1
|
Li HS, Lyu X, Rong A, Bi YL, Xu W, Cui HP. Vascular endothelial growth factor/connective tissue growth factor and proteomic analysis of aqueous humor after intravitreal conbercept for proliferative diabetes retinopathy. Int J Ophthalmol 2024; 17:1816-1827. [PMID: 39430009 PMCID: PMC11422360 DOI: 10.18240/ijo.2024.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/21/2024] [Indexed: 10/22/2024] Open
Abstract
AIM To investigate the role of connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF) in the protein profile of the aqueous humor in patients with proliferative diabetic retinopathy (PDR) following intravitreal injection of conbercept. METHODS This study included 72 PDR patients and 8 cataract patients as controls. PDR patients were divided into 3 groups according to the intervals of 3, 5, and 7d between intravitreal conbercept (IVC, 0.5 mg/0.05 mL) injection and pars plana vitrectomy (PPV) performed. Aqueous humor samples were collected before and after IVC and PPV for VEGF and CTGF levels detected with enzyme-linked immunosorbent assay (ELISA). The differential proteomics of 10 patients who underwent PPV surgery 5d after IVC and 8 normal controls was studied, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the data, and the protein interaction network of 23 differential proteins was studied. RESULTS Post-IVC, VEGF levels decreased and CTGF levels increased significantly in aqueous humor, with the CTGF/VEGF ratio rising significantly at all intervals. Liquid chromatography tandem mass spectrometry (LC-MS/MS) identified differentially expressed proteins between pre- and post-IVC samples. GO and KEGG analyses revealed involvement in immune response, stress response, complement and coagulation cascades, ferroptosis, and PPAR signaling pathways. PPI analysis highlighted key proteins like APOA1, C3, and transferrin (TF). ELISA assay confirmed the differential expression of proteins such as HBA1, SERPINA1, COL1A1, and ACTB, with significant changes in the IVC groups. CONCLUSION The study demonstrates that IVC effectively reduces VEGF levels while increasing CTGF levels, thereby modifying the CTGF/VEGF ratio, and IVC significantly alters the protein profile in the aqueous humor of patients with PDR. Proteomic analysis reveals that these changes are associated with critical biological pathways and protein interactions involved in immune response, stress response, and cellular metabolism.
Collapse
Affiliation(s)
- Hou-Shuo Li
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xiao Lyu
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ao Rong
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yan-Long Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Wei Xu
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Hong-Ping Cui
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| |
Collapse
|
2
|
Xu S, Chen X, Ying H, Chen J, Ye M, Lin Z, Zhang X, Shen T, Li Z, Zheng Y, Zhang D, Ke Y, Chen Z, Lu Z. Multi‑omics identification of a signature based on malignant cell-associated ligand-receptor genes for lung adenocarcinoma. BMC Cancer 2024; 24:1138. [PMID: 39267056 PMCID: PMC11395699 DOI: 10.1186/s12885-024-12911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
PURPOSE Lung adenocarcinoma (LUAD) significantly contributes to cancer-related mortality worldwide. The heterogeneity of the tumor immune microenvironment in LUAD results in varied prognoses and responses to immunotherapy among patients. Consequently, a clinical stratification algorithm is necessary and inevitable to effectively differentiate molecular features and tumor microenvironments, facilitating personalized treatment approaches. METHODS We constructed a comprehensive single-cell transcriptional atlas using single-cell RNA sequencing data to reveal the cellular diversity of malignant epithelial cells of LUAD and identified a novel signature through a computational framework coupled with 10 machine learning algorithms. Our study further investigates the immunological characteristics and therapeutic responses associated with this prognostic signature and validates the predictive efficacy of the model across multiple independent cohorts. RESULTS We developed a six-gene prognostic model (MYO1E, FEN1, NMI, ZNF506, ALDOA, and MLLT6) using the TCGA-LUAD dataset, categorizing patients into high- and low-risk groups. This model demonstrates robust performance in predicting survival across various LUAD cohorts. We observed distinct molecular patterns and biological processes in different risk groups. Additionally, analysis of two immunotherapy cohorts (N = 317) showed that patients with a high-risk signature responded more favorably to immunotherapy compared to those in the low-risk group. Experimental validation further confirmed that MYO1E enhances the proliferation and migration of LUAD cells. CONCLUSION We have identified malignant cell-associated ligand-receptor subtypes in LUAD cells and developed a robust prognostic signature by thoroughly analyzing genomic, transcriptomic, and immunologic data. This study presents a novel method to assess the prognosis of patients with LUAD and provides insights into developing more effective immunotherapies.
Collapse
Affiliation(s)
- Shengshan Xu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China.
| | - Xiguang Chen
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Haoxuan Ying
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiarong Chen
- Department of Oncology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Min Ye
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Zhichao Lin
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Tao Shen
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Zumei Li
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Youbin Zheng
- Department of Radiology, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Dongxi Zhang
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Yongwen Ke
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Zhuowen Chen
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Zhuming Lu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China.
| |
Collapse
|
3
|
Eskandarion MR, Eskandarieh S, Shakoori Farahani A, Mahmoodzadeh H, Shahi F, Oghabian MA, Shirkoohi R. Prediction of novel biomarkers for gastric intestinal metaplasia and gastric adenocarcinoma using bioinformatics analysis. Heliyon 2024; 10:e30253. [PMID: 38737262 PMCID: PMC11088262 DOI: 10.1016/j.heliyon.2024.e30253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Background & aim The histologic and molecular changes from intestinal metaplasia (IM) to gastric cancer (GC) have not been fully characterized. The present study sought to identify potential alterations in signaling pathways in IM and GC to predict disease progression; these alterations can be considered therapeutic targets. Materials & methods Seven gene expression profiles were selected from the GEO database. Discriminate differentially expressed genes (DEGs) were analyzed by EnrichR. The STRING database, Cytoscape, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal, NetworkAnalyst, MirWalk database, OncomiR, and bipartite miRNA‒mRNA correlation network was used for downstream analyses of selected module genes. Results Analyses revealed that extracellular matrix-receptor interactions (ITGB1, COL1A1, COL1A2, COL4A1, FN1, COL6A3, and THBS2) in GC and PPAR signaling pathway interactions (FABP1, APOC3, APOA1, HMGCS2, and PPARA and PCK1) in IM may play key roles in both the carcinogenesis and progression of underlying GC from intestinal metaplasia. IM enrichment indicated that this is closely related to digestion and absorption. The TF-hub gene regulatory network revealed that AR, TCF4, SALL4, and ESR1 were more important for hub gene expression. It was revealed that the development and prediction of GC may be affected by hsa-miR-29. It was found that PTGR1, C1orf115, CRYL1, ALDOB, and SULT1B1 were downregulated in GC and upregulated in IM. Therefore, they might have tumor suppressor activity in GC progression. Conclusion New potential biomarkers and pathways involved in GC and IM were identified that are important for the transformation of GC from IM to adenocarcinoma and can be therapeutic targets for GC.
Collapse
Affiliation(s)
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori Farahani
- Medical Genetics Ward, IKHC Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgery, Cancer Research Center, Cancer Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Shahi
- Department of Medical Oncology, Cancer Research Center, Cancer Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Medical Physics Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Cancer Research Center, Cancer Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sun M, Li K, Li X, Wang H, Li L, Zheng G. lncRNA TUG1 regulates Smac/DIABLO expression by competitively inhibiting miR-29b and modulates the apoptosis of lens epithelial cells in age-related cataracts. Chin Med J (Engl) 2023; 136:2340-2350. [PMID: 37185343 PMCID: PMC10538928 DOI: 10.1097/cm9.0000000000002530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND As one of the early discovered long non-coding RNAs (lncRNA), taurine upregulation gene 1 ( TUG1 ) has been widely expressed in a variety of tumors. Moreover, it promotes cell proliferation, differentiation, apoptosis, and migration. However, our understanding of its importance in the pathogenesis of cataracts remains limited. This study aimed to explore the mechanism by which lncRNA TUG1 mediates lens epithelial cell apoptosis in age-related cataracts (ARC) by regulating the microRNAs (miR-29b)/second mitochondria-derived activator of caspases axis, and to identify more non-surgical strategies for cataract treatment. METHODS The messenger RNA expression levels of TUG1 , miR-29b, and Smac were detected using quantitative real-time polymerase chain reaction in vivo and in vitro . The expression of the Smac protein was analyzed by Western blotting and immunofluorescence. Flow cytometry and cell counting kit-8 assays were used to detect the cell apoptosis and proliferation rates, respectively. The targeted regulatory relationship between lncRNA TUG1 , miR-29b, and Smac was verified by viral vector construction, co-transfection, nuclear and cytoplasmic separation, luciferase reporter assays, and RNA immunoprecipitation. RESULTS TUG1 and Smac were expressed at high levels in ARC and HLE-B3 cells treated with 200 μmol/L H 2 O 2 , whereas miR-29b expression was decreased. In vitro cell experiments confirmed that down-regulation of TUG1 could inhibit the apoptosis of lens epithelial cells. Mechanistically, Smac expression was negatively regulated by miR-29b. TUG1 competitively inhibited miR-29b expression and caused greater release of Smac. In addition, miR-29b partially reversed the effects of TUG1 on human lens epithelial cell line cells. CONCLUSIONS lncRNA TUG1 increases Smac expression and promotes apoptosis of lens epithelial cells in ARC by competitively inhibiting miR-29b. This mechanism is the cytological basis for ARC formation. Based on these results, the lncRNA TUG1/miR29b/Smac axis may be a new molecular pathway that regulates ARC development.
Collapse
Affiliation(s)
- Miaomiao Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Department of Ophthalmology, Luohe City Central Hospital, Luohe, Henan 462000, China
| | - Ke Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiao Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Huajun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Li Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| |
Collapse
|
5
|
Razi S, Mozdarani H, Behzadi Andouhjerdi R. Evaluation of the Potential Diagnostic Role of the Lnc-MIAT, miR-29a-3p, and FOXO3a ceRNA Networks as Noninvasive Circulatory Bioindicator in Ductal Carcinoma Breast Cancer. Breast Cancer (Auckl) 2023; 17:11782234231184378. [PMID: 37434996 PMCID: PMC10331106 DOI: 10.1177/11782234231184378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Background Over the last few decades, tremendous progress has been achieved in the early detection and treatment of breast cancer (BC). However, the prognosis remains unsatisfactory, and the underlying processes of carcinogenesis are still unclear. The purpose of this research was to find out the relationship between myocardial infarction-associated transcript (MIAT), FOXO3a, and miRNA29a-3p and evaluated the expression levels in patients compare with control and their potential as a noninvasive bioindicator in whole blood in BC. Methods Whole blood and BC tissue are taken from patients before radiotherapy and chemotherapy. Total RNA was extracted from BC tissue and whole blood to synthesize complementary DNA (cDNA). The expression of MIAT, FOXO3a, and miRNA29a-3p was analyzed by the quantitative reverse transcription-polymerase chain reaction (RT-qPCR) method and the sensitivity and specificity of them were determined by the receiver operating characteristic (ROC) curve. Bioinformatics analysis was used to understand the connections between MIAT, FOXO3a, and miRNA29a-3p in human BC to develop a ceRNA (competitive endogenous RNA) network. Results We identified that in ductal carcinoma BC tissue and whole blood, MIAT and FOXO3a were more highly expressed, whereas miRNA29a-3p was lower compared with those in nontumor samples. There was a positive correlation between the expression levels of MIAT, FOXO3a, and miRNA29a-3p in BC tissues and whole blood. Our results also proposed miRNA29a-3p as a common target between MIAT and FOXO3a, and we showed them as a ceRNA network. Conclusions This is the first study that indicates MIAT, FOXO3a, and miRNA29a-3p as a ceRNA network, and their expression was analyzed in both BC tissue and whole blood. As a preliminary assessment, our findings indicate that combined levels of MIAT, FOXO3a, and miR29a-3p may be considered as potential diagnostic bioindicator for BC.
