1
|
Lino M, Garcia-Martin R, Muñoz VR, Ruiz GP, Nawaz A, Brandão BB, Dreyfus J, Pan H, Kahn CR. Multi-step regulation of microRNA expression and secretion into small extracellular vesicles by insulin. Cell Rep 2024; 43:114491. [PMID: 39002127 PMCID: PMC11363058 DOI: 10.1016/j.celrep.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024] Open
Abstract
Tissues release microRNAs (miRNAs) in small extracellular vesicles (sEVs) including exosomes, which can regulate gene expression in distal cells, thus acting as modulators of local and systemic metabolism. Here, we show that insulin regulates miRNA secretion into sEVs from 3T3-L1 adipocytes and that this process is differentially regulated from cellular expression. Thus, of the 53 miRNAs upregulated and 66 miRNAs downregulated by insulin in 3T3-L1 sEVs, only 12 were regulated in parallel in cells. Insulin regulated this process in part by phosphorylating hnRNPA1, causing it to bind to AU-rich motifs in miRNAs, mediating their secretion into sEVs. Importantly, 43% of insulin-regulated sEV-miRNAs are implicated in obesity and insulin resistance. These include let-7 and miR-103, which we show regulate insulin signaling in AML12 hepatocytes. Together, these findings demonstrate an important layer to insulin's regulation of adipose biology and provide a mechanism of tissue crosstalk in obesity and other hyperinsulinemic states.
Collapse
Affiliation(s)
- Marsel Lino
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ruben Garcia-Martin
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Vitor Rosetto Muñoz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gabriel Palermo Ruiz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Allah Nawaz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bruna Brasil Brandão
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jonathan Dreyfus
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Hui Pan
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Sameti P, Amini M, Oroojalian F, Baghay Esfandyari Y, Tohidast M, Rahmani SA, Azarbarzin S, Mokhtarzadeh A, Baradaran B. MicroRNA-425: A Pivotal Regulator Participating in Tumorigenesis of Human Cancers. Mol Biotechnol 2024; 66:1537-1551. [PMID: 37332071 DOI: 10.1007/s12033-023-00756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded regulatory RNAs that are shown to be dysregulated in a wide array of human cancers. MiRNAs play critical roles in cancer progression and function as either oncogenes or tumor suppressors through modulating various target genes. Therefore, they possess great potential as diagnostic and therapeutic targets for cancer detection and treatment. In particular, recent studies have illustrated that miR-425 is also dysregulated in various human malignancies and plays a fundamental role in cancer initiation and progression. miR-425 has been reported to function as a dual-role miRNA participating in the regulation of cellular processes, including metastasis, invasion, and cell proliferation by modulating multiple signaling pathways, such as TGF-β, Wnt, and P13K/AKT pathways. Therefore, regarding recent researches showing the high therapeutic potential of miR-425, in this review, we have noted the impact of its dysregulation on signaling pathways and various aspects of tumorigenesis in a variety of human cancers.
Collapse
Affiliation(s)
- Pouriya Sameti
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Abdo AI, Kopecki Z. Comparing Redox and Intracellular Signalling Responses to Cold Plasma in Wound Healing and Cancer. Curr Issues Mol Biol 2024; 46:4885-4923. [PMID: 38785562 PMCID: PMC11120013 DOI: 10.3390/cimb46050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive oxygen and nitrogen species (RONS) produced by CP affect biological processes directly or indirectly via the modification of cellular lipids, proteins, DNA, and intracellular signalling pathways. CP can be applied at lower levels for oxidative eustress to activate cell proliferation, motility, migration, and antioxidant production in normal cells, mainly potentiated by the unfolded protein response, the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-activated antioxidant response element, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which also activates nuclear factor-kappa B (NFκB). At higher CP exposures, inactivation, apoptosis, and autophagy of malignant cells can occur via the degradation of the PI3K/Akt and mitogen-activated protein kinase (MAPK)-dependent and -independent activation of the master tumour suppressor p53, leading to caspase-mediated cell death. These opposing responses validate a hormesis approach to plasma medicine. Clinical applications of CP are becoming increasingly realised in wound healing, while clinical effectiveness in tumours is currently coming to light. This review will outline advances in plasma medicine and compare the main redox and intracellular signalling responses to CP in wound healing and cancer.
Collapse
Affiliation(s)
- Adrian I. Abdo
- Richter Lab, Surgical Specialties, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Surgery, The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, STEM Academic Unit, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
4
|
Che N, Li M, Liu X, Cui CA, Gong J, Xuan Y. Macelignan prevents colorectal cancer metastasis by inhibiting M2 macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155144. [PMID: 37925889 DOI: 10.1016/j.phymed.2023.155144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/23/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) metastasis is a complicated process that not only involves tumor cells but also the effects of M2 type tumor-associated macrophages, a key component of the tumor microenvironment (TME), act a crucial role in cancer metastasis. Macelignan, an orally active lignan isolated from Myristica fragrans, possesses various beneficial biological activities, including anti-cancer effects, but its effect on macrophage polarization in the TME remains unknown. PURPOSE To evaluate the inhibitory potency and prospective mechanism of macelignan on M2 polarization of macrophages and CRC metastasis. METHODS The polarization and specific mechanism of M1 and M2 macrophage regulated by macelignan were determined by western blot, flow cytometry, immunofluorescence and network pharmacology. In vitro and in vivo function assays were performed to investigate the roles of macelignan in CRC metastasis. RESULTS Macelignan efficiently inhibited IL-4/13-induced polarization of M2 macrophages by suppressing the PI3K/AKT pathway in a reactive oxygen species (ROS)-dependent manner. The proportion of CD206+ M2 macrophages was elevated in patients with CRC liver metastasis. Furthermore, macelignan inhibited M2 macrophage-mediated metastasis of CRC cells in vitro and in vivo. Mechanistically, macelignan reduced secretion of IL-1β from M2 macrophages, which in turn blocked NF-κB p65 nuclear translocation and inhibited metastasis. CONCLUSION Macelignan suppressed macrophage M2 polarization via ROS-mediated PI3K/AKT signaling pathway, thus preventing IL-1β/NF-κB-dependent CRC metastasis. In the present study, we reveal a previously unrecognized mechanism of macelignan in the prevention of CRC metastasis and demonstrate its effectively and safely therapeutic potential in CRC treatment.
Collapse
Affiliation(s)
- Nan Che
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Mengxuan Li
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Xingzhe Liu
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Chun-Ai Cui
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Jie Gong
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Yanhua Xuan
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Pathology, Yanbian University College of Medicine, Yanji, China.
| |
Collapse
|
5
|
Shahbazi R, Yasavoli-Sharahi H, Alsadi N, Sharifzad F, Fang S, Cuenin C, Cahais V, Chung FFL, Herceg Z, Matar C. Lentinula edodes Cultured Extract and Rouxiella badensis subsp. acadiensis (Canan SV-53) Intake Alleviates Immune Deregulation and Inflammation by Modulating Signaling Pathways and Epigenetic Mechanisms. Int J Mol Sci 2023; 24:14610. [PMID: 37834058 PMCID: PMC10572597 DOI: 10.3390/ijms241914610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Puberty is a critical developmental period of life characterized by marked physiological changes, including changes in the immune system and gut microbiota development. Exposure to inflammation induced by immune stressors during puberty has been found to stimulate central inflammation and lead to immune disturbance at distant sites from the gut; however, its enduring effects on gut immunity are not well explored. Therefore, in this study, we used a pubertal lipopolysaccharides (LPS)-induced inflammation mouse model to mimic pubertal exposure to inflammation and dysbiosis. We hypothesized that pubertal LPS-induced inflammation may cause long-term dysfunction in gut immunity by enduring dysregulation of inflammatory signaling and epigenetic changes, while prebiotic/probiotic intake may mitigate the gut immune system deregulation later in life. To this end, four-week-old female Balb/c mice were fed prebiotics/probiotics and exposed to LPS in the pubertal window. To better decipher the acute and enduring immunoprotective effects of biotic intake, we addressed the effect of treatment on interleukin (IL)-17 signaling related-cytokines and pathways. In addition, the effect of treatment on gut microbiota and epigenetic alterations, including changes in microRNA (miRNA) expression and DNA methylation, were studied. Our results revealed a significant dysregulation in selected cytokines, proteins, and miRNAs involved in key signaling pathways related to IL-17 production and function, including IL-17A and F, IL-6, IL-1β, transforming growth factor-β (TGF-β), signal transducer and activator of transcription-3 (STAT3), p-STAT3, forkhead box O1 (FOXO1), and miR-145 in the small intestine of adult mice challenged with LPS during puberty. In contrast, dietary interventions mitigated the lasting adverse effects of LPS on gut immune function, partly through epigenetic mechanisms. A DNA methylation analysis demonstrated that enduring changes in gut immunity in adult mice might be linked to differentially methylated genes, including Lpb, Rorc, Runx1, Il17ra, Rac1, Ccl5, and Il10, involved in Th17 cell differentiation and IL-17 production and signaling. In addition, prebiotic administration prevented LPS-induced changes in the gut microbiota in pubertal mice. Together, these results indicate that following a healthy diet rich in prebiotics and probiotics is an optimal strategy for programming immune system function in the critical developmental windows of life and controlling inflammation later in life.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Farzaneh Sharifzad
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Sandra Fang
- Translational Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Wang Z, Xie W, Guan H. Diverse Functions of MiR-425 in Human Cancer. DNA Cell Biol 2023; 42:113-129. [PMID: 36796000 DOI: 10.1089/dna.2022.0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
miRNAs are a type of small endogenous noncoding RNA composed of 20-22 nucleotides that can regulate gene expression by targeting the 3' untranslated region of mRNA. Many investigations have discovered that miRNAs have a role in the development and progression of human cancer. Several aspects of tumor development are affected by miR-425, including growth, apoptosis, invasion, migration, epithelial-mesenchymal transition, and drug resistance. In this article, we discuss the properties and research development of miR-425, focusing on the regulation and function of miR-425 in various cancers. Furthermore, we discuss the clinical implications of miR-425. This review may broaden our horizon for better understanding the role of miR-425 as biomarkers and therapeutic targets in human cancer.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongzai Guan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Wu S, Huang J, Li Y, Lei M, Zhao L, Liu Z. Integrated analysis of immune parameters, miRNA-mRNA interaction, and immune genes expression in the liver of rainbow trout following infectious hematopoietic necrosis virus infection. Front Immunol 2022; 13:970321. [PMID: 36119061 PMCID: PMC9479325 DOI: 10.3389/fimmu.2022.970321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) is an important economical cold-water fish worldwide. However, infection with infectious hematopoietic necrosis virus (IHNV) has severely restricted the development of aquaculture and caused huge economic losses. Currently, little is known about the immune defense mechanisms of rainbow trout against IHNV. In this study, we detected the changes of immune parameters over different post-infection periods (6-, 12-, 24-, 48-, 72-, 96-, 120-, and 144 hours post-infection (hpi)), mRNA and miRNA expression profiles under 48 hpi (T48L) compared to control (C48L), and key immune-related genes expression patterns in rainbow trout liver following IHNV challenge through biochemical methods, RNA-seq, and qRT-PCR, and the function of miR-330-y was verified by overexpression and silencing in vitro and in vivo. The results revealed that alkaline phosphatase (AKP), alanine aminotransferase (ALT), catalase (CAT), and total superoxide dismutase (T-SOD) activities, and lysozyme (LZM) content showed significant peaks at 48 hpi, whereas malondialdehyde (MDA) content and aspartate aminotransferase (AST) activity decreased continuously during infection, and acid phosphatase (ACP) activity varied slightly. From RNA-seq, a total of 6844 genes and 86 miRNAs were differentially expressed, and numerous immune-related differentially expressed genes (DEGs) involved in RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, and antigen processing and presentation were significantly upregulated in T48Lm group, including IFIH1, DHX58, MAVS, TRAF3, IRF3, IRF7, MX1, TLR3, TLR8, MYD88, NOD1, NOD2, IL-8, CXCR1, CD209, CD83, and TAP1. Integrated analysis identified seven miRNAs (miR-425-x, miR-185-x, miR-338-x, miR-330-y, miR-361-x, miR-505-y, and miR-191-x) that target at least three key immune-related DEGs. Expression analysis showed that IFIH1, DHX58, IRF3, IRF7, MX1, TLR3, TLR8, and MYD88 showed a marked increase after 24 hpi during infection. Further research confirmed TAP1 as one of the targets of miR-330-y, overexpression of miR-330-y with mimics or agomir significantly reduced the expression levels of TAP1, IRF3, and IFN, and the opposite effects were obtained by inhibitor. These results facilitate in-depth understanding of the immune mechanisms in rainbow trout against IHNV.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Jinqiang Huang,
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Mingquan Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Lv Y, Lv Y, Wang Z, Yuan K, Zeng Y. Noncoding RNAs as sensors of tumor microenvironmental stress. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:224. [PMID: 35842651 PMCID: PMC9288030 DOI: 10.1186/s13046-022-02433-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment (TME) has been demonstrated to modulate the biological behavior of tumors intensively. Multiple stress conditions are widely observed in the TME of many cancer types, such as hypoxia, inflammation, and nutrient deprivation. Recently, accumulating evidence demonstrates that the expression levels of noncoding RNAs (ncRNAs) are dramatically altered by TME stress, and the dysregulated ncRNAs can in turn regulate tumor cell proliferation, metastasis, and drug resistance. In this review, we elaborate on the signal transduction pathways or epigenetic pathways by which hypoxia-inducible factors (HIFs), inflammatory factors, and nutrient deprivation in TME regulate ncRNAs, and highlight the pivotal roles of TME stress-related ncRNAs in tumors. This helps to clarify the molecular regulatory networks between TME and ncRNAs, which may provide potential targets for cancer therapy.
Collapse
Affiliation(s)
- Yue Lv
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yinghao Lv
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhen Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China. .,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China. .,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Chen Q, Tong M, Sun N, Yang Y, Cheng Y, Yi L, Wang G, Cao Z, Zhao Q, Cheng S. Integrated Analysis of miRNA-mRNA Expression in Mink Lung Epithelial Cells Infected With Canine Distemper Virus. Front Vet Sci 2022; 9:897740. [PMID: 35711811 PMCID: PMC9194998 DOI: 10.3389/fvets.2022.897740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023] Open
Abstract
Canine distemper (CD) caused by canine distemper virus (CDV) is one of the major infectious diseases in minks, bringing serious economic losses to the mink breeding industry. By an integrated analysis of microRNA (miRNA)-messenger RNA (mRNA), the present study analyzed the changes in the mink transcriptome upon CDV infection in mink lung epithelial cells (Mv. l. Lu cells) for the first time. A total of 4,734 differentially expressed mRNAs (2,691 upregulated and 2,043 downregulated) with |log2(FoldChange) |>1 and P-adj<0.05 and 181 differentially expressed miRNAs (152 upregulated and 29 downregulated) with |log2(FoldChange) |>2 and P-adj<0.05 were identified. Gene Ontology (GO) enrichment indicated that differentially expressed genes (DEGs) were associated with various biological processes and molecular function, such as response to stimulus, cell communication, signaling, cytokine activity, transmembrane signaling receptor activity and signaling receptor activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the combination of miRNA and mRNA was done for immune and inflammatory responses, such as Janus kinase (JAK)-signal transducer and activator (STAT) signaling pathway and nuclear factor (NF)-kappa B signaling pathway. The enrichment analysis of target mRNA of differentially expressed miRNA revealed that mir-140-5p and mir-378-12 targeted corresponding genes to regulate NF-kappa B signaling pathway. JAK-STAT signaling pathway could be modulated by mir-425-2, mir-139-4, mir-140-6, mir-145-3, mir-140-5p and mir-204-2. This study compared the influence of miRNA-mRNA expression in Mv. l. Lu cells before and after CDV infection by integrated analysis of miRNA-mRNA and analyzed the complex network interaction between virus and host cells. The results can help understand the molecular mechanism of the natural immune response induced by CDV infection in host cells.
Collapse
Affiliation(s)
- Qiang Chen
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Landscape Architecture, Changchun University, Changchun, China
| | - Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Na Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City, China
| | - Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yuening Cheng
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Li Yi
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Gaili Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Zhigang Cao
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Quan Zhao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- *Correspondence: Quan Zhao
| | - Shipeng Cheng
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
- Shipeng Cheng
| |
Collapse
|
10
|
Study on the Function and Mechanism of miR-585-3p Inhibiting the Progression of Ovarian Cancer Cells by Targeting FSCN1 to Block the MAPK Signaling Pathway. Anal Cell Pathol (Amst) 2022; 2022:1732365. [PMID: 35602576 PMCID: PMC9122712 DOI: 10.1155/2022/1732365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of death for women diagnosed with gynecological cancer. Studies have shown that dysregulated miRNA expression is related to various cancers, including OC. Here, we aimed to explore the biological function and mechanism of miR-585-3p in the occurrence and development of OC. The expression level of miR-585-3p was found to be low in OC tissues and cells. We analyzed the biological function of miR-585-3p in OC through in vitro cell experiments. The results indicated that overexpression of miR-585-3p inhibited the proliferation, invasion, and migration of SW626 cells, while low expression of miR-585-3p had the opposite effect in SKOV3 cells. We then screened the target genes of miR-585-3p through miRDB database and detected the expression of target genes in OC cells. FSCN1 was found to be most significantly upregulated in OC cells. Dual-luciferase reporter assays revealed FSCN1 as a potential target of miR-585-3p. Western blot analysis showed that miR-585-3p targeted FSCN1 to inhibit protein phosphorylation of ERK. In vivo animal experiments also confirmed that miR-585-3p targets FSCN1 to inhibit tumor growth and block the MAPK signaling pathway. In summary, miR-585-3p inhibits the proliferation, migration, and invasion of OC cells by targeting FSCN1, and its mechanism of action may be achieved by inhibiting the activation of the MAPK signaling pathway. miR-585-3p may serve as a potential biomarker and therapeutic target for OC.
Collapse
|
11
|
Filaly HE, Outlioua A, Medyouf H, Guessous F, Akarid K. Targeting IL-1β in patients with advanced Helicobacter pylori infection: a potential therapy for gastric cancer. Future Microbiol 2022; 17:633-641. [PMID: 35322705 DOI: 10.2217/fmb-2021-0242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is a causal factor of gastric cancer. Among the cytokines secreted during this infection, IL-1β is highly associated with promotion and progression of gastric cancer. On the therapeutic front, eradication of H. pylori was thought to be efficient to restore gastric homeostasis. However, successful H. pylori eradication in patients with advanced stages (intestinal metaplasia) failed to diminish inflammation that is due to heightened Th17 response and elevated IL-1β levels. In fact, association between these two components was established, suggesting that IL-1β is a critical target in these cases. In this review, we will discuss the functional relevance of IL-1β in advanced H. pylori infection and how its targeting may bring clinical benefit.
Collapse
Affiliation(s)
- Hajar El Filaly
- Health & Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, 20100, Morocco
| | - Ahmed Outlioua
- Health & Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, 20100, Morocco
| | - Hind Medyouf
- Institute for Tumor Biology & Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, 60487, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, 60487, Germany.,German Cancer Consortium (DKTK) & German Cancer Research Center (DKFZ), Heidelberg, 69126, Germany
| | - Fadila Guessous
- Department of Biological Sciences, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, 20000, Morocco.,Department of Microbiology, Immunology & Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Khadija Akarid
- Health & Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, 20100, Morocco
| |
Collapse
|
12
|
Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers (Basel) 2022; 14:cancers14051221. [PMID: 35267528 PMCID: PMC8908969 DOI: 10.3390/cancers14051221] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Epigenetics encompasses all the modifications that occur within cells that are independent of gene mutations. The environment is the main influencer of these alterations. It is well known that a proinflammatory environment can promote and sustain the carcinogenic process and that this environment induces epigenetic alterations. In this review, we will report how a proinflammatory microenvironment that encircles the tumor core can be responsible for the induction of epigenetic drift. Abstract Epigenetics encompasses a group of dynamic, reversible, and heritable modifications that occur within cells that are independent of gene mutations. These alterations are highly influenced by the environment, from the environment that surrounds the human being to the internal microenvironments located within tissues and cells. The ways that pigenetic modifications promote the initiation of the tumorigenic process have been widely demonstrated. Similarly, it is well known that carcinogenesis is supported and prompted by a strong proinflammatory environment. In this review, we introduce our report of a proinflammatory microenvironment that encircles the tumor core but can be responsible for the induction of epigenetic drift. At the same time, cancer cells can alter their epigenetic profile to generate a positive loop in the promotion of the inflammatory process. Therefore, an in-depth understanding of the epigenetic networks between the tumor microenvironment and cancer cells might highlight new targetable mechanisms that could prevent tumor progression.
Collapse
|
13
|
NF-κB in Gastric Cancer Development and Therapy. Biomedicines 2021; 9:biomedicines9080870. [PMID: 34440074 PMCID: PMC8389569 DOI: 10.3390/biomedicines9080870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is considered one of the most common causes of cancer-related death worldwide and, thus, a major health problem. A variety of environmental factors including physical and chemical noxae, as well as pathogen infections could contribute to the development of gastric cancer. The transcription factor nuclear factor kappa B (NF-κB) and its dysregulation has a major impact on gastric carcinogenesis due to the regulation of cytokines/chemokines, growth factors, anti-apoptotic factors, cell cycle regulators, and metalloproteinases. Changes in NF-κB signaling are directed by genetic alterations in the transcription factors themselves, but also in NF-κB signaling molecules. NF-κB actively participