survival at 12 and 24 months. Results The study included 211 patients with stage I-II PDAC. The median overall survival of patients with phSFRP1 was 13.1 months, compared to 19.6 months in patients with unmethylated SFRP1 (umSFRP1). In adjusted analysis, phSFRP1 was associated with a loss of 1.15 months (95%CI -2.11, -0.20) and 2.71 months (95%CI -2.71, -0.45) of life at 12 and 24 months, respectively. There was no significant effect of phSFRP1 on disease-free or progression-free survival. In stage I-II PDAC, patients with phSFRP1 have worse prognoses than patients with umSFRP1. Discussion Results could indicate that the poor prognosis may be caused by reduced benefit from adjuvant chemotherapy. SFRP1 may help guide the clinician and be a possible target for epigenetically modifying drugs.
Collapse
Affiliation(s)
- Benjamin Emil Stubbe
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Christian Larsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Poul Henning Madsen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Bygum Krarup
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Carsten Palnæs Hansen
- Department of Surgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jane Preuss Hasselby
- Department of Pathology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Astrid Zedlitz Johansen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Julia Sidenius Johansen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Dam Henriksen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
11
|
Clemenceau A, Lacouture A, Bherer J, Ouellette G, Michaud A, Audet-Walsh É, Diorio C, Durocher F. Role of Secreted Frizzled-Related Protein 1 in Early Breast Carcinogenesis and Breast Cancer Aggressiveness. Cancers (Basel) 2023; 15:cancers15082251. [PMID: 37190179 DOI: 10.3390/cancers15082251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
A human transcriptome array on ERα-positive breast cancer continuum of risk identified Secreted Frizzled-Related Protein 1 (SFRP1) as decreased during breast cancer progression. In addition, SFRP1 was inversely associated with breast tissue age-related lobular involution, and differentially regulated in women with regard to their parity status and the presence of microcalcifications. The causal role of SFRP1 in breast carcinogenesis remains, nevertheless, not well understood. In this study, we characterized mammary epithelial cells from both nulliparous and multiparous mice in organoid culture ex vivo, in the presence of estradiol (E2) and/or hydroxyapatite microcalcifications (HA). Furthermore, we have modulated SFRP1 expression in breast cancer cell lines, including the MCF10A series, and investigated their tumoral properties. We observed that organoids obtained from multiparous mice were resistant to E2 treatment, while organoids obtained from nulliparous mice developed the luminal phenotype associated with a lower ratio between Sfrp1 and Esr1 expression. The decrease in SFRP1 expression in MCF10A and MCF10AT1 cell lines increased their tumorigenic properties in vitro. On the other hand, the overexpression of SFRP1 in MCF10DCIS, MCF10CA1a, and MCF7 reduced their aggressiveness. Our results support the hypothesis that a lack of SFRP1 could have a causal role in early breast carcinogenesis.
Collapse
Affiliation(s)
- Alisson Clemenceau
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| | - Aurélie Lacouture
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| | - Juliette Bherer
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| | - Geneviève Ouellette
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| | - Annick Michaud
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| | - Caroline Diorio
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| |
Collapse
|
12
|
Dong L, Sun Q, Song F, Song X, Lu C, Li Y, Song X. Identification and verification of eight cancer-associated fibroblasts related genes as a prognostic signature for head and neck squamous cell carcinoma. Heliyon 2023; 9:e14003. [PMID: 36938461 PMCID: PMC10018481 DOI: 10.1016/j.heliyon.2023.e14003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) can exert their immunosuppressive effects by secreting various effectors that are involved in the regulation of tumor-infiltrating immune cells as well as other immune components in the tumor immune microenvironment (TIME), thereby promoting tumorigenesis, progression, metastasis, and drug resistance. Although a large number of studies suggest that CAFs play a key regulatory role in the development of head and neck squamous cell carcinoma (HNSCC), there are limited studies on the relevance of CAFs to the prognosis of HNSCC. In this study, we identified a prognostic signature containing eight CAF-related genes for HNSCC by univariate Cox analysis, lasso regression, stepwise regression, and multivariate Cox analysis. Our validation in primary cultures of CAFs from human HNSCC and four human HNSCC cell lines confirmed that these eight genes are indeed characteristic markers of CAFs. Immune cell infiltration differences analysis between high-risk and low-risk groups according to the eight CAF-related genes signature hinted at CAFs regulatory roles in the TIME, further revealing its potential role on prognosis. The signature of the eight CAF-related genes was validated in different independent validation cohorts and all showed that it was a valid marker for prognosis. The significantly higher overall survival (OS) in the low-risk group compared to the high-risk group was confirmed by Kaplan-Meier (K-M) analysis, suggesting that the signature of CAF-related genes can be used as a non-invasive predictive tool for HNSCC prognosis. The low-risk group had significantly higher levels of tumor-killing immune cell infiltration, as confirmed by CIBERSORT analysis, such as CD8+ T cells, follicular helper T cells, and Dendritic cells (DCs) in the low-risk group. In contrast, the level of infiltration of pro-tumor cells such as M0 macrophages and activated Mast cells (MCs) was lower. It is crucial to delve into the complex mechanisms between CAFs and immune cells to find potential regulatory targets and may provide new evidence for subsequently targeted immunotherapy. These results suggest that the signature of the eight CAF-related genes is a powerful indicator for the assessment of the TIME of HNSCC. It may provide a new and reliable potential indicator for clinicians to predict the prognosis of HNSCC, which may be used to guide treatment and clinical decision-making in HNSCC patients. Meanwhile, CAF-related genes are expected to become tumor biomarkers and effective targets for HNSCC.
Collapse
Key Words
- CAFs, Cancer-associated fibroblasts
- CSCs, cancer stem cells
- Cancer-associated fibroblasts
- DCs, Dendritic cells
- EMT, epithelial mesenchymal transition
- GEO, Gene Expression Omnibus
- GEPIA, Gene Expression Profiling Interactive Analysis
- GO, Gene Ontology
- GSEA, Gene Set Enrichment Analysis
- HNSCC, head and neck squamous cell carcinoma
- HR, Hazard Ratio
- Head and neck squamous cell carcinoma
- Immune cell infiltration
- K-M, Kaplan-Meier
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MCs, Mast cells
- NFs, normal fibroblasts
- OS, overall survival
- OSCC, oral squamous cell carcinomas
- Prognostic signature
- ROC, receiver operating characteristic
- TAMs, tumor-associated macrophages
- TCGA, The Cancer Genome Atlas
- TIME, tumor immune microenvironment
- TME, tumor microenvironment
Collapse
Affiliation(s)
- Lei Dong
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Qi Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Fei Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Xiaoyu Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Congxian Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Corresponding author. Yumei Li: Department of Otorhinolaryngology Head and Neck Surgery. Yantai Yuhuangding Hospital, No.20, Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264000, China.
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Corresponding author. Xicheng Song: Department of Otorhinolaryngology Head and Neck Surgery. Yantai Yuhuangding Hospital, No.20, Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264000, China.
| |
Collapse
|
13
|
van den Ende NS, Nguyen AH, Jager A, Kok M, Debets R, van Deurzen CHM. Triple-Negative Breast Cancer and Predictive Markers of Response to Neoadjuvant Chemotherapy: A Systematic Review. Int J Mol Sci 2023; 24:ijms24032969. [PMID: 36769287 PMCID: PMC9918290 DOI: 10.3390/ijms24032969] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Around 40-50% of all triple-negative breast cancer (TNBC) patients achieve a pathological complete response (pCR) after treatment with neoadjuvant chemotherapy (NAC). The identification of biomarkers predicting the response to NAC could be helpful for personalized treatment. This systematic review provides an overview of putative biomarkers at baseline that are predictive for a pCR following NAC. Embase, Medline and Web of Science were searched for articles published between January 2010 and August 2022. The articles had to meet the following criteria: patients with primary invasive TNBC without distant metastases and patients must have received NAC. In total, 2045 articles were screened by two reviewers resulting in the inclusion of 92 articles. Overall, the most frequently reported biomarkers associated with a pCR were a high expression of Ki-67, an expression of PD-L1 and the abundance of tumor-infiltrating lymphocytes, particularly CD8+ T cells, and corresponding immune gene signatures. In addition, our review reveals proteomic, genomic and transcriptomic markers that relate to cancer cells, the tumor microenvironment and the peripheral blood, which also affect chemo-sensitivity. We conclude that a prediction model based on a combination of tumor and immune markers is likely to better stratify TNBC patients with respect to NAC response.
Collapse
Affiliation(s)
- Nadine S. van den Ende
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-640213383
| | - Anh H. Nguyen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Marleen Kok
- Department of Medical Oncology, Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Carolien H. M. van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
14
|
Li Y, Liu L, Pan Y, Fang F, Xie T, Cheng N, Guo C, Xue X, Zeng H, Xue L. Integrated molecular characterization of esophageal basaloid squamous cell carcinoma: a subtype with distinct RNA expression pattern and immune characteristics, but no specific genetic mutations. J Pathol 2023; 259:136-148. [PMID: 36371676 DOI: 10.1002/path.6028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022]
Abstract
Esophageal basaloid squamous cell carcinoma (bSCC) is a subtype of squamous cell carcinoma (SCC) with a different behavior and poor prognosis. Exploring bSCC's molecular characteristics and treatment strategies are of great clinical significance. We performed multi-omics analysis of paired bSCC and common SCC (cSCC) using whole exome sequencing and a NanoString nCounter gene expression panel. Immunohistochemistry was used for verification of candidate biomarkers. Different treatment response was analyzed on both patients receiving neoadjuvant treatment and late-stage patients. The common genetically-clonal origin of bSCC and cSCC was confirmed. No significant differences between their genetic alterations or mutation spectra were observed. Mutation signature 15 (associated with defective DNA damage repair) was less prominent, and tumor mutational burden (TMB) was lower in bSCC. bSCC with an RNA expression pattern resembling cSCC had a better survival than other bSCCs. Moreover, bSCC showed significant upregulation of expression of genes associated with angiogenesis response, basement membranes, and epithelial-mesenchymal transition, and downregulation of KRT14 (squamous differentiation) and CCL21 (associated with immune response). Immunohistochemistry for SFRP1 was shown to be highly sensitive and specific for bSCC diagnosis (p < 0.001). In addition, bSCC receiving neoadjuvant immuno-chemotherapy had a worse pathological response than bSCC receiving neoadjuvant chemotherapy (but without statistical significance), even in bSCC positive for PD-L1. Our results demonstrated the molecular characteristics of esophageal bSCC as a subtype with a distinct RNA expression pattern and immune characteristics, but no specific genetic mutations. We provided a useful biomarker, SFRP1, for diagnosis. After outcome analysis for six bSCCs with neoadjuvant immunotherapy treatment and four late-stage bSCCs with immunotherapy, we found that immunotherapy may not be an effective treatment option for most bSCCs. This may also provide a clue for the same subtypes of lung and head and neck cancer. Our study highlighted the heterogeneity among bSCC patients, and might explain the conflicting results of bSCC outcomes in existing studies. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Linxiu Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Department of Pathology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Yi Pan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Fang Fang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Department of Pathology, Beijing Hospital, National Center of Gerontology, Beijing, PR China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Na Cheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Changyuan Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Xuemin Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Hua Zeng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Center for Cancer Precision Medicine, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
15
|
Wu M, Li Q, Wang H. Identification of Novel Biomarkers Associated With the Prognosis and Potential Pathogenesis of Breast Cancer via Integrated Bioinformatics Analysis. Technol Cancer Res Treat 2021; 20:1533033821992081. [PMID: 33550915 PMCID: PMC7876582 DOI: 10.1177/1533033821992081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Breast cancer is the most commonly diagnosed malignancy and a major cause of cancer-related deaths in women globally. Identification of novel prognostic and pathogenesis biomarkers play a pivotal role in the management of the disease. Methods: Three data sets from the GEO database were used to identify differentially expressed genes (DEGs) in breast cancer. Gene Ontology (GO) enrichment and Kyoto Encyclopaedia of Genes and Genomes pathway analyses were performed to elucidate the functional roles of the DEGs. Besides, we investigated the translational and protein expression levels and survival data of the DEGs in patients with breast cancer from the Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine, Human Protein Atlas, and Kaplan Meier plotter tool databases. The corresponding change in the expression level of microRNAs in the DEGs was also predicted using miRWalk and TargetScan, and the expression profiles were analyzed using OncomiR. Finally, the expression of novel DEGs were validated in Chinese breast cancer tissues by RT-qPCR. Results: A total of 46 DEGs were identified, and GO analysis revealed that these genes were mainly associated with biological processes involved in fatty acid, lipid localization, and regulation of lipid metabolism. Two novel biomarkers, ADH1A and IGSF10, and 4 other genes (APOD, KIT, RBP4, and SFRP1) that were implicated in the prognosis and pathogenesis of breast cancer, exhibited low expression levels in breast cancer tissues. Besides, 14/25 microRNAs targeting 6 genes were first predicted to be associated with breast cancer prognosis. RT-qPCR results of ADH1A and IGSF10 expression in Chinese breast cancer tissues were consistent with the database analysis and showed significant down-regulation. Conclusion: ADH1A, IGSF10, and the 14 microRNAs were found to be potential novel biomarkers for the diagnosis, treatment, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Meng Wu
- Department of Medical Oncology, The Affiliated Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingdai Li
- Department of Medical Oncology, The Affiliated Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongbing Wang
- Department of Medical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
16
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
17
|
Breast Cancer and Microcalcifications: An Osteoimmunological Disorder? Int J Mol Sci 2020; 21:ijms21228613. [PMID: 33203195 PMCID: PMC7696282 DOI: 10.3390/ijms21228613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The presence of microcalcifications in the breast microenvironment, combined with the growing evidences of the possible presence of osteoblast-like or osteoclast-like cells in the breast, suggest the existence of active processes of calcification in the breast tissue during a woman’s life. Furthermore, much evidence that osteoimmunological disorders, such as osteoarthritis, rheumatoid arthritis, or periodontitis influence the risk of developing breast cancer in women exists and vice versa. Antiresorptive drugs benefits on breast cancer incidence and progression have been reported in the past decades. More recently, biological agents targeting pro-inflammatory cytokines used against rheumatoid arthritis also demonstrated benefits against breast cancer cell lines proliferation, viability, and migratory abilities, both in vitro and in vivo in xenografted mice. Hence, it is tempting to hypothesize that breast carcinogenesis should be considered as a potential osteoimmunological disorder. In this review, we compare microenvironments and molecular characteristics in the most frequent osteoimmunological disorders with major events occurring in a woman’s breast during her lifetime. We also highlight what the use of bone anabolic drugs, antiresorptive, and biological agents targeting pro-inflammatory cytokines against breast cancer can teach us.
Collapse
|
18
|
Wnt/β-Catenin Signaling Pathway as Chemotherapeutic Target in Breast Cancer: An Update on Pros and Cons. Clin Breast Cancer 2020; 20:361-370. [DOI: 10.1016/j.clbc.2020.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
|
19
|
Increased expression of secreted frizzled related protein 1 (SFRP1) predicts ampullary adenocarcinoma recurrence. Sci Rep 2020; 10:13255. [PMID: 32764696 PMCID: PMC7413269 DOI: 10.1038/s41598-020-69899-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Ampullary adenocarcinoma is a rare gastrointestinal cancer in which WNT signalling dysregulation has been previously reported. Secreted frizzled related protein 1 (SFRP1) is one of the extracellular ligands of WNT signalling. We performed bioinformatics analyses of SFRP1 expression in human cancer. Microarray analysis of SFRP1 in periampullary adenocarcinoma was obtained from the Gene Expression Omnibus GSE39409 dataset. SFRP1 expression in ampullary adenocarcinoma was detected by immunohistochemistry staining and correlated with patients’ clinical outcomes. Our results showed that SFRP1 expression had different clinical applications in all types of human cancer. No detected alteration of SFPR1 gene and SFRP1 expression in ampullary adenocarcinoma was lower than that in other periampullary adenocarcinomas. However, high expression levels of SFRP1 protein were correlated with cancer recurrence, peritoneal carcinomatosis and poor patient prognosis. Gene set enrichment analysis showed downregulation of multiple WNT-related genes in primary culture cells from ampullary adenocarcinoma, but SFRP1 expression was increased. We found an interaction between WNT, bone morphogenetic protein and hedgehog signalling with SFRP1. Furthermore, a high expression of SFRP1 predicted poor prognosis for ampullary adenocarcinoma patients. Because it is a multifunctional protein, SFRP1 targeting serves as a potential therapy for ampullary adenocarcinoma patients.
Collapse
|
20
|
Islam S, Dasgupta H, Basu M, Roy A, Alam N, Roychoudhury S, Panda CK. Downregulation of beta-catenin in chemo-tolerant TNBC through changes in receptor and antagonist profiles of the WNT pathway: Clinical and prognostic implications. Cell Oncol (Dordr) 2020; 43:725-741. [PMID: 32430683 DOI: 10.1007/s13402-020-00525-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 02/01/2023] Open
Abstract
PURPOSE In approximately 30% of triple-negative breast cancer (TNBC) patients a complete pathological response is achieved. However, after neo-adjuvant chemotherapy treatment (NACT) residual tumour cells can be intrinsically resistant to chemotherapy. In this study, associations of the WNT/beta-catenin pathway with chemo-tolerance of NACT treated TNBC patients were compared to that of pre-treatment TNBC patients. METHODS Expression analyses were performed in both pre-treatment and NACT treated TNBC samples using immunohistochemistry and qRT-PCR, along with DNA copy number variation (CNV) and promoter methylation analyses to elucidate the mechanism(s) underlying chemo-tolerance. In addition, in vitro validation experiments were performed in TNBC cells followed by in vivo clinicopathological correlation analyses. RESULTS A reduced expression (41.1%) of nuclear beta-catenin together with a low proliferation index was observed in NACT samples, whereas a high expression (59.0%) was observed in pre-treatment samples. The reduced nuclear expression of beta-catenin in the NACT samples showed concordance with reduced expression levels (47-52.9%) of its associated receptors (FZD7 and LRP6) and increased expression levels (35.2-41.1%) of its antagonists (SFRP1, SFRP2, DKK1) compared to those in the pre-treatment samples. The expression levels of the receptors showed no concordance with its respective gene copy number/mRNA expression statuses, regardless treatment. Interestingly, however, significant increases in promoter hypomethylation of the antagonists were observed in the NACT samples compared to the pre-treatment samples. Similar expression patterns of the antagonists, receptors and beta-catenin were observed in the TNBC-derived cell line MDA-MB-231 using the anthracyclines doxorubicin and nogalamycin, suggesting the importance of promoter hypomethylation in chemotolerance. NACT patients showing reduced receptor and/or beta-catenin expression levels and high antagonist expression levels exhibited a comparatively better prognosis than the pre-treatment patients. CONCLUSIONS Our data suggest that reduced nuclear expression of beta-catenin in NACT TNBC samples, due to downregulation of its receptors and upregulation of its antagonists through promoter hypomethylation of the WNT pathway, plays an important role in chemo-tolerance.
Collapse
Affiliation(s)
- Saimul Islam
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Hemantika Dasgupta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Mukta Basu
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, 138, Acharya Jagadish Chandra Bose Rd, 700014, Kolkata, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Susanta Roychoudhury
- Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, 700 063, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
21
|
Baharudin R, Tieng FYF, Lee LH, Ab Mutalib NS. Epigenetics of SFRP1: The Dual Roles in Human Cancers. Cancers (Basel) 2020; 12:E445. [PMID: 32074995 PMCID: PMC7072595 DOI: 10.3390/cancers12020445] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Secreted frizzled-related protein 1 (SFRP1) is a gene that belongs to the secreted glycoprotein SFRP family. SFRP1 has been classified as a tumor suppressor gene due to the loss of expression in various human cancers, which is mainly attributed by epigenetic inactivation via DNA methylation or transcriptional silencing by microRNAs. Epigenetic silencing of SFRP1 may cause dysregulation of cell proliferation, migration, and invasion, which lead to cancer cells formation, disease progression, poor prognosis, and treatment resistance. Hence, restoration of SFRP1 expression via demethylating drugs or over-expression experiments opens the possibility for new cancer therapy approach. While the role of SFRP1 as a tumor suppressor gene is well-established, some studies also reported the possible oncogenic properties of SFRP1 in cancers. In this review, we discussed in great detail the dual roles of SFRP1 in cancers-as tumor suppressor and tumor promoter. The epigenetic regulation of SFRP1 expression will also be underscored with additional emphasis on the potentials of SFRP1 in modulating responses toward chemotherapeutic and epigenetic-modifying drugs, which may encourage the development of novel drugs for cancer treatment. We also present findings from clinical trials and patents involving SFRP1 to illustrate its clinical utility, extensiveness of each research area, and progression toward commercialization. Lastly, this review provides directions for future research to advance SFRP1 as a promising cancer biomarker.
Collapse
Affiliation(s)
- Rashidah Baharudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| | - Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Nurul Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| |
Collapse
|
22
|
Role of Secreted Frizzled-Related Protein 1 in Early Mammary Gland Tumorigenesis and Its Regulation in Breast Microenvironment. Cells 2020; 9:cells9010208. [PMID: 31947616 PMCID: PMC7017175 DOI: 10.3390/cells9010208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mice, the lack of secreted frizzled-related protein 1 (SFRP1) is responsible for mammogenesis and hyperplasia, while, in bovines, its overexpression is associated with post-lactational mammary gland involution. Interestingly, there are no reports dealing with the role of SFRP1 in female involution. However, SFRP1 dysregulation is largely associated with human tumorigenesis in the literature. Indeed, the lack of SFRP1 is associated with both tumor development and patient prognosis. Considering the increased risk of breast tumor development associated with incomplete mammary gland involution, it is crucial to demystify the "grey zone" between physiological age-related involution and tumorigenesis. In this review, we explore the functions of SFRP1 involved in the breast involution processes to understand the perturbations driven by the disappearance of SFRP1 in mammary tissue. Moreover, we question the presence of recurrent microcalcifications identified by mammography. In bone metastases from prostate primary tumor, overexpression of SFRP1 results in an osteolytic response of the tumor cells. Hence, we explore the hypothesis of an osteoblastic differentiation of mammary cells induced by the lack of SFRP1 during lobular involution, resulting in a new accumulation of hydroxyapatite crystals in the breast tissue.
Collapse
|
23
|
Sunkara RR, Sarate RM, Setia P, Shah S, Gupta S, Chaturvedi P, Gera P, Waghmare SK. SFRP1 in Skin Tumor Initiation and Cancer Stem Cell Regulation with Potential Implications in Epithelial Cancers. Stem Cell Reports 2020; 14:271-284. [PMID: 31928951 PMCID: PMC7013199 DOI: 10.1016/j.stemcr.2019.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
Wnt signaling is involved in the regulation of cancer stem cells (CSCs); however, the molecular mechanism involved is still obscure. SFRP1, a Wnt inhibitor, is downregulated in various human cancers; however, its role in tumor initiation and CSC regulation remains unexplored. Here, we used a skin carcinogenesis model, which showed early tumor initiation in Sfrp1−/− (Sfrp1 knockout) mice and increased tumorigenic potential of Sfrp1−/− CSCs. Expression profiling on Sfrp1−/− CSCs showed upregulation of genes involved in epithelial to mesenchymal transition, stemness, proliferation, and metastasis. Further, SOX-2 and SFRP1 expression was validated in human skin cutaneous squamous cell carcinoma, head and neck squamous cell carcinoma, and breast cancer. The data showed downregulation of SFRP1 and upregulation of SOX-2, establishing their inverse correlation. Importantly, we broadly uncover an inverse correlation of SFRP1 and SOX-2 in epithelial cancers that may be used as a potential prognostic marker in the management of cancer. Loss of Sfrp1 accelerates murine skin tumor initiation and SCC progression Sfrp1 loss enhances in vivo tumorigenic potential of murine skin CSCs We found enhanced EMT and Sox-2 in Sfrp1−/− murine skin SCC Sfrp1 and Sox-2 are inversely correlated in multiple human epithelial cancers
Collapse
Affiliation(s)
- Raghava R Sunkara
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Rahul M Sarate
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Priyanka Setia
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Sanket Shah
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | | | - Poonam Gera
- Cancer Research Institute, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Sanjeev K Waghmare
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| |
Collapse
|
24
|
Yang JF, Shi SN, Xu WH, Qiu YH, Zheng JZ, Yu K, Song XY, Li F, Wang Y, Wang R, Qu YY, Zhang HL, Zhou XQ. Screening, identification and validation of CCND1 and PECAM1/CD31 for predicting prognosis in renal cell carcinoma patients. Aging (Albany NY) 2019; 11:12057-12079. [PMID: 31850854 PMCID: PMC6949065 DOI: 10.18632/aging.102540] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common cancers worldwide. Despite intense efforts to elucidate its pathogenesis, the molecular mechanisms and genetic characteristics of this cancer remain unknown. In this study, three expression profile data sets (GSE15641, GSE16441 and GSE66270) were integrated to identify candidate genes that could elucidate functional pathways in ccRCC. Expression data from 63 ccRCC tumors and 54 normal samples were pooled and analyzed. The GSE profiles shared 379 differentially expressed genes (DEGs), including 249 upregulated genes, and 130 downregulated genes. A protein-protein interaction network (PPI) was constructed and analyzed using STRING and Cytoscape. Functional and signaling pathways of the shared DEGs with significant p values were identified. Kaplan-Meier plots of integrated expression scores were used to analyze survival outcomes. These suggested that FN1, ICAM1, CXCR4, TYROBP, EGF, CAV1, CCND1 and PECAM1/CD31 were independent prognostic factors in ccRCC. Finally, to investigate early events in renal cancer, we screened for the hub genes CCND1 and PECAM1/CD31. In summary, integrated bioinformatics analysis identified candidate DEGs and pathways in ccRCC that could improve our understanding of the causes and underlying molecular events of ccRCC. These candidate genes and pathways could be therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Jian-Feng Yang
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Shen-Nan Shi
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yun-Hua Qiu
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Jin-Zhou Zheng
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Kui Yu
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Xiao-Yun Song
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Feng Li
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Yu Wang
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Rui Wang
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xi-Qiu Zhou
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| |
Collapse
|
25
|
Schäfer SA, Hülsewig C, Barth P, von Wahlde MK, Tio J, Kolberg HC, Bernemann C, Blohmer JU, Kiesel L, Kolberg-Liedtke C. Correlation between SFRP1 expression and clinicopathological parameters in patients with triple-negative breast cancer. Future Oncol 2019; 15:1921-1938. [DOI: 10.2217/fon-2018-0564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Breast cancer is a heterogeneous disease with distinct molecular and clinical behavior demanding reliable biomarkers, especially in triple-negative breast cancer (TNBC). This study seeks to improve the understanding of SFRP1 as a potential biomarker in breast cancer focusing on TNBC. Materials & methods: SFRP1 expression was investigated via immunohistochemistry with two anti-SFRP1-antibodies on tissue-microarrays of 376 invasive breast cancers. Results: Statistical analysis revealed a highly significant association between TNBC (n = 36) and SFRP1 expression (p < 0.001). SFRP1 expression was significantly associated with younger age, higher tumor stage, size and grade. Conclusion: SFRP1 expression is strongly correlated with TNBC on protein level. Associations with age and tumor grade support the role of SFRP1 as a biomarker for chemotherapy response in TNBC.
Collapse
Affiliation(s)
- Sarah Alexandra Schäfer
- Department of Pediatrics, Sana Kliniken Duisburg, Zu den Rehwiesen 9, 47055 Duisburg, Germany
| | - Carolin Hülsewig
- Molecular Health GmbH, Kurfürstenanlage 21, 69115 Heidelberg, Germany
| | - Peter Barth
- Gerhard-Domagk Departement for Pathology, University Münster, Albert-Schweitzer Campus 1 D17, 48149 Münster, Germany
| | - Marie-Kristin von Wahlde
- Department of Gynecology & Obstetrics, University Hospital Münster, Albert-Schweitzer Campus 1 A1, 48149 Münster, Germany
| | - Joke Tio
- Department of Gynecology & Obstetrics, University Hospital Münster, Albert-Schweitzer Campus 1 A1, 48149 Münster, Germany
| | - Hans-Christian Kolberg
- Department of Gynecology & Obstetrics, Marienhospital Bottrop, Josef-Albers-Str. 70, 46236 Bottrop, Germany
| | - Christof Bernemann
- Department of Urology, University Hospital Münster, Albert-Schweitzer Campus 1 A1, University Münster, Medical Faculty, Domagkstr, 48149 Münster, Germany
| | - Jens-Uwe Blohmer
- Department of Gynecology & Breast Center, Charité University Hospital Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ludwig Kiesel
- Department of Gynecology & Obstetrics, University Hospital Münster, Albert-Schweitzer Campus 1 A1, 48149 Münster, Germany
| | - Cornelia Kolberg-Liedtke
- Department of Gynecology & Breast Center, Charité University Hospital Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
26
|
Wang Q, Xu M, Sun Y, Chen J, Chen C, Qian C, Chen Y, Cao L, Xu Q, Du X, Yang W. Gene Expression Profiling for Diagnosis of Triple-Negative Breast Cancer: A Multicenter, Retrospective Cohort Study. Front Oncol 2019; 9:354. [PMID: 31134153 PMCID: PMC6513966 DOI: 10.3389/fonc.2019.00354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Triple-negative breast cancer (TNBC) accounts for 12–20% of all breast cancers. Diagnosis of TNBC is sometimes quite difficult based on morphological assessment and immunohistochemistry alone, particularly in the metastatic setting with no prior history of breast cancer. Methods: Molecular profiling is a promising diagnostic approach that has the potential to provide an objective classification of metastatic tumors with unknown primary. In this study, performance of a novel 90-gene expression signature for determination of the site of tumor origin was evaluated in 115 TNBC samples. For each specimen, expression profiles of the 90 tumor-specific genes were analyzed, and similarity scores were obtained for each of the 21 tumor types on the test panel. Predicted tumor type was compared to the reference diagnosis to calculate accuracy. Furthermore, rank product analysis was performed to identify genes that were differentially expressed between TNBC and other tumor types. Results: Analysis of the 90-gene expression signature resulted in an overall 97.4% (112/115, 95% CI: 0.92–0.99) agreement with the reference diagnosis. Among all specimens, the signature correctly classified 97.6% of TNBC from the primary site (41/42) and lymph node metastasis (41/42) and 96.8% of distant metastatic tumors (30/31). Furthermore, a list of genes, including AZGP1, KRT19, and PIGR, was identified as differentially expressed between TNBC and other tumor types, suggesting their potential use as discriminatory markers. Conclusion: Our results demonstrate excellent performance of a 90-gene expression signature for identification of tumor origin in a cohort of both primary and metastatic TNBC samples. These findings show promise for use of this novel molecular assay to aid in differential diagnosis of TNBC, particularly in the metastatic setting.
Collapse
Affiliation(s)
- Qifeng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | - Yizuo Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liyu Cao
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Qinghua Xu
- Canhelp Genomics, Hangzhou, China.,Institute of Machine Learning and Systems Biology, College of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
27
|
An eight-lncRNA signature predicts survival of breast cancer patients: a comprehensive study based on weighted gene co-expression network analysis and competing endogenous RNA network. Breast Cancer Res Treat 2019; 175:59-75. [PMID: 30715658 DOI: 10.1007/s10549-019-05147-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To identify a lncRNA signature to predict survival of breast cancer (BRCA) patients. METHODS A total of 1222 BRCA case and control datasets were downloaded from the TCGA database. The weighted gene co-expression network analysis of differentially expressed mRNAs was performed to generate the modules associated with BRCA overall survival status and further construct a hub on competing endogenous RNA (ceRNA) network. LncRNA signatures for predicting survival of BRCA patients were generated using univariate survival analyses and a multivariate Cox hazard model analysis and validated and characterized for prognostic performance measured using receiver operating characteristic (ROC) curves. RESULTS A prognostic score model of eight lncRNAs signature was identified as Prognostic score = (0.121 × EXPAC007731.1) + (0.108 × EXPAL513123.1) + (0.105 × EXPC10orf126) + (0.065 × EXPWT1-AS) + (- 0.126 × EXPADAMTS9-AS1) + (- 0.130 × EXPSRGAP3-AS2) + (0.116 × EXPTLR8-AS1) + (0.060 × EXPHOTAIR) with median score 1.088. Higher scores predicted higher risk. The lncRNAs signature was an independent prognostic factor associated with overall survival. The area under the ROC curves (AUC) of the signature was 0.979, 0.844, 0.99 and 0.997 by logistic regression, support vector machine, decision tree and random forest models, respectively, and the AUCs in predicting 1- to 10-year survival were between 0.656 and 0.748 in the test dataset from TCGA database. CONCLUSIONS The eight-lncRNA signature could serve as an independent biomarker for prediction of overall survival of BRCA. The lncRNA-miRNA-mRNA ceRNA network is a good tool to identify lncRNAs that is correlated with overall survival of BRCA.
Collapse
|
28
|
Meng W, Efstathiou J, Singh R, McElroy J, Volinia S, Cui R, Ibrahim A, Johnson B, Gupta N, Mehta S, Wang H, Miller E, Nguyen P, Fleming J, Wu CL, Haque SJ, Shipley W, Chakravarti A. MicroRNA Biomarkers for Patients With Muscle-Invasive Bladder Cancer Undergoing Selective Bladder-Sparing Trimodality Treatment. Int J Radiat Oncol Biol Phys 2018; 104:197-206. [PMID: 30583038 DOI: 10.1016/j.ijrobp.2018.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/28/2018] [Accepted: 12/16/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE Trimodality therapy with maximal transurethral resection of bladder tumor and definitive chemoradiation reserving cystectomy for salvage of local recurrence is an accepted treatment alternative to upfront cystectomy for selected patients with muscle-invasive bladder cancer. There is a need for molecular biomarkers to predict which patients will respond to bladder preservation therapy. METHODS AND MATERIALS We sought to identify biomarkers with the ability to predict response to chemoradiation and survival after selective bladder preservation therapy in a cohort of 40 patients using a microRNA profiling approach. In vitro experiments were performed using transitional cell carcinoma lines CRL1749, HTB5, and HTB4. RESULTS We identified a panel of microRNAs associated with overall survival in our bladder preservation cohort and in the TCGA cohort. We also identified several microRNAs, including miR-23a and miR-27a, microRNAs of the miR-23a cluster, to be suggestively associated with complete response to chemoradiation therapy. The microRNAs were significantly associated with overall survival in The Cancer Genome Atlas cohort. In vitro studies suggest that the functional roles of miR-23a and miR-27a involve targeting the SFRP1 protein, a negative regulator of the Wnt signaling pathway. The upregulation of β-catenin in the Wnt signaling pathway mediated proliferation, migration, invasion, and sensitivity to radiation and cisplatin treatment in bladder cancer cells. CONCLUSIONS Our results indicate that miR-23a and miR-27a act as oncomirs, and once independently validated, they may help appropriately triage selected bladder cancer patients to individualize treatment.
Collapse
Affiliation(s)
- Wei Meng
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jason Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Rajbir Singh
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Joseph McElroy
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Ri Cui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ahmed Ibrahim
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Division of Pharmaceutical Industries, National Research Centre, Dokki, Egypt
| | - Benjamin Johnson
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | | | - Huabao Wang
- The Genomics Shared Resource, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Eric Miller
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Phuong Nguyen
- Department of Radiation Oncology, Ohio Valley Medical Center, Wheeling, West Virginia
| | - Jessica Fleming
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - S Jaharul Haque
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - William Shipley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
29
|
Kennedy BM, Harris RE. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer. Inflammopharmacology 2018; 26:10.1007/s10787-018-0489-6. [PMID: 29736687 DOI: 10.1007/s10787-018-0489-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023]
Abstract
We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Brian M Kennedy
- Colleges of Public Health and Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, 1841 Neil Avenue (306 Cunz Hall), Columbus, OH, 43210-1351, USA
| | - Randall E Harris
- Colleges of Public Health and Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, 1841 Neil Avenue (306 Cunz Hall), Columbus, OH, 43210-1351, USA.
| |
Collapse
|
30
|
Reverse engineering of triple-negative breast cancer cells for targeted treatment. Maturitas 2017; 108:24-30. [PMID: 29290211 DOI: 10.1016/j.maturitas.2017.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Targeting the human epidermal growth factor receptor HER2 has increased survival in HER2-positive breast cancer patients. In the contrast, for triple-negative breast cancer (TNBC) patients, no targeted agents are available. We hypothesized that artificial overexpression of HER2 in TNBC cells might induce sensitivity to anti-HER2 agents in these cells. METHODS TNBC cell lines were transduced using lentiviral HER2 overexpression particles. Functionality of HER2 was determined by protein analysis and localization studies. The tumorigenic potential of HER2 overexpressing cells was assessed by analysis of proliferation, migration and invasion capacity. Response to chemotherapeutic agents and anti-HER2 agents was determined by cell viability assays. RESULTS We demonstrated functional overexpression of HER2 in TNBC cell lines of different subtypes. Whereas in cell types with more pronounced epithelial features (e.g. MDA-MB-468) HER2 overexpression increases proliferation and migration, in mesenchymal cell lines (MDA-MB-231 and BT-549) HER2 was able to further increase invasive potential. No changes were found in cancer stem cell characteristics or in response to chemotherapy, a trait of TNBC. When treated with anti-HER2 agents, however, HER2 overexpressing TNBC cells showed increased sensitivity to these agents. CONCLUSION This proof-of-principle study demonstrates that reverse engineering of TNBC cells might offer a novel targeted treatment strategy for this most aggressive subtype of breast cancer.
Collapse
|
31
|
Wu F, Li J, Guo N, Wang XH, Liao YQ. MiRNA-27a promotes the proliferation and invasion of human gastric cancer MGC803 cells by targeting SFRP1 via Wnt/β-catenin signaling pathway. Am J Cancer Res 2017; 7:405-416. [PMID: 28401000 PMCID: PMC5385632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/18/2016] [Indexed: 06/07/2023] Open
Abstract
This study aims to elucidate the effects of microRNA-27a (miR-27a) on the proliferation and invasion of gastric cancer (GC) cells by targeting SFRP1 via Wnt/β-catenin signaling pathway. GC and normal adjacent tissues were collected from 273 GC patients. Human gastric cancer cell line (MGC803) and normal human gastric mucosal cell line (GES-1) were cultured. The miR-27a mRNA expression was analyzed using Quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemistry (IHC) test was used to detect miR-27a and SFRP1 protein expressions. After transfection, cells were divided into five groups: the negative control (NC) group, the miR-27a inhibitor group, the miR-27a mimics group, the miR-27a inhibitor + SFRP1 siRNA group and the miR-27a mimics + SFRP1 overexpression group. Western blotting was conducted to test SFRP1 and Wnt/β-catenin protein expression. Analysis for the target gene of miR-27a was performed using Luciferase assay. Cell proliferation, migration and invasion were determined by CCK8 and Transwell assay. The dual-luciferase reporter assay system was applied to analyze the effects of miR-27a on Wnt/β-catenin signaling pathway. In GC tissue and cell line, miR-27a protein and mRNA expressions were up-regulated, and SFRP1 protein and mRNA expressions were down-regulated. Luciferase assay indicated that miR-27a might target SFRP1 and regulate its expressions. When miR-27a was down-regulated, SFRP1 was up-regulated, and β-catenin, Wnt, p-β-catenin, and p-Wnt were significantly down-regulated. Compared with the NC group, the proliferation, migration and invasion of GC cells were remarkably increased in the miR-27a group, but these were declined in the miR-27a mimics + SFRP1 overexpression group. The proliferation, migration and invasion of GC cells were elevated in the miR-27a inhibitor + SFRP1 siRNA group compared with the miR-27a inhibitor group. These results showed that miR-27a was highly expressed in GC tissues and cells, and it might promote cell proliferation, migration and invasion by targeting SFRP1 via the activation of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Fang Wu
- Department of Oncology, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, P. R. China
| | - Jun Li
- Department of Radiation Oncology, Jiangxi Cancer HospitalNanchang 330029, P. R. China
| | - Ni Guo
- Department of Oncology, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, P. R. China
| | - Xiao-Hui Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, P. R. China
| | - Yu-Qian Liao
- Department of Medical Oncology, Jiangxi Cancer HospitalNanchang 330029, P. R. China
| |
Collapse
|
32
|
Kim TH, Chang JS, Park KS, Park J, Kim N, Lee JI, Kong ID. Effects of exercise training on circulating levels of Dickkpof-1 and secreted frizzled-related protein-1 in breast cancer survivors: A pilot single-blind randomized controlled trial. PLoS One 2017; 12:e0171771. [PMID: 28178355 PMCID: PMC5298304 DOI: 10.1371/journal.pone.0171771] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/25/2017] [Indexed: 12/02/2022] Open
Abstract
Background Wingless and integration site growth factor (Wnt) signaling is a tumorigenesis-related signaling pathway. Dickkpof-1 (DKK1) and secreted frizzled-related protein-1 (SFRP1) are endogenous negative regulators of Wnt/β-catenin signaling. Accumulating evidence indicates that higher serum levels of DKK1 are correlated with poor prognosis of various types of cancer. Here, we investigated whether exercise training causes changes in the serum levels of DKK1 and SFRP1 in patients with breast cancer. Methods Twenty-four breast cancer survivors, after chemo- or radiotherapy, participated in this single-blind randomized, controlled pilot study. Subjects were randomized to either an exercise program or a control group for 12 weeks and completed pre- and post-training tests for health-related fitness and body composition as well as blood biomarkers. The serum levels of DKK1 and SFRP1 were measured using enzyme-linked immunosorbent assay as the primary outcome. Results Exercise training for 12 weeks remarkably increased muscle strength, endurance, and flexibility and decreased body fat percentage, waist circumference, and visceral fat area (all p < 0.05). Exercise training lowered serum insulin levels and leptin/adiponectin ratios (all p < 0.05). The levels of DKK1 and SFRP1 were also significantly decreased by exercise training in breast cancer survivors (all p < 0.01). Conclusions Our results indicate that DKK1 and SFRP1 may be potentially useful biomarkers for evaluating the beneficial effects of long-term exercise on physical fitness and metabolism as well as the prognosis of patients with cancer. Trial registration ClinicalTrials.gov NCT02895178
Collapse
Affiliation(s)
- Tae Ho Kim
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- Yonsei Institute of Sports Science & Exercise Medicine, Wonju, Republic of Korea
| | - Jae Seung Chang
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- Yonsei Institute of Sports Science & Exercise Medicine, Wonju, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Jeeyeon Park
- Department of Nursing Science, Kyungsung University, Busan, Republic of Korea
| | - Nahyun Kim
- Department of Basic Nursing Science, Keimyung University College of Nursing, Daegu, Republic of Korea
| | - Jong In Lee
- Department of Hematology-Oncology, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - In Deok Kong
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- Yonsei Institute of Sports Science & Exercise Medicine, Wonju, Republic of Korea
- * E-mail:
| |
Collapse
|
33
|
Saha SK, Choi HY, Kim BW, Dayem AA, Yang GM, Kim KS, Yin YF, Cho SG. KRT19 directly interacts with β-catenin/RAC1 complex to regulate NUMB-dependent NOTCH signaling pathway and breast cancer properties. Oncogene 2017; 36:332-349. [PMID: 27345400 PMCID: PMC5270332 DOI: 10.1038/onc.2016.221] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/19/2016] [Accepted: 05/15/2016] [Indexed: 12/21/2022]
Abstract
Studies have reported that interactions between keratins (KRTs) and other proteins initiate signaling cascades that regulate cell migration, invasion, and metastasis. In the current study, we found that expression of KRT19 was specifically high in breast cancers and significantly correlated with their invasiveness. Moreover, knockdown of KRT19 led to increased proliferation, migration, invasion, drug resistance, and sphere formation in breast cancer cells via an upregulated NOTCH signaling pathway. This was owing to reduced expression of NUMB, an inhibitory protein of the NOTCH signaling pathway. In addition, we found that KRT19 interacts with β-catenin/RAC1 complex and enhances the nuclear translocation of β-catenin. Concordantly, knockdown of KRT19 suppressed the nuclear translocation of β-catenin as well as β-catenin-mediated NUMB expression. Furthermore, modulation of KRT19-mediated regulation of NUMB and NOTCH1 expression led to the repression of the cancer stem cell properties of breast cancer patient-derived CD133high/CXCR4high/ALDH1high cancer stem-like cells (CSLCs), which showed very low KRT19 and high NOTCH1 expression. Taken together, our study suggests a novel function for KRT19 in the regulation of nuclear import of the β-catenin/RAC1 complex, thus modulating the NUMB-dependent NOTCH signaling pathway in breast cancers and CSLCs, which might bear potential clinical implications for cancer or CSLC treatment.
Collapse
Affiliation(s)
- S K Saha
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - H Y Choi
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - B W Kim
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - A A Dayem
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - G-M Yang
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - K S Kim
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - Y F Yin
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - S-G Cho
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Cao Z, Zhang S. An integrative and comparative study of pan-cancer transcriptomes reveals distinct cancer common and specific signatures. Sci Rep 2016; 6:33398. [PMID: 27633916 PMCID: PMC5025752 DOI: 10.1038/srep33398] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
To investigate the commonalities and specificities across tumor lineages, we perform a systematic pan-cancer transcriptomic study across 6744 specimens. We find six pan-cancer subnetwork signatures which relate to cell cycle, immune response, Sp1 regulation, collagen, muscle system and angiogenesis. Moreover, four pan-cancer subnetwork signatures demonstrate strong prognostic potential. We also characterize 16 cancer type-specific subnetwork signatures which show diverse implications to somatic mutations, somatic copy number aberrations, DNA methylation alterations and clinical outcomes. Furthermore, some of them are strongly correlated with histological or molecular subtypes, indicating their implications with tumor heterogeneity. In summary, we systematically explore the pan-cancer common and cancer type-specific gene subnetwork signatures across multiple cancers, and reveal distinct commonalities and specificities among cancers at transcriptomic level.
Collapse
Affiliation(s)
- Zhen Cao
- National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Shihua Zhang
- National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
35
|
Rahimi S, Kenward S, Glaysher S, Marani C, Brennan PA. Immunohistochemical expression of secreted frizzled receptor protein 1 in the invasive front of tongue squamous cell carcinoma. Eur J Oral Sci 2016; 124:158-63. [DOI: 10.1111/eos.12252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Siavash Rahimi
- Pathology Centre-Histopathology; Queen Alexandra Hospital; Portsmouth UK
| | - Susan Kenward
- Pathology Centre-Histopathology; Queen Alexandra Hospital; Portsmouth UK
| | - Sharon Glaysher
- Research and Innovation; Queen Alexandra Hospital; Portsmouth UK
| | - Carla Marani
- Division of Histopathology; Ospedale San Carlo di Nancy; Rome Italy
| | - Peter A. Brennan
- Department of Oral and Maxillofacial Surgery; Queen Alexandra Hospital; Portsmouth UK
| |
Collapse
|
36
|
Xiao YF, Yong X, Tang B, Qin Y, Zhang JW, Zhang D, Xie R, Yang SM. Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets (Review). Int J Oncol 2015; 48:437-49. [PMID: 26648421 DOI: 10.3892/ijo.2015.3280] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/19/2015] [Indexed: 11/05/2022] Open
Abstract
There is no radical cure for all cancer types. The most frequently used therapies are surgical treatment, radiotherapy and chemotherapy. However, recrudescence, radiation resistance and chemotherapy resistance are the most challenging issues in clinical practice. To address these issues, they should be further studied at the molecular level, and the signaling pathways involved represent a promising avenue for this research. In the present review, we mainly discuss the components and mechanisms of activation of the Notch and Wnt signaling pathways, and we summarize the recent research efforts on these two pathways in different cancers. We also evaluate the ideal drugs that could target these two signaling pathways for cancer therapy, summarize alterations in the Notch and Wnt signaling pathways in cancer, and discuss potential signaling inhibitors as effective drugs for cancer therapy.
Collapse
Affiliation(s)
- Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yong Qin
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jian-Wei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Dan Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
37
|
Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer. Oncogene 2015; 35:4021-35. [DOI: 10.1038/onc.2015.467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
|
38
|
Ren XY, Zhou GQ, Jiang W, Sun Y, Xu YF, Li YQ, Tang XR, Wen X, He QM, Yang XJ, Liu N, Ma J. Low SFRP1 Expression Correlates with Poor Prognosis and Promotes Cell Invasion by Activating the Wnt/β-Catenin Signaling Pathway in NPC. Cancer Prev Res (Phila) 2015; 8:968-77. [PMID: 26276746 DOI: 10.1158/1940-6207.capr-14-0369] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/24/2015] [Indexed: 11/16/2022]
Abstract
Distant metastasis remains the predominant mode of treatment failure in nasopharyngeal carcinoma (NPC). Unfortunately, the molecular events underlying NPC metastasis remain poorly understood. Secreted frizzled-related protein 1 (SFRP1) plays an important role in tumorigenesis and progression. However, little is known about the function and mechanism of SFRP1 in NPC. Immunohistochemistry was used to determine SFRP1 expression levels in patients with NPC. SFRP1 function was evaluated using MTT, colony formation, wound-healing, Transwell assays, and in vivo models. The methylation level of SFRP1 in NPC cells was examined using bisulfate pyrosequencing; the Wnt/β-catenin signaling pathway genes were studied using Western blotting. Compared with patients with high SFRP1 expression, patients with low SFRP1 expression had worse overall survival [HR, 2.32; 95% confidence interval (CI), 1.36-3.94; P = 0.002], disease-free survival (HR, 1.98; 95% CI, 1.23-3.18; P = 0.005), and distant metastasis-free survival (HR, 2.07; 95% CI, 1.19-3.59; P = 0.009). Multivariate Cox regression analysis indicated that SFRP1 was an independent prognostic factor. Furthermore, SFRP1 was significantly downregulated in NPC cell lines. SFRP1 overexpression suppressed NPC cell proliferation, migration, and invasion in vitro and lung colonization in vivo. SFRP1 expression was restored after treatment with a demethylation agent, and the SFRP1 promoter region was hypermethylated in NPC cells. β-Catenin, c-Myc, and cyclin D1 were downregulated after SFRP1 restoration, which suggested that SFRP1 suppressed growth and metastasis by inhibiting the Wnt/β-catenin signaling pathway in NPC. SFRP1 provides further insight into NPC progression and may provide novel therapeutic targets for NPC treatment.
Collapse
Affiliation(s)
- Xian-Yue Ren
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology, South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Guan-Qun Zhou
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology, South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Wei Jiang
- Department of Radiation Oncology, Guilin Medical University Affiliated Hospital, Guilin, PR China
| | - Ying Sun
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology, South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Ya-Fei Xu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology, South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Ying-Qin Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology, South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Xin-Ran Tang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology, South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Xin Wen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology, South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Qing-Mei He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology, South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Xiao-Jing Yang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology, South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Na Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology, South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.
| | - Jun Ma
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology, South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.
| |
Collapse
|
39
|
Gregory KJ, Schneider SS. Estrogen-mediated signaling is differentially affected by the expression levels of Sfrp1 in mammary epithelial cells. Cell Biol Int 2015; 39:873-9. [PMID: 25809273 DOI: 10.1002/cbin.10468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 11/11/2022]
Abstract
Estrogen has been implicated in breast cancer risk for a variety of reasons including its role in stimulating mammary cell division. Secreted frizzled-related proteins (SFRPs) are a family of Wnt signaling antagonists. Loss of Sfrp1 in mice results in focal ductal epithelial hyperplasias and in humans, loss of SFRP1 is associated with early changes in premalignant breast lesions as well as poor overall survival in patients with early stage breast cancer. Considering that SFRP1 expression is further reduced in ER positive breast cancers when compared with ER negative breast cancers, we chose to determine whether loss of Sfrp1 alters ER signaling. Immunohistochemical analysis revealed that loss of Sfrp1 significantly increased the number of PR and BrdU positve cells in the mammary gland. We further demonstrate that down stream actions of ER-mediated signaling, including cellular proliferation and PR transcription, are elevated in estradiol treated explant cultures derived from Sfrp1(-/-) mice. Additionally, we show that Control explant cultures treated with estradiol exhibit an increase in the mRNA levels of Sfrp1. Finally, we establish that in human mammary epithelial cells with either SFRP1 knocked down (TERT-siSFRP1) and rescued SFRP1 expression (MCF7-SFRP1), estrogen signaling is augmented. Modulation of ER activity appears to be through a mechanism dependent upon Wnt/β-catenin activity. Taken together, our data suggest an important control mechanism by which estrogen signaling is tempered in normal cells and indicates why loss of SFRP1 in early lesions might be a causal change leading to enhanced estrogen-mediated proliferation.
Collapse
Affiliation(s)
- Kelly J Gregory
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, Massachusetts, 01199, USA.,Biology Department, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Sallie S Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, Massachusetts, 01199, USA.,Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|