Collapse
Affiliation(s)
- Shokufeh Razi
- Department of Genetics, Faculty of
Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty
of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
6
|
Overview of the miR-29 family members' function in breast cancer. Int J Biol Macromol 2023; 230:123280. [PMID: 36652981 DOI: 10.1016/j.ijbiomac.2023.123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Accumulating evidence has indicated the importance of microRNAs (miRs) in the biology of human malignancies by targeting multiple signaling pathways and different Messenger RNA transcripts. Despite conflicting information and controversial roles in diverse cancers, miR-29 has been mostly characterized as a tumor suppressor in breast cancer (BC). Several signaling axes, including TIMP3/STAT1/FOXO1, GATA3-miR-29b, and EZH2-miR-29b/miR-30d-LOXL4 are controlled, at least partially, by miR-29 family members to suppress proliferation, invasion, and metastasis of BC cells. In contrast, some other studies showed that miR-29 is notably elevated in the serum/tissue of BC patients and triggers migration and metastasis by targeting various genes and transcription factors such as tristetraprolin, N-myc interactor, and ten-eleven translocation 1. This disagreement can be explained by the fact that miR-29 family members have a variety of regulatory roles depending on their environment and signaling pathways. Long non-coding RNAs also can modulate miR-29 expression in BC. We summarized recent discoveries regarding the important value of the miR-29 family in BC, focusing on the effects of miR-29 up/down-regulation in different subtypes of BC. We also explored the effects of miR-29 in BC initiation and progression, invasion, and therapy resistance.
Collapse
|
7
|
Rana PS, Wang W, Markovic V, Szpendyk J, Chan ER, Sossey-Alaoui K. The WAVE2/miR-29/Integrin-β1 Oncogenic Signaling Axis Promotes Tumor Growth and Metastasis in Triple-negative Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:160-174. [PMID: 36968231 PMCID: PMC10035451 DOI: 10.1158/2767-9764.crc-22-0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women and the major cause of death because of its invasion, metastasis, and resistance to therapies capabilities. The most aggressive subtype of breast cancer is triple-negative breast cancer (TNBC) due to invasive and metastatic properties along with early age of diagnosis and poor prognosis. TNBC tumors do not express estrogen, progesterone, and HER2 receptors, which limits their treatment with targeted therapies. Cancer invasiveness and metastasis are known to be promoted by increased cell motility and upregulation of the WAVE proteins. While the contribution of WAVE2 to cancer progression is well documented, the WAVE2-mediated regulation of TNBC oncogenic properties is still under investigated, as does the molecular mechanisms by which WAVE2 regulates such oncogenic pathways. In this study, we show that WAVE2 plays a significant role in TNBC development, progression, and metastasis, through the regulation of miR-29 expression, which in turn targets Integrin-β1 (ITGB1) and its downstream oncogenic activities. Conversely, we found WAVE2 expression to be regulated by miR-29 in a negative regulatory feedback loop. Reexpression of exogenous WAVE2 in the WAVE2-deficient TNBC cells resulted in reactivation of ITGB1 expression and activity, further confirming the specificity of WAVE2 in regulating Integrin-β1. Together, our data identify a novel WAVE2/miR-29/ITGB1 signaling axis, which is essential for the regulation of the invasion-metastasis cascade in TNBC. Our findings offer new therapeutic strategies for the treatment of TNBC by targeting WAVE2 and/or its downstream effectors. Significance Identification of a novel WAVE2/miR-29/ITGB1 signaling axis may provide new insights on how WAVE2 regulates the invasion-metastasis cascade of TNBC tumors through the modulation of ITGB1 and miR-29.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Wei Wang
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | | | | | | | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| |
Collapse
|
8
|
Khajah MA, Al-Ateyah A, Luqmani YA. MicroRNA expression profiling of endocrine sensitive and resistant breast cancer cell lines. Biochem Biophys Rep 2022; 31:101316. [PMID: 35879960 PMCID: PMC9307586 DOI: 10.1016/j.bbrep.2022.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background Methods Results Conclusions Around 50–60% of microRNAs were significantly differentially expressed between ER- and ER + breast cancer cell lines. Transfection of miR-200c-3p mimic into ER -ve cells induced MET and reduced cell motility. Transfecting of miR-449a inhibitor into ER -ve cells reduced cell invasion but did not induce EMT.
Collapse
|
9
|
Nguyen TTP, Suman KH, Nguyen TB, Nguyen HT, Do DN. The Role of miR-29s in Human Cancers—An Update. Biomedicines 2022; 10:biomedicines10092121. [PMID: 36140219 PMCID: PMC9495592 DOI: 10.3390/biomedicines10092121] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that directly bind to the 3’ untranslated region (3’-UTR) of the target mRNAs to inhibit their expression. The miRNA-29s (miR-29s) are suggested to be either tumor suppressors or oncogenic miRNAs that are strongly dysregulated in various types of cancer. Their dysregulation alters the expression of their target genes, thereby exerting influence on different cellular pathways including cell proliferation, apoptosis, migration, and invasion, thereby contributing to carcinogenesis. In the present review, we aimed to provide an overview of the current knowledge on the miR-29s biological network and its functions in cancer, as well as its current and potential applications as a diagnostic and prognostic biomarker and/or a therapeutic target in major types of human cancer.
Collapse
Affiliation(s)
- Thuy T. P. Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kamrul Hassan Suman
- Department of Fisheries, Ministry of Fisheries and Livestock, Dhaka 1205, Bangladesh
| | - Thong Ba Nguyen
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Vietnam
- Correspondence: (H.T.N.); (D.N.D.)
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: (H.T.N.); (D.N.D.)
| |
Collapse
|
10
|
Jian Y, Kong L, Xu H, Shi Y, Huang X, Zhong W, Huang S, Li Y, Shi D, Xiao Y, Yang M, Li S, Chen X, Ouyang Y, Hu Y, Chen X, Song L, Ye R, Wei W. Protein phosphatase 1 regulatory inhibitor subunit 14C promotes triple-negative breast cancer progression via sustaining inactive glycogen synthase kinase 3 beta. Clin Transl Med 2022; 12:e725. [PMID: 35090098 PMCID: PMC8797469 DOI: 10.1002/ctm2.725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is fast-growing and highly metastatic with the poorest prognosis among the breast cancer subtypes. Inactivation of glycogen synthase kinase 3 beta (GSK3β) plays a vital role in the aggressiveness of TNBC; however, the underlying mechanism for sustained GSK3β inhibition remains largely unknown. Here, we find that protein phosphatase 1 regulatory inhibitor subunit 14C (PPP1R14C) is upregulated in TNBC and relevant to poor prognosis in patients. Overexpression of PPP1R14C facilitates cell proliferation and the aggressive phenotype of TNBC cells, whereas the depletion of PPP1R14C elicits opposite effects. Moreover, PPP1R14C is phosphorylated and activated by protein kinase C iota (PRKCI) at Thr73. p-PPP1R14C then represses Ser/Thr protein phosphatase type 1 (PP1) to retain GSK3β phosphorylation at high levels. Furthermore, p-PPP1R14C recruits E3 ligase, TRIM25, toward the ubiquitylation and degradation of non-phosphorylated GSK3β. Importantly, the blockade of PPP1R14C phosphorylation inhibits xenograft tumorigenesis and lung metastasis of TNBC cells. These findings provide a novel mechanism for sustained GSK3β inactivation in TNBC and suggest that PPP1R14C might be a potential therapeutic target.
Collapse
Affiliation(s)
- Yunting Jian
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Pathology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong ProvinceThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Lingzhi Kong
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Hongyi Xu
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yawei Shi
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xinjian Huang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wenjing Zhong
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yue Li
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Dongni Shi
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yunyun Xiao
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Muwen Yang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Siqi Li
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiangfu Chen
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Ying Ouyang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yameng Hu
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xin Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Guangzhou Institute of OncologyTumor Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Libing Song
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Runyi Ye
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Weidong Wei
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
11
|
Zhang X, Liu D, Gao Y, Lin C, An Q, Feng Y, Liu Y, Liu D, Luo H, Wang D. The Biology and Function of Extracellular Vesicles in Cancer Development. Front Cell Dev Biol 2021; 9:777441. [PMID: 34805181 PMCID: PMC8602830 DOI: 10.3389/fcell.2021.777441] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) exert their biological functions by delivering proteins, metabolites, and nucleic acids to recipient cells. EVs play important roles in cancer development. The anti-tumor effect of EVs is by their cargos carrying proteins, metabolites, and nucleic acids to affect cell-to-cell communication. The characteristics of cell-to-cell communication can potentially be applied for the therapy of cancers, such as gastric cancer. In addition, EVs can be used as an effective cargos to deliver ncRNAs, peptides, and drugs, to target tumor tissues. In addition, EVs have the ability to regulate cell apoptosis, autophagy, proliferation, and migration of cancer cells. The ncRNA and peptides that were engaged with EVs were associated with cell signaling pathways in cancer development. This review focuses on the composition, cargo, function, mechanism, and application of EVs in cancers.
Collapse
Affiliation(s)
- Xinyi Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chao Lin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qingwu An
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ye Feng
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yangyang Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
12
|
Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci 2021; 8:764025. [PMID: 34778378 PMCID: PMC8582349 DOI: 10.3389/fmolb.2021.764025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
The high incidence of breast cancer (BC) is linked to metastasis, facilitated by tumor angiogenesis. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to the tumor development and angiogenesis process in different types of cancer, including BC. There's increasing evidence showed that various miRNAs play a significant role in disease processes; specifically, they are observed and over-expressed in a wide range of diseases linked to the angiogenesis process. However, more studies are required to reach the best findings and identify the link among miRNA expression, angiogenic pathways, and immune response-related genes to find new therapeutic targets. Here, we summarized the recent updates on miRNA signatures and their cellular targets in the development of breast tumor angiogenetic and discussed the strategies associated with miRNA-based therapeutic targets as anti-angiogenic response.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
13
|
Zhao X, Ye N, Feng X, Ju H, Liu R, Lu W. MicroRNA-29b-3p Inhibits the Migration and Invasion of Gastric Cancer Cells by Regulating the Autophagy-Associated Protein MAZ. Onco Targets Ther 2021; 14:3239-3249. [PMID: 34040389 PMCID: PMC8140921 DOI: 10.2147/ott.s274215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to investigate the relationship between microRNA-29b-3p (miR-29b-3p) and myc-associated zinc finger protein (MAZ) expression and the effects of this interaction on the proliferation, migration, and invasion of gastric cancer cells. Methods qPCR and Western blots were used to detect the expression of miR-29b-3p and MAZ. The dual luciferase reporter gene system was used to explore whether MAZ is the target of miR-29b-3p. Cell function experiments and a mouse tumorigenesis model were used to determine the effects of miR-29b-3p overexpression and MAZ depletion on proliferation, migration, and invasion in gastric cancer cell lines and on tumor growth. Results The expression level of miR-29b-3p was low and the expression level of MAZ was high in gastric cancer cells compared with normal human gastric mucosal epithelial cells. MAZ was the target gene of miR-29b-3p. The upregulation of miR-29b-3p reduces the expression of MAZ. Overexpression of miR-29b-3p and downregulation of MAZ inhibited the proliferation and migration of cancer cells and induced apoptosis by controlling the expression of autophagy-related proteins. MiR-29b-3p mimics inhibit tumor growth in mice. Conclusion MiR-29b-3p inhibits the migration and invasion of gastric cancer cells by regulating the autophagy-related protein MAZ.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Nan Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Xueke Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Ruixia Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China.,Key Laboratory of System Bioengineering, Tianjin University, Tianjin, the People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, the People's Republic of China
| |
Collapse
|
14
|
Wei Y, Lu W, Yu Y, Zhai Y, Guo H, Yang S, Zhao C, Zhang Y, Liu J, Liu Y, Fei J, Shi J. miR-29c&b2 encourage extramedullary infiltration resulting in the poor prognosis of acute myeloid leukemia. Oncogene 2021; 40:3434-3448. [PMID: 33888868 DOI: 10.1038/s41388-021-01775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Extramedullary infiltration (EMI), as a concomitant symptom of acute myeloid leukemia (AML), is associated with low complete remission and poor prognosis in AML. However, the mechanism of EMI remains indistinct. Clinical trials showed that increased miR-29s were associated with a poor overall survival in AML [14]. Nevertheless, they were proved to work as tumor suppressor genes by encouraging apoptosis and inhibiting proliferation in vitro. These contradictory results led us to the hypothesis that miR-29s may play a notable role in the prognosis of AML rather than leukemogenesis. Thus, we explored the specimens of AML patients and addressed this issue into miR-29c&b2 knockout mice. As a result, a poor overall survival and invasive blast cells were observed in high miR-29c&b2-expression patients, and the wildtype mice presented a shorter survival with heavier leukemia infiltration in extramedullary organs. Subsequently, we found that the miR-29c&b2 inside leukemia cells promoted EMI, but not the one in the microenvironment. The analysis of signal pathway revealed that miR-29c&b2 could target HMG-box transcription factor 1 (Hbp1) directly, then reduced Hbp1 bound to the promoter of non-muscle myosin IIB (Myh10) as a transcript inhibitor. Thus, increased Myh10 encouraged the migration of leukemia cells. Accordingly, AML patients with EMI were confirmed to have high miR-29c&b2 and MYH10 with low HBP1. Therefore, we identify that miR-29c&b2 contribute to the poor prognosis of AML patients by promoting EMI, and related genes analyses are prospectively feasible in assessment of AML outcome.
Collapse
Affiliation(s)
- Yanyu Wei
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yehua Yu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanmei Zhai
- Department of Hematology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hezhou Guo
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shaoxin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chong Zhao
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanjie Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiali Liu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhui Liu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China. .,Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China.
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Gao XZ, Zhang ZX, Han GL. MiR-29a-3p Enhances the Viability of Rat Neuronal Cells that Injured by Oxygen-Glucose Deprivation/Reoxygenation Treatment Through Targeting TNFRSF1A and Regulating NF-κB Signaling Pathway. J Stroke Cerebrovasc Dis 2020; 29:105210. [PMID: 33066952 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE We attempt to investigate the role of TNFRSF1A and its underlying mechanism in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in rat pheochromocytoma PC12 cells. METHODS Public datasets GSE61616 and GSE106680 were downloaded from GEO database. PC12 cells were used to construct OGD/R models. QRT-PCR and western blot were implemented to test the relative mRNA and protein levels, respectively. The miRNA online prediction website TargetScan was used to predict TNFRSF1A upstream regulated miRNAs, which were then confirmed by luciferase reporter assay. The changes in cell viability and apoptosis were evaluated using cell counting kit 8 (CCK-8), lactose dehydrogenase (LDH), and flow cytometry assays. RESULTS Bioinformatics analysis demonstrated that the expression of TNFRSF1A was upregulated in CI/RI and middle cerebral artery occlusion models compared with control, respectively. And a significant upregulation was also observed in OGD/R-damaged PC12 cells. Depletion of TNFRSF1A can notably enhance the cells proliferation after OGD/R treatment, while enlargement of TNFRSF1A presented the opposite outcomes. Moreover, miR-29a-3p was shown to be the upstream regulatory miRNA of TNFRSF1A. The levels of TNFRSF1A were inversely mediated by miR-29a-3p. Overexpression of miR-29a-3p can raise the cell viability, decrease the LDH activity, and reduce the apoptotic ratio in OGD/R-treated cells. Besides, TNFRSF1A can attenuate the protective effect of miR-29a-3p on OGD/R-treated cells. Furthermore, miR-29a-3p mimic inhibited, while overexpression of TNFRSF1A promoted the activation of NF-κB signaling pathway, and TNFRSF1A can attenuate the suppressive effect of miR-29a-3p on the NF-κB pathway. CONCLUSION Our research illustrated that the potential regulatory role of miR-29a-3p/TNFRSF1A axis in neurons cells suffered from OGD/R, and their effects on NF-κB signaling pathway, providing a possible bio-target for protecting cells from OGD/R damage .
Collapse
Affiliation(s)
- Xiao-Zeng Gao
- Department of Anesthesiology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Zhao-Xia Zhang
- Department of Geriatrics, Shanxian centrol Hospital, Heze, Shandong 274300, P.R. China
| | - Guang-Liang Han
- Department of Neurosurgery, Shengli Oilfield Central Hospital of Binzhou Medical College, Dongying, Shandong 257034, P.R. China.
| |
Collapse
|
16
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
17
|
Duda P, Akula SM, Abrams SL, Steelman LS, Gizak A, Rakus D, McCubrey JA. GSK-3 and miRs: Master regulators of therapeutic sensitivity of cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118770. [PMID: 32524999 DOI: 10.1016/j.bbamcr.2020.118770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023]
Abstract
Glycogen synthetase kinase-3 (GSK-3) and microRNAs (miRs) affect many critical signaling pathways important in cell growth. GSK-3 is a serine/threonine (S/T) protein kinase. Often when GSK-3 phosphorylates other proteins, they are inactivated and the signaling pathway is shut down. The PI3K/PTEN/AKT/GSK3/mTORC1 pathway plays key roles in regulation of cell growth, apoptosis, drug resistance, malignant transformation and metastasis and is often deregulated in cancer. When GSK-3 is phosphorylated by AKT it is inactivated and this often leads to growth promotion. When GSK-3 is not phosphorylated by AKT or other kinases at specific negative-regulatory residues, it can modify the activity of many proteins by phosphorylation, some of these proteins promote while others inhibit cell proliferation. This is part of the conundrum regarding GSK-3. The central theme of this review is the ability of GSK-3 to serve as either a tumor suppressor or a tumor promoter in cancer which is likely due to its diverse protein substrates. The effects of multiple miRs which bind mRNAs encoding GSK-3 and other signaling molecules and how they affect cell growth and sensitivity to various therapeutics will be discussed as they serve to regulate GSK-3 and other proteins important in controlling proliferation.
Collapse
Affiliation(s)
- Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA.
| |
Collapse
|
18
|
Choi JE, Hyun CL, Jin MS, Lee KM, Moon JH, Ryu HS. Downregulation of N-myc and STAT Interactor Protein Predicts Aggressive Tumor Behavior and Poor Prognosis in Invasive Ductal Carcinoma. J Breast Cancer 2020; 23:36-46. [PMID: 32140268 PMCID: PMC7043944 DOI: 10.4048/jbc.2020.23.e12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We investigated the expression of the N-myc and STAT interactor (NMI) protein in invasive ductal carcinoma tissue and estimated its clinicopathologic significance as a prognostic factor. The expression levels and prognostic significance of NMI were also analyzed according to the molecular subgroup of breast cancers. METHODS Human NMI detection by immunohistochemistry was performed using tissue microarrays of 382 invasive ductal carcinomas. The correlation of NMI expression with patient clinicopathological parameters and prognostic significance was analyzed and further assessed according to the molecular subgroup of breast cancers. Moreover, in vitro experiments with 13 breast cancer cell lines were carried out. We also validated NMI expression significance in The Cancer Genome Atlas cohort using the Human Protein Atlas (HPA) database. RESULTS Low NMI expression was observed in 190 cases (49.7%). Low NMI expression was significantly associated with the "triple-negative" molecular subtype (p < 0.001), high nuclear grade (p < 0.001), high histologic grade (p < 0.001), and advanced anatomic stage (p = 0.041). Patients with low NMI expression had poorer progression-free survival (p = 0.038) than patients with high NMI expression. Low NMI expression was not significantly associated with patient prognosis in the molecular subgroup analysis. In vitro, a reduction of NMI expression was observed in 8 breast cancer cell lines, especially in the estrogen receptor-positive and basal B type of triple-negative breast cancer molecular subgroups. The HPA database showed that low NMI expression levels were associated with a lower survival probability compared with that associated with high NMI expression (p = 0.053). CONCLUSION NMI expression could be a useful prognostic biomarker and a potential novel therapeutic target in invasive ductal carcinoma.
Collapse
Affiliation(s)
- Ji Eun Choi
- Department of Pathology, Design Hospital, Jeonju, Korea
| | - Chang Lim Hyun
- Department of Pathology, Jeju National University Hospital, Jeju, Korea
| | - Min-Sun Jin
- Department of Pathology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Kyung-min Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hye Moon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Zhang J, Song M, Li W, Zhao F, Li Y. Curcumin inhibits proliferation and soluble collagen synthesis of NIH/3T3 cell line by modulation of miR-29a and via ERK1/2 and β-catenin pathways. Mol Immunol 2019; 116:191-198. [DOI: 10.1016/j.molimm.2019.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/04/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
|
20
|
Abdeen SK, Aqeilan RI. Decoding the link between WWOX and p53 in aggressive breast cancer. Cell Cycle 2019; 18:1177-1186. [PMID: 31075076 PMCID: PMC6592247 DOI: 10.1080/15384101.2019.1616998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022] Open
Abstract
Basal-like breast cancer (BLBC) and triple-negative breast cancer (TNBC) are aggressive forms of human breast cancer with poor prognosis and limited treatment response. Molecular understanding of BLBC and TNBC biology is instrumental to improve detection and management of these deadly diseases. Tumor suppressors WW domain-containing oxidoreductase (WWOX) and TP53 are altered in BLBC and in TNBC. Nevertheless, the functional interplay between WWOX and p53 is poorly understood. In a recent study by Abdeen and colleagues, it has been demonstrated that WWOX loss drives BLBC formation via deregulating p53 functions. In this review, we highlight important signaling pathways regulated by WWOX and p53 that are related to estrogen receptor signaling, epithelial-to-mesenchymal transition, and genomic instability and how they impact BLBC and TNBC development.
Collapse
Affiliation(s)
- Suhaib K. Abdeen
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Culig Z. Epithelial mesenchymal transition and resistance in endocrine-related cancers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1368-1375. [PMID: 31108117 DOI: 10.1016/j.bbamcr.2019.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Epithelial to mesencyhmal transition (EMT) has a central role in tumor metastasis and progression. EMT is regulated by several growth factors and pro-inflammatory cytokines. The most important role in this regulation could be attributed to transforming growth factor-β (TGF-β). In breast cancer, TGF-β effect on EMT could be potentiated by Fos-related antigen, oncogene HER2, epidermal growth factor, or mitogen-activated protein kinase kinase 5 - extracellular-regulated kinase signaling. Several microRNAs in breast cancer have a considerable role either in potentiation or in suppression of EMT thus acting as oncogenic or tumor suppressive modulators. At present, possibilities to target EMT are discussed but the results of clinical translation are still limited. In prostate cancer, many cellular events are regulated by androgenic hormones. Different experimental results on androgenic stimulation or inhibition of EMT have been reported in the literature. Thus, a possibility that androgen ablation therapy leads to EMT thus facilitating tumor progression has to be discussed. Novel therapy agents, such as the anti-diabetic drug metformin or selective estrogen receptor modulator ormeloxifene were used in pre-clinical studies to inhibit EMT in prostate cancer. Taken together, the results of pre-clinical and clinical studies in breast cancer may be helpful in the process of drug development and identify potential risk during the early stage of that process.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
22
|
Cominetti MR, Altei WF, Selistre-de-Araujo HS. Metastasis inhibition in breast cancer by targeting cancer cell extravasation. BREAST CANCER (DOVE MEDICAL PRESS) 2019; 11:165-178. [PMID: 31114313 PMCID: PMC6497883 DOI: 10.2147/bctt.s166725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
The spread of cells from primary tumors toward distant tissues and organs, also known as metastasis, is responsible for most cancer-associated deaths. The metastasis cascade comprises a series of events, characterized by the displacement of tumor cells (TCs) from the primary tumor to distant organs by traveling through the bloodstream, and their subsequent colonization. The first step in metastasis involves loss of cell-cell and cell-matrix adhesions, increased invasiveness and migratory abilities, leading to intravasation of TCs into the blood or lymphatic vessels. Stationary TCs must undergo the process of epithelial-mesenchymal transition in order to achieve this migratory and invasive phenotype. Circulating tumor cells that have survived in the circulation and left the blood or lymphatic vessels will reach distant sites where they may stay dormant for many years or grow to form secondary tumors. To do this, cells need to go through the mesenchymal-epithelial transition to revert the phenotype in order to regain epithelial cell-to-cell junctions, grow and become a clinically relevant and detectable tumor mass. This work will review the main steps of the metastatic cascade and describe some strategies to inhibit metastasis by reducing cancer cell extravasation presenting recent studies in the context of breast cancer.
Collapse
Affiliation(s)
- Márcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Wanessa F Altei
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | | |
Collapse
|
23
|
Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potential role of miR‐29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol 2019; 234:19280-19297. [DOI: 10.1002/jcp.28607] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mohsen Alizadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Safarzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Fatemeh Beyranvand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Lorestan University of Medical Sciences Khorramabad Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
24
|
Regulatory network reconstruction of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets. Funct Integr Genomics 2019; 19:645-658. [PMID: 30859354 DOI: 10.1007/s10142-019-00670-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/07/2018] [Accepted: 02/18/2019] [Indexed: 12/29/2022]
Abstract
Although many of the genetic loci associated with breast cancer risk have been reported, there is a lack of systematic analysis of regulatory networks composed of different miRNAs and mRNAs on survival analysis in breast cancer. To reconstruct the microRNAs-genes regulatory network in breast cancer, we employed the expression data from The Cancer Genome Atlas (TCGA) related to five essential miRNAs including miR-21, miR-22, miR-210, miR-221, and miR-222, and their associated functional genomics data from the GEO database. Then, we performed an integration analysis to identify the essential target factors and interactions for the next survival analysis in breast cancer. Based on the results of our integrated analysis, we have identified significant common regulatory signatures including differentially expressed genes, enriched pathways, and transcriptional regulation such as interferon regulatory factors (IRFs) and signal transducer and activator of transcription 1 (STAT1). Finally, a reconstructed regulatory network of five miRNAs and 34 target factors was established and then applied to survival analysis in breast cancer. When we used expression data for individual miRNAs, only miR-21 and miR-22 were significantly associated with a survival change. However, we identified 45 significant miRNA-gene pairs that predict overall survival in breast cancer out of 170 one-on-one interactions in our reconstructed network covering all of five miRNAs, and several essential factors such as PSMB9, HLA-C, RARRES3, UBE2L6, and NMI. In our study, we reconstructed regulatory network of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets. These results may provide new insights into regulatory network-based precision medicine for breast cancer.
Collapse
|
25
|
Wu Y, Shi W, Tang T, Wang Y, Yin X, Chen Y, Zhang Y, Xing Y, Shen Y, Xia T, Guo C, Pan Y, Jin L. miR-29a contributes to breast cancer cells epithelial-mesenchymal transition, migration, and invasion via down-regulating histone H4K20 trimethylation through directly targeting SUV420H2. Cell Death Dis 2019; 10:176. [PMID: 30792382 PMCID: PMC6385178 DOI: 10.1038/s41419-019-1437-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/01/2019] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most prevalent cancer in women worldwide, which remains incurable once metastatic. Breast cancer stem cells (BCSCs) are a small subset of breast cancer cells which are essential in tumor formation, metastasis, and drug resistance. microRNAs (miRNAs) play important roles in the breast cancer cells and BCSCs by regulating specific genes. In this study, we found that miR-29a was up-regulated in BCSCs, in aggressive breast cancer cell line and in breast cancer tissues. We also confirmed suppressor of variegation 4–20 homolog 2 (SUV420H2), which is a histone methyltransferase that specifically trimethylates Lys-20 of histone H4 (H4K20), as the target of miR-29a. Both miR-29a overexpression and SUV420H2 knockdown in breast cancer cells promoted their migration and invasion in vitro and in vivo. Furthermore, we discovered that SUV420H2-targeting miR-29a attenuated the repression of connective tissue growth factor (CTGF) and growth response protein-1 (EGR1) by H4K20 trimethylation and promoted the EMT progress of breast cancer cells. Taken together, our findings reveal that miR-29a plays critical roles in the EMT and metastasis of breast cancer cells through targeting SUV420H2. These findings may provide new insights into novel molecular therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- You Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Wanyue Shi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Tingting Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yidong Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Xin Yin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yanlin Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yun Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Tiansong Xia
- Department of Breast Surgery, Breast Disease Center of Jiangsu Province, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu province, China
| | - Changying Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China.
| |
Collapse
|
26
|
Abstract
MicroRNAs (miRNA) are small non-coding RNAs (∼22 nt in length) that are known as potent master regulators of eukaryotic gene expression. miRNAs have been shown to play a critical role in cancer pathogenesis, and the misregulation of miRNAs is a well-known feature of cancer. In recent years, miR-29 has emerged as a critical miRNA in various cancers, and it has been shown to regulate multiple oncogenic processes, including epigenetics, proteostasis, metabolism, proliferation, apoptosis, metastasis, fibrosis, angiogenesis, and immunomodulation. Although miR-29 has been thoroughly documented as a tumor suppressor in the majority of studies, some controversy remains with conflicting reports of miR-29 as an oncogene. In this review, we provide a systematic overview of miR-29's functional role in various mechanisms of cancer and introspection on the contradictory roles of miR-29.
Collapse
|
27
|
Fujita Y, Taguri M, Yamazaki K, Tsurutani J, Sakai K, Tsushima T, Nagase M, Tamagawa H, Ueda S, Tamura T, Tsuji Y, Murata K, Taira K, Denda T, Moriwaki T, Funai S, Nakajima TE, Muro K, Tsuji A, Yoshida M, Suyama K, Kurimoto T, Sugimoto N, Baba E, Seki N, Sato M, Shimura T, Boku N, Hyodo I, Yamanaka T, Nishio K. aCGH Analysis of Predictive Biomarkers for Response to Bevacizumab plus Oxaliplatin- or Irinotecan-Based Chemotherapy in Patients with Metastatic Colorectal Cancer. Oncologist 2018; 24:327-337. [PMID: 30425180 DOI: 10.1634/theoncologist.2018-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The randomized phase III study (WJOG4407G) showed equivalent efficacy between FOLFOX and FOLFIRI in combination with bevacizumab as the first-line treatment for metastatic colorectal cancer (mCRC). We studied whole genome copy number profiles using array-based comparative genomic hybridization (aCGH) analysis of tumor tissue samples obtained in this study. The aim of this study was to identify gene copy number alterations that could aid in selecting either FOLFOX or FOLFIRI in combination with bevacizumab for patients with mCRC. MATERIALS AND METHODS DNA was purified from 154 pretreatment formalin-fixed paraffin-embedded tissue samples (75 from the FOLFOX arm and 79 from the FOLFIRI arm) of 395 patients enrolled in the WJOG4407G trial and analyzed by aCGH. Genomic regions greater than 1.2-fold were regarded as copy number gain (CNG). RESULTS Patient characteristics between the treatment arms were well balanced except for tumor laterality (left side; 64% in FOLFOX arm and 80% in FOLFIRI arm, p = .07). FOLFIRI showed a trend toward better response rate (RR), progression-free survival (PFS) and overall survival (OS) than FOLFOX in the patients with CNG of chromosome 8q24.1 (Fisher's exact test, p = .134 for RR; interaction test, p = .102 for PFS and p = .003 for OS) and 8q24.2 (Fisher's exact test, p = .179 for RR; interaction test, p = .144 for PFS and p = .002 for OS). CONCLUSION Chromosome 8q24.1-q24.2 may contain genes that could potentially serve as predictive markers for selecting either FOLFOX or FOLFIRI in combination with bevacizumab for treatment of patients with mCRC. IMPLICATIONS FOR PRACTICE Bevacizumab has been used as a standard first-line treatment for patients with metastatic colorectal cancer (mCRC) in combination with either oxaliplatin-based or irinotecan-based chemotherapy. Until now, there has been no predictive marker to choose between the two combination chemotherapies. This array-based comparative genomic hybridization analysis revealed that the difference in therapeutic effect between the two combination chemotherapies is prominent in patients with mCRC with gene copy number gain in chromosome 8p24.1-p24.2. Such patients showed more favorable response and survival when treated with irinotecan-based combination chemotherapy. Overlapping genes commonly found in this region may be predictive biomarkers of the efficacy of the combination chemotherapy with bevacizumab.
Collapse
Affiliation(s)
- Yoshihiko Fujita
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masataka Taguri
- Department of Biostatistics, Yokohama City University School of Medicine, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Junji Tsurutani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takahiro Tsushima
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Michitaka Nagase
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Hiroshi Tamagawa
- Department of Surgery, Osaka General Medical Center, Osaka, Japan
| | - Shinya Ueda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takao Tamura
- Department of Medical Oncology, Nara Hospital Kindai University Faculty of Medicine, Ikoma, Japan
| | - Yasushi Tsuji
- Department of Medical Oncology, Tonan Hospital, Sapporo, Japan
| | - Kohei Murata
- Department of Surgery, Suita Municipal Hospital, Suita, Japan
| | - Koichi Taira
- Department of Clinical Oncology, Osaka City General Hospital, Osaka, Japan
| | - Tadamichi Denda
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | | | - Sadao Funai
- Department of Surgery, Sakai Hospital Kindai University Faculty of Medicine, Sakai, Japan
| | - Takako Eguchi Nakajima
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Akihito Tsuji
- Department of Medical Oncology, Kochi Health Sciences Center, Kochi, Japan
| | - Motoki Yoshida
- Division of Cancer Chemotherapy Center, Osaka Medical College Hospital, Takatsuki, Japan
| | - Koichi Suyama
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Takuya Kurimoto
- Department of Gastrointestinal Oncology, Nagoya Kyoritsu Hospital, Nagoya, Japan
| | - Naotoshi Sugimoto
- Department of Clinical Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Eishi Baba
- Department of Comprehensive Clinical Oncology, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Nobuhiko Seki
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Mikio Sato
- Department of Gastroenterology and Hepatology, Ryugasaki Saiseikai Hospital, Ryugasaki, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Narikazu Boku
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Ichinosuke Hyodo
- Division of Gastroenterology, University of Tsukuba, Tsukuba, Japan
| | - Takeharu Yamanaka
- Department of Biostatistics, Yokohama City University School of Medicine, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
28
|
Bin X, Hongjian Y, Xiping Z, Bo C, Shifeng Y, Binbin T. Research progresses in roles of LncRNA and its relationships with breast cancer. Cancer Cell Int 2018; 18:179. [PMID: 30459529 PMCID: PMC6233376 DOI: 10.1186/s12935-018-0674-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
Some progresses have been made in research of long non-coding RNA (hereunder referred to as LncRNA) related to breast cancer. Lots of data about LncRNA transcription concerning breast cancer have been obtained from large-scale omics research (e.g. transcriptomes and chips). Some LncRNAs would become indices for detecting breast cancer and judging its development and prognosis. LncRNAs may affect genesis and development of breast cancer in multiple ways. Perhaps they could develop into potential targets for treating breast cancer if they are carcinogenic. Like those from other studies of breast cancer, many data gained from omics research remain to be validated by much experimental work. For instance, it is still necessary to demonstrate reliability of LncRNAs as indices for diagnosing breast cancer and judging its prognosis (particularly for various subtypes of breast cancer), effectiveness and feasibility of these genes for treating breast cancer as targets. In this paper, recent years’ literatures about LncRNAs which are related to breast cancer are summarized and sorted out to review the research progresses in relationships between LncRNAs and breast cancer.
Collapse
Affiliation(s)
- Xu Bin
- Department of Surgery, Zhejiang Rehabilitation Medical Center, Hangzhou, 310053 Zhejiang, China
| | - Yang Hongjian
- 2Department of Breast Surgery, Zhejiang Cancer Hospital, Banshanqiao, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Zhang Xiping
- 2Department of Breast Surgery, Zhejiang Cancer Hospital, Banshanqiao, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Chen Bo
- 3Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, 310022 Zhejiang, China
| | - Yang Shifeng
- 3Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, 310022 Zhejiang, China
| | - Tang Binbin
- 4Second Outpatient Department of Traditional Chinese Internal Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012 Zhejiang, China
| |
Collapse
|
29
|
MiR-29b-1-5p is altered in BRCA1 mutant tumours and is a biomarker in basal-like breast cancer. Oncotarget 2018; 9:33577-33588. [PMID: 30323900 PMCID: PMC6173367 DOI: 10.18632/oncotarget.26094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Depletion of BRCA1 protein in mouse mammary glands results in defects in lactational development and increased susceptibility to mammary cancer. Extensive work has focussed on the role of BRCA1 in the normal breast and in the development of breast cancer, the cell of origin for BRCA1 tumours and the protein-coding genes altered in BRCA1 deficient cells. However, the role of non-coding RNAs in BRCA1-deficient cells is poorly understood. To evaluate miRNA expression in BRCA1 deficient mammary cells, RNA sequencing was performed on the mammary glands of Brca1 knockout mice. We identified 140 differentially expressed miRNAs, 9 of which were also differentially expressed in human BRCA1 breast tumours or familial non-BRCA1 patients and during normal gland development. We show that BRCA1 binds to putative cis-elements in promoter regions of the miRNAs with the potential to regulate their expression, and that four miRNAs (miR-29b-1-5p, miR-664, miR-16-2 and miR-744) significantly stratified the overall survival of basal-like tumours. Importantly the prognostic value of miR-29b-1-5p was higher in significance than several commonly used clinical biomarkers. These results emphasise the role of Brca1 in modulating expression of miRNAs and highlights the potential for BRCA1 regulated miRNAs to be informative biomarkers associated with BRCA1 loss and survival in breast cancer.
Collapse
|
30
|
Jadideslam G, Ansarin K, Sakhinia E, Alipour S, Pouremamali F, Khabbazi A. The MicroRNA-326: Autoimmune diseases, diagnostic biomarker, and therapeutic target. J Cell Physiol 2018; 233:9209-9222. [PMID: 30078204 DOI: 10.1002/jcp.26949] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are uniquely regulated in healthy, inflamed, activated, cancerous, or other cells and tissues of a pathological state. Many studies confirm that immune dysregulation and autoimmune diseases with inflammation are correlated with various miRNA expression changes in targeted tissues and cells in innate or adaptive immunity. In this review, we will explain the history and classification of epigenetic changes. Next, we will describe the role of miRNAs changes, especially mir-326 in autoimmunity, autoinflammatory, and other pathological conditions. A systematic search of MEDLINE, Embase, and Cochrane Library was presented for all related studies from 1899 to 2017 with restrictions in the English language. In recent years, researchers have concentrated on mostly those roles of miRNA that are correlated with the inflammatory and anti-inflammatory process. Latest studies have proposed a fundamental pathogenic role in cancers and autoinflammatory diseases. Studies have described the role of microRNAs in autoimmunity and autoinflammatory diseases, cancers, and so on. The miRNA-326 expression plays a significant role in autoimmune and other types of diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Alipour
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| |
Collapse
|
31
|
Mandujano-Tinoco EA, García-Venzor A, Melendez-Zajgla J, Maldonado V. New emerging roles of microRNAs in breast cancer. Breast Cancer Res Treat 2018; 171:247-259. [PMID: 29948402 DOI: 10.1007/s10549-018-4850-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/03/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND MicroRNAs constitute a large family of non-coding RNAs, which actively participate in tumorigenesis by regulating a set of mRNAs of distinct signaling pathways. An altered expression of these molecules has been found in different tumorigenic processes of breast cancer, the most common type of cancer in the female population worldwide. PURPOSE The objective of this review is to discuss how miRNAs become master regulators in breast tumorigenesis. METHODS An integrative review of miRNAs and breast cancer literature from the last 5 years was done on PubMed. We summarize recent works showing that the defects on the biogenesis of miRNAs are associated with different breast cancer characteristics. Then, we show several examples that demonstrate the link between cellular processes regulated by miRNAs and the hallmarks of breast cancer. Finally, we examine the complexity in the regulation of these molecules as they are modulated by other non-coding RNAs and the clinical applications of miRNAs as they could serve as good diagnostic and classification tools. CONCLUSION The information presented in this review is important to encourage new directed studies that consider microRNAs as a good tool to improve the diagnostic and treatment alternatives in breast cancer.
Collapse
Affiliation(s)
- Edna Ayerim Mandujano-Tinoco
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico.,Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra". Calz., México-Xochimilco 289, Arenal de Guadalupe, 14389, Mexico, CDMX, Mexico
| | - Alfredo García-Venzor
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico
| | - Vilma Maldonado
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico.
| |
Collapse
|
32
|
Li W, Yi J, Zheng X, Liu S, Fu W, Ren L, Li L, Hoon DSB, Wang J, Du G. miR-29c plays a suppressive role in breast cancer by targeting the TIMP3/STAT1/FOXO1 pathway. Clin Epigenetics 2018; 10:64. [PMID: 29796115 PMCID: PMC5956756 DOI: 10.1186/s13148-018-0495-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022] Open
Abstract
Background miR-29c has been associated with the progression of many cancers. However, the function and mechanism of miR-29c have not been well investigated in breast cancers. Methods Real-time quantitative PCR was used to assess expression of miR-29c and DNMT3B mRNA. Western blot and immunochemistry were used to examine the expression of DNA methyltransferase 3B (DNMT3B) protein in breast cancer cells and tissues. The functional roles of miR-29c in breast cancer cells such as proliferation, migration, invasion, colony formation, and 3D growth were evaluated using MTT, transwell chambers, soft agar, and 3D Matrigel culture, respectively. In addition, the luciferase reporter assay was used to check if miR-29c binds the 3'UTR of DNMT3B. The effects of miR-29c on the DNMT3B/TIMP3/STAT1/FOXO1 pathway were also examined using Western blot and methyl-specific qPCR. The specific inhibitor of STAT1, fludarabine, was used to further check the mechanism of miR-29c function in breast cancer cells. Studies on cell functions were carried out in DNMT3B siRNA cell lines. Results The expression of miR-29c was decreased with the progression of breast cancers and was closely associated with an overall survival rate of patients. Overexpression of miR-29c inhibited the proliferation, migration, invasion, colony formation, and growth in 3D Matrigel while knockdown of miR-29c promoted these processes in breast cancer cells. In addition, miR-29c was found to bind 3'UTR of DNMT3B and inhibits the expression of DNMT3B, which was elevated in breast cancers. Moreover, the protein level of TIMP3 was reduced whereas methylation of TIMP3 was increased in miR-29c knockdown cells compared to control. On the contrary, the protein level of TIMP3 was increased whereas methylation of TIMP3 was reduced in miR-29c-overexpressing cells compared to control. Knockdown of DNMT3B reduced the proliferation, migration, and invasion of breast cancer cell lines. Finally, our results showed that miR-29c exerted its function in breast cancers by regulating the TIMP3/STAT1/FOXO1 pathway. Conclusion The results suggest that miR-29c plays a significant role in suppressing the progression of breast cancers and that miR-29c may be used as a biomarker of breast cancers.
Collapse
Affiliation(s)
- Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, 100730 China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Shiwei Liu
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan, 030002 Shanxi China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Li Li
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI) at Providence Saint John’s Health Center, Santa Monica, CA 90404 USA
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
33
|
Bai F, Jiu M, You Y, Feng Y, Xin R, Liu X, Mo L, Nie Y. miR‑29a‑3p represses proliferation and metastasis of gastric cancer cells via attenuating HAS3 levels. Mol Med Rep 2018; 17:8145-8152. [PMID: 29693123 PMCID: PMC5983988 DOI: 10.3892/mmr.2018.8896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/03/2018] [Indexed: 12/30/2022] Open
Abstract
MicroRNA-29a (miR-29a) has recently been in the spotlight as a tumor suppressor whose encoding gene is frequently suppressed in cancers. The aim of the present study was to investigate the biological functions and underlying molecular mechanism by which miR-29a-3p suppresses gastric cancer peritoneum metastasis. Cell proliferation, colony-forming, wound healing and Transwell migration assays were performed in the present study. MiR-29a-3p expression was markedly decreased in gastric cancer cell lines with stronger metastatic potential. Silencing miR-29a-3p expression promoted gastric cancer cell proliferation, colony-forming, migration and invasion. By contrast, overexpression of miR-29a-3p inhibited these biological phenotypes. In addition, it was revealed that miR-29a-3p functioned through downregulating hyaluronan synthase 3 expression. Collectively, dysregulated miR-29a-3p expression in gastric cancer cells was associated with malignant properties primarily relevant to migration and metastasis. The results suggest that miR-29a-3p may be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Feihu Bai
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Mengna Jiu
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shanxi 725000, P.R. China
| | - Yanjie You
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yaning Feng
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Ruijuan Xin
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Xiaogang Liu
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lirong Mo
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yongzhan Nie
- Department of Gasteroenterology, Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xi'an, Shanxi 710000, P.R. China
| |
Collapse
|
34
|
Li ZH, Xiong QY, Xu L, Duan P, Yang QO, Zhou P, Tu JH. miR-29a regulated ER-positive breast cancer cell growth and invasion and is involved in the insulin signaling pathway. Oncotarget 2018; 8:32566-32575. [PMID: 28427228 PMCID: PMC5464809 DOI: 10.18632/oncotarget.15928] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Abstract
Increasing amounts of evidence show that insulin can activate different insulin signaling pathways to promote breast cancer growth and invasion. miR-29a plays crucial roles in decreasing glucose-stimulated insulin secretion, as well as in regulating breast cancer cell proliferation and EMT. However, the mechanism responsible for the regulatory effects of miR-29a on breast cancer growth and invasion and the relationship between these effects and insulin signaling remains unclear. Herein, we showed that human insulin increased miR-29a expression in ER-positive breast cancer cells and that miR-29a facilitated the ability of insulin to promote breast cancer cell proliferation and migration. We found that miR-29a-induced cell proliferation and metastasis acceleration occurred primarily through ERK phosphorylation. The IGF-1R is the upstream target gene of miR-29a, while CDC42 and p85α are the downstream target genes of miR-29a. These results have provided us with information regarding the molecular mechanisms by which hyperinsulinemia promotes breast cancer occurrence and development and thus leads to a poor prognosis in breast cancer patients and indicate that miR-29a plays an important role in breast cancer development and invasion.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases in Jiangxi Province, Nanchang, JiangXi 330009, People's Republic of China
| | - Qiu-Yun Xiong
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases in Jiangxi Province, Nanchang, JiangXi 330009, People's Republic of China
| | - Liang Xu
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases in Jiangxi Province, Nanchang, JiangXi 330009, People's Republic of China
| | - Peng Duan
- Department of Endocrinology, The Third Hospital of Nanchang City, Nanchang Key Laboratory of Diabetes, Nanchang, JiangXi 330009, People's Republic of China
| | - Qianwen Ou Yang
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases in Jiangxi Province, Nanchang, JiangXi 330009, People's Republic of China
| | - Ping Zhou
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases in Jiangxi Province, Nanchang, JiangXi 330009, People's Republic of China
| | - Jian-Hong Tu
- Pathology Department, The Third Hospital of Nanchang City, JiangXi Breast Specialist Hospital, Nanchang, JiangXi 330009, People's Republic of China
| |
Collapse
|
35
|
Chuang TD, Khorram O. Regulation of Cell Cycle Regulatory Proteins by MicroRNAs in Uterine Leiomyoma. Reprod Sci 2018; 26:250-258. [PMID: 29642801 DOI: 10.1177/1933719118768692] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The objective of this study was to determine whether miR-93, miR-29c, and miR-200c, which we previously reported to be downregulated in leiomyomas, target cell cycle regulatory proteins that influence cell proliferation. Based on TargetScan algorithm 3 cell cycle regulatory proteins namely, E2F transcription factor 1 (E2F1), Cyclin D1 (CCND1) and CDK2 which were predicted to be targets of these miRNAs were further analyzed. In 30 hysterectomy specimens, we found the expression of E2F1 and CCND1 messenger RNA (mRNA) was increased in leiomyoma as compared to matched myometrium, with no significant changes in CDK2 mRNA levels. There was a significant increase in the abundance of all 3 proteins in leiomyoma in comparison with matched myometrium. Using luciferase reporter assay, we demonstrated E2F1 and CCND1 are targets of miR-93 and CDK2 is a target of miR-29c and miR-200c. We confirmed these findings through transfection studies in which transfection of primary leiomyoma cells with miR-93 resulted in a significant decrease in the expression of E2F1 and CCND1 mRNA and protein levels, whereas knockdown of miR-93 had the opposite effect. Similarly, overexpression of miR-29c and miR-200c in leiomyoma cells inhibited the expression of CDK2 protein and mRNA, whereas knockdown of this microRNAs (miRNA) had the opposite effect. Transfection of miR-29c, miR-200c, and miR-93 in primary leiomyoma cells resulted in a time-dependent inhibition of cell proliferation and cell motility. These results collectively indicate that the 3 miRNAs known to be downregulated in fibroid tumors are critical in regulation of cell proliferation because of their effects on 3 key cell cycle regulatory proteins, which are overexpressed in uterine leiomyomas.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- 1 Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA-Biomed Research Institute, Torrance, CA, USA
| | - Omid Khorram
- 1 Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA-Biomed Research Institute, Torrance, CA, USA
| |
Collapse
|
36
|
Dreyer FS, Cantone M, Eberhardt M, Jaitly T, Walter L, Wittmann J, Gupta SK, Khan FM, Wolkenhauer O, Pützer BM, Jäck HM, Heinzerling L, Vera J. A web platform for the network analysis of high-throughput data in melanoma and its use to investigate mechanisms of resistance to anti-PD1 immunotherapy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2315-2328. [PMID: 29410200 DOI: 10.1016/j.bbadis.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Abstract
Cellular phenotypes are established and controlled by complex and precisely orchestrated molecular networks. In cancer, mutations and dysregulations of multiple molecular factors perturb the regulation of these networks and lead to malignant transformation. High-throughput technologies are a valuable source of information to establish the complex molecular relationships behind the emergence of malignancy, but full exploitation of this massive amount of data requires bioinformatics tools that rely on network-based analyses. In this report we present the Virtual Melanoma Cell, an online tool developed to facilitate the mining and interpretation of high-throughput data on melanoma by biomedical researches. The platform is based on a comprehensive, manually generated and expert-validated regulatory map composed of signaling pathways important in malignant melanoma. The Virtual Melanoma Cell is a tool designed to accept, visualize and analyze user-generated datasets. It is available at: https://www.vcells.net/melanoma. To illustrate the utilization of the web platform and the regulatory map, we have analyzed a large publicly available dataset accounting for anti-PD1 immunotherapy treatment of malignant melanoma patients.
Collapse
|
37
|
Song D, Zhao J, Su C, Jiang Y, Hou J. Etoposide induced NMI promotes cell apoptosis by activating the ARF-p53 signaling pathway in lung carcinoma. Biochem Biophys Res Commun 2018; 495:368-374. [DOI: 10.1016/j.bbrc.2017.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
|
38
|
Xie T, Liang J, Geng Y, Liu N, Kurkciyan A, Kulur V, Leng D, Deng N, Liu Z, Song J, Chen P, Noble PW, Jiang D. MicroRNA-29c Prevents Pulmonary Fibrosis by Regulating Epithelial Cell Renewal and Apoptosis. Am J Respir Cell Mol Biol 2017; 57:721-732. [PMID: 28799781 DOI: 10.1165/rcmb.2017-0133oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Successful repair and renewal of alveolar epithelial cells (AECs) are critical in prohibiting the accumulation of myofibroblasts in pulmonary fibrogenesis. MicroRNAs (miRNAs) are multifocal regulators involved in lung injury and repair. However, the contribution of miRNAs to AEC2 renewal and apoptosis is incompletely understood. We report that miRNA-29c (miR-29c) expression is lower in AEC2s of individuals with idiopathic pulmonary fibrosis than in healthy lungs. Epithelial cells overexpressing miR-29c show higher proliferative rates and viability. miR-29c protects epithelial cells from apoptosis by targeting forkhead box O3a (Foxo3a). Both overexpression of miR-29c conventionally and AEC2s specifically lead to less fibrosis and better recovery in vivo. Furthermore, deficiency of miR-29c in AEC2s results in higher apoptosis and reduced epithelial renewal. Interestingly, a gene network including a subset of apoptotic genes was coregulated by both Toll-like receptor 4 and miR-29c. Taken together, miR-29c maintains epithelial integrity and promotes recovery from lung injury, thereby attenuating lung fibrosis in mice.
Collapse
Affiliation(s)
- Ting Xie
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jiurong Liang
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yan Geng
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ningshan Liu
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Adrianne Kurkciyan
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Vrishika Kulur
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dong Leng
- 2 Clinical Laboratory and Laboratory Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Nan Deng
- 3 Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Zhenqiu Liu
- 3 Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Jianbo Song
- 4 Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter Chen
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Paul W Noble
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dianhua Jiang
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
39
|
Wang J, Zou K, Feng X, Chen M, Li C, Tang R, Xuan Y, Luo M, Chen W, Qiu H, Qin G, Li Y, Zhang C, Xiao B, Kang L, Kang T, Huang W, Yu X, Wu X, Deng W. Downregulation of NMI promotes tumor growth and predicts poor prognosis in human lung adenocarcinomas. Mol Cancer 2017; 16:158. [PMID: 29025423 PMCID: PMC5639741 DOI: 10.1186/s12943-017-0705-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/12/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND N-myc (and STAT) interactor (NMI) plays vital roles in tumor growth, progression, and metastasis. In this study, we identified NMI as a potential tumor suppressor in lung cancer and explored its molecular mechanism involved in lung cancer progression. METHODS Human lung cancer cell lines and a mouse xenograft model was used to study the effect of NMI on tumor growth. The expression of NMI, COX-2 and relevant signaling proteins were examined by Western blot. Tissue microarray immunohistochemical analysis was performed to assess the correlation between NMI and COX-2 expression in lung cancer patients. RESULTS NMI was highly expressed in normal lung cells and tissues, but lowly expressed in lung cancer cells and tissues. Overexpression of NMI induced apoptosis, suppressed lung cancer cell growth and migration, which were mediated by up-regulation of the cleaved caspase-3/9 and down-regulation of phosphorylated PI3K/AKT, MMP2/MMP9, β-cadherin, and COX-2/PGE2. In contrast, knockdown of NMI promoted lung cancer cell colony formation and migration, which were correlated with the increased expression of phosphorylated PI3K/AKT, MMP2/MMP9, β-cadherin and COX-2/PGE2. Further study showed that NMI suppressed COX-2 expression through inhibition of the p50/p65 NF-κB acetylation mediated by p300. The xenograft lung cancer mouse models also confirmed the NMI-mediated suppression of tumor growth by inhibiting COX-2 signaling. Moreover, tissue microarray immunohistochemical analysis of lung adenocarcinomas also demonstrated a negative correlation between NMI and COX-2 expression. Kaplan-Meier analysis indicated that the patients with high level of NMI had a significantly better prognosis. CONCLUSIONS Our study showed that NMI suppressed tumor growth by inhibiting PI3K/AKT, MMP2/MMP9, COX-2/PGE2 signaling pathways and p300-mediated NF-κB acetylation, and predicted a favorable prognosis in human lung adenocarcinomas, suggesting that NMI was a potential tumor suppressor in lung cancer.
Collapse
Affiliation(s)
- Jingshu Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kun Zou
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xu Feng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Cong Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ranran Tang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Xuan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Meihua Luo
- Shunde Hospital, Southern Medical University, Foshan, China
| | - Wangbing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Qiu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ge Qin
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yixin Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Binyi Xiao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Lan Kang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Xinfa Yu
- Shunde Hospital, Southern Medical University, Foshan, China.
| | - Xiaojun Wu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China. .,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China.
| |
Collapse
|
40
|
Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017; 8:14089-14106. [PMID: 27793042 PMCID: PMC5355165 DOI: 10.18632/oncotarget.12923] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence has indicated microRNA (miR) dysregulation and the Wnt/β-catenin signaling pathway jointly drive carcinogenesis, cancer metastasis, and drug-resistance. The current review will focus on the role of the crosstalk between miRs and the Wnt/β-catenin signaling pathway in cancer development. MiRs were found to activate or inhibit the canonical Wnt pathway at various steps. On the other hand, Wnt activation increases expression of miR by directly binding to its promoter and activating transcription. Moreover, there are mutual feedback loops between some miRs and the Wnt/β-catenin signaling pathway. Clinical trials of miR-based therapeutic agents are investigated for solid and hematological tumors, however, challenges concerning low bioavailability and possible side effects must be overcome before the final clinical application. This review will describe current understanding of miR crosstalk with the Wnt/β-catenin signaling cascade. Better understanding of the regulatory network will provide insight into miR-based therapeutic development.
Collapse
Affiliation(s)
- Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, People's Republic of China
| | - Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmim Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
41
|
NMI promotes hepatocellular carcinoma progression via BDKRB2 and MAPK/ERK pathway. Oncotarget 2017; 8:12174-12185. [PMID: 28077802 PMCID: PMC5355334 DOI: 10.18632/oncotarget.14556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/24/2016] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and aggressive malignant tumors. The involvement of N-myc (and STAT) interactor (NMI) and its possible functional mechanisms in HCC progression still remain to be elucidated. In this study, we found that NMI was overexpressed in metastatic HCC cell lines compared with non-metastatic ones; and the expression levels of NMI in the HCC samples with metastasis were higher than that in the non-metastatic specimens. Furthermore, NMI depletion significantly decreased HCC cell proliferation and invasiveness in vitro, and also inhibited tumor growth and lung metastasis in vivo in nude mice models bearing human HCC. By contrast, NMI stable overexpression can enhance the malignant behaviors obviously. Moreover, we further verified that NMI promotes the expression of BDKRB2 and mediates the activation of MAPK/ERK signaling pathway according to the bidirectional perturbations of NMI expression in vivo or in vitro of HCC. Taken together, NMI is a pro-metastatic molecule and partially responsible for HCC tumor growth and motility. NMI could improve its downstream target BDKRB2 expression to induce ERK1/2 activation, and thereby further evoke malignant progression of HCC.
Collapse
|
42
|
Xu S, Kong D, Chen Q, Ping Y, Pang D. Oncogenic long noncoding RNA landscape in breast cancer. Mol Cancer 2017; 16:129. [PMID: 28738804 PMCID: PMC5525255 DOI: 10.1186/s12943-017-0696-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Background Few long noncoding RNAs (lncRNAs) that act as oncogenic genes in breast cancer have been identified. Methods Oncogenic lncRNAs associated with tumourigenesis and worse survival outcomes were examined and validated in Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), respectively. Then, the potential biological functions and expression regulation of these lncRNAs were studied via bioinformatics and genome data analysis. Moreover, progressive breast cancer subtype-specific lncRNAs were investigated via high-throughput sequencing in our cohort and TCGA validation. To elucidate the mechanisms of the regulation of these lncRNAs, genomic alterations from the TCGA, Broad, Sanger and BCCRC data, as well as epigenetic modifications from GEO data, were then applied and examined to meet this objective. Finally, cell proliferation assays, flow cytometry analyses and TUNEL assays were applied to validate the oncogenic roles of these lncRNAs in vitro. Results A cluster of oncogenic lncRNAs that was upregulated in breast cancer tissue and was associated with worse survival outcomes was identified. These oncogenic lncRNAs are involved in regulating immune system activation and the TGF-beta and Jak-STAT signalling pathways. Moreover, TINCR, LINC00511, and PPP1R26-AS1 were identified as subtype-specific lncRNAs associated with HER-2, triple-negative and luminal B subtypes of breast cancer, respectively. The up-regulation of these oncogenic lncRNAs is mainly caused by gene amplification in the genome in breast cancer and other solid tumours. Finally, the knockdown of TINCR, DSCAM-AS1 or HOTAIR inhibited breast cancer cell proliferation, increased apoptosis and inhibited cell cycle progression in vitro. Conclusions These findings enhance the landscape of known oncogenic lncRNAs in breast cancer and provide insights into their roles. This understanding may potentially aid in the comprehensive management of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0696-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Dejia Kong
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Qianlin Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.
| |
Collapse
|
43
|
Su J, Lu E, Lu L, Zhang C. MiR-29a-3p suppresses cell proliferation in laryngocarcinoma by targeting prominin 1. FEBS Open Bio 2017; 7:645-651. [PMID: 28469977 PMCID: PMC5407896 DOI: 10.1002/2211-5463.12199] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are known to play a regulatory role in various cancers including laryngocarcinoma. MiR‐29a‐3p is a potential tumor‐suppressive miRNA, but its function in laryngocarcinoma is unknown. The purpose of this study was to investigate the roles of miR‐29a‐3p in laryngocarcinoma. Prominin1 (PROM1) was predicted as a target gene of miR‐29a‐3p and this was verified using a luciferase reporter assay. Transfection of miR‐29a‐3p into two laryngocarcinoma cell lines indicated that miR‐29a‐3p could decrease cell proliferation and enhance the chemotherapy response by targeting PROM1. PROM1 expression was up‐regulated in the laryngocarcinoma cells when miR‐29a‐3p was down‐regulated. We found miR‐29a‐3p expression levels were lower in laryngocarcinoma tissues than in control tissues. We also found that miR‐29a‐3p expression was negatively correlated with PROM1 expression in laryngocarcinoma tissues. The study demonstrates that miR‐29a‐3p suppresses cell proliferation in laryngocarcinoma by targeting PROM1.
Collapse
Affiliation(s)
- Jili Su
- Department of Otorhinolaryngology, Head and Neck Surgery The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Eryong Lu
- Department of Otorhinolaryngology, Head and Neck Surgery The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Lijuan Lu
- Department of Otorhinolaryngology, Head and Neck Surgery The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Chao Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| |
Collapse
|
44
|
Xia W, Zhou J, Luo H, Liu Y, Peng C, Zheng W, Ma W. MicroRNA-32 promotes cell proliferation, migration and suppresses apoptosis in breast cancer cells by targeting FBXW7. Cancer Cell Int 2017; 17:14. [PMID: 28149200 PMCID: PMC5267379 DOI: 10.1186/s12935-017-0383-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs are a class of small non-coding RNAs that are involved in many important physiological and pathological processes by regulating gene expression negatively. The purpose of this study was to investigate the effect of miR-32 on cell proliferation, migration and apoptosis and to determine the functional connection between miR-32 and FBXW7 in breast cancer. Methods In this study, quantitative RT-PCR was used to evaluate the expression levels of miR-32 in 27 breast cancer tissues, adjacent normal breast tissues and human breast cancer cell lines. The biological functions of miR-32 in MCF-7 breast cancer cells were determined by cell proliferation, apoptosis assays and wound-healing assays. In addition, the regulation of FBXW7 by miR-32 was assessed by qRT-PCR, Western blot and luciferase reporter assays. Results MiR-32 was frequently overexpressed in breast cancer tissue samples and cell lines as was demonstrated by qRT-PCR. Moreover, the up-regulation of miR-32 suppressed apoptosis and promoted proliferation and migration, whereas down-regulation of miR-32 showed an opposite effect. Dual-luciferase reporter assays showed that miR-32 binds to the 3′-untranslated region of FBXW7, suggesting that FBXW7 is a direct target of miR-32. Western blot analysis showed that over-expression of miR-32 reduced FBXW7 protein level. Furthermore, an inverse correlation was found between the expressions of miR-32 and FBXW7 mRNA levels in breast cancer tissues. Knockdown of FBXW7 promoted proliferation and motility and suppressed apoptosis in MCF-7 cells. Conclusions Taken together, the present study suggests that miR-32 promotes proliferation and motility and suppresses apoptosis of breast cancer cells through targeting FBXW7.
Collapse
Affiliation(s)
- Wei Xia
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China.,Department of Clinical Laboratory, No.421 Hospital of PLA, Guangzhou, People's Republic of China
| | - JueYu Zhou
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - HaiBo Luo
- Department of Clinical Laboratory, No.421 Hospital of PLA, Guangzhou, People's Republic of China
| | - YunZhou Liu
- Department of Clinical Laboratory, No.421 Hospital of PLA, Guangzhou, People's Republic of China
| | - CanCan Peng
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - WenLing Zheng
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - WenLi Ma
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| |
Collapse
|
45
|
Muluhngwi P, Krishna A, Vittitow SL, Napier JT, Richardson KM, Ellis M, Mott JL, Klinge CM. Tamoxifen differentially regulates miR-29b-1 and miR-29a expression depending on endocrine-sensitivity in breast cancer cells. Cancer Lett 2016; 388:230-238. [PMID: 27986463 DOI: 10.1016/j.canlet.2016.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
Endocrine-resistance develops in ∼40% of breast cancer patients after tamoxifen (TAM) therapy. Although microRNAs are dysregulated in breast cancer, their contribution to endocrine-resistance is not yet understood. Previous microarray analysis identified miR-29a and miR-29b-1 as repressed by TAM in MCF-7 endocrine-sensitive breast cancer cells but stimulated by TAM in LY2 endocrine-resistant breast cancer cells. Here we examined the mechanism for the differential regulation of these miRs by TAM in MCF-7 versus TAM-resistant LY2 and LCC9 breast cancer cells and the functional role of these microRNAs in these cells. Knockdown studies revealed that ERα is responsible for TAM regulation of miR-29b-1/a transcription. We also demonstrated that transient overexpression of miR-29b-1/a decreased MCF-7, LCC9, and LY2 proliferation and inhibited LY2 cell migration and colony formation but did not sensitize LCC9 or LY2 cells to TAM. Furthermore, TAM reduced DICER1 mRNA and protein in LY2 cells, a known target of miR-29. Supporting this observation, anti-miR-29b-1 or anti-miR-29a inhibited the suppression of DICER by 4-OHT. These results suggest miR-29b-1/a has tumor suppressor activity in TAM-resistant cells and does not appear to play a role in mediating TAM resistance.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Abirami Krishna
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Stephany L Vittitow
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Joshua T Napier
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kirsten M Richardson
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Mackenzie Ellis
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Justin L Mott
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
46
|
Pei YF, Lei Y, Liu XQ. MiR-29a promotes cell proliferation and EMT in breast cancer by targeting ten eleven translocation 1. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2177-2185. [DOI: 10.1016/j.bbadis.2016.08.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 01/07/2023]
|
47
|
MicroRNA networks regulated by all-trans retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells. Oncotarget 2016; 6:13176-200. [PMID: 25961594 PMCID: PMC4537007 DOI: 10.18632/oncotarget.3759] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/04/2015] [Indexed: 12/31/2022] Open
Abstract
SKBR3-cells, characterized by ERBB2/RARA co-amplification, represent a subgroup of HER2+ breast-cancers sensitive to all-trans retinoic acid (ATRA) and Lapatinib. In this model, the two agents alone or in combination modulate the expression of 174 microRNAs (miRs). These miRs and predicted target-transcripts are organized in four interconnected modules (Module-1 to -4). Module-1 and Module-3 consist of ATRA/Lapatinib up-regulated and potentially anti-oncogenic miRs, while Module-2 contains ATRA/Lapatinib down-regulated and potentially pro-oncogenic miRs. Consistent with this, the expression levels of Module-1/-3 and Module-2 miRs are higher and lower, respectively, in normal mammary tissues relative to ductal-carcinoma-in-situ, invasive-ductal-carcinoma and metastases. This indicates associations between tumor-progression and the expression profiles of Module-1 to -3 miRs. Similar associations are observed with tumor proliferation-scores, staging, size and overall-survival using TCGA (The Cancer Genome Atlas) data. Forced expression of Module-1 miRs, (miR-29a-3p; miR-874-3p) inhibit SKBR3-cell growth and Module-3 miRs (miR-575; miR-1225-5p) reduce growth and motility. Module-2 miRs (miR-125a; miR-193; miR-210) increase SKBR3 cell growth, survival and motility. Some of these effects are of general significance, being replicated in other breast cancer cell lines representing the heterogeneity of this disease. Finally, our study demonstrates that HIPK2-kinase and the PLCXD1-phospholipase-C are novel targets of miR-193a-5p/miR-210-3p and miR-575/miR-1225-5p, respectively.
Collapse
|
48
|
Zhang M, Guo W, Qian J, Wang B. Negative regulation of CDC42 expression and cell cycle progression by miR-29a in breast cancer. Open Med (Wars) 2016; 11:78-82. [PMID: 28352771 PMCID: PMC5329802 DOI: 10.1515/med-2016-0015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 12/26/2022] Open
Abstract
Objective The inhibitory role of microRNA-29a (miR-29a) has been assessed in breast cancer cells. Herein, we analyze the underlying mechanisms of its role in cell cycle progression in breast cancer cells. Methods We applied real-time polymerase chain reaction (PCR) to detect the expression of miR-29 in breast cancer cell lines. Then one of the cell lines, MDA-MB-453, was transfected with mimics of miR-29a. The cell cycle was analyzed by fluorescence-activated cell sorting after staining the cells with propidium iodide. Real-time PCR, luciferase assay and western blot were used together to verify the regulation of the predicted target, cell division cycle 42 (CDC42) by miR-29a. Results MiR-29s were decreased in our selected mammary cell lines, among which miR-29a was the dominant isoform. Overexpression of miR-29a caused cell cycle arrest at the G0/G1 phase. We further found that miR-29a could target the expression of CDC42, which is a small GTPase associated with cell cycle progression. Conclusion We suggest that miR-29a exerts its tumor suppressor role in breast cancer cells partially by arresting the cell cycle through negative regulation of CDC42.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Breast Surgery, The First Affiliated Hospital of AnHui Medical University, AnHui province, 230032 China
- Department of Oncology Surgery, The First Affiliated Hospital of BengBu Medical College, AnHui province, 233000 China
| | - Wei Guo
- Department of Oncology Surgery, The First Affiliated Hospital of BengBu Medical College, AnHui province, 233000 China
| | - Jun Qian
- Department of Oncology Surgery, The First Affiliated Hospital of BengBu Medical College, AnHui province, 233000 China
| | - Benzhong Wang
- Department of Breast Surgery, The First Affiliated Hospital of AnHui Medical University, AnHui province, 230032 China
| |
Collapse
|
49
|
Hou J, Wang T, Xie Q, Deng W, Yang JY, Zhang SQ, Cai JC. N-Myc-interacting protein (NMI) negatively regulates epithelial-mesenchymal transition by inhibiting the acetylation of NF-κB/p65. Cancer Lett 2016; 376:22-33. [PMID: 27012186 DOI: 10.1016/j.canlet.2016.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/13/2023]
Abstract
The epithelial-mesenchymal transition (EMT) plays an essential role in embryonic development, wound healing, tissue regeneration, organ fibrosis, and tumor progression. However, the mechanisms underlying this process are poorly understood. Many signaling pathways, including the NF-κB signaling pathway, trigger EMT during development and differentiation. In the present study, we report that N-Myc interactor (NMI) inhibits EMT progression by suppressing transcriptional activities of NF-κB in human gastric cancer cells. We show that the expression of NMI is significantly reduced in invasive gastric cancer cells and gastric cancer tissues. Overexpression of NMI inhibited cell migration and invasion, and this inhibition was enhanced after TNF-α stimulation. Tumorigenicity assay in nude mice support the notion that NMI inhibits EMT in cancer cells. Mechanistically, NMI promotes the interaction between NF-κB/p65 and histone deacetylases (HDACs) and inhibits the acetylation and transcriptional activity of p65. The expression of p65 rescues NMI-mediated inhibition of EMT and the inhibition of the acetylation of p65 mediated by NMI is HDACs-dependent. Taken together, these findings suggest that NMI can suppress tumor invasion and metastasis by inhibiting NF-κB pathways, providing an alternative mechanism for EMT inhibition in stomach neoplasm.
Collapse
Affiliation(s)
- Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China; Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China; Xiehe Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China; Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China; Xiehe Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Qingqing Xie
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Weixian Deng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China; Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China
| | - James Y Yang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Si Qing Zhang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Jian-Chun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China; Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China; Xiehe Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
50
|
A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines. J Biotechnol 2016; 235:150-61. [PMID: 26993211 DOI: 10.1016/j.jbiotec.2016.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022]
Abstract
As Chinese Hamster Ovary (CHO) cells are the cell line of choice for the production of human-like recombinant proteins, there is interest in genetic optimization of host cell lines to overcome certain limitations in their growth rate and protein secretion. At the same time, a detailed understanding of these processes could be used to advantage by identification of marker transcripts that characterize states of performance. In this context, microRNAs (miRNAs) that exhibit a robust correlation to the growth rate of CHO cells were determined by analyzing miRNA expression profiles in a comprehensive collection of 46 samples including CHO-K1, CHO-S and CHO-DUKXB11, which were adapted to various culture conditions, and analyzed in different growth stages using microarrays. By applying Spearman or Pearson correlation coefficient criteria of>|0.6|, miRNAs with high correlation to the overall growth, or growth rates observed in exponential, serum-free, and serum-free exponential phase were identified. An overlap of twelve miRNAs common for all sample sets was revealed, with nine positively and three negatively correlating miRNAs. The here identified panel of miRNAs can help to understand growth regulation in CHO cells and contains putative engineering targets as well as biomarkers for cell lines with advantageous growth characteristics.
Collapse
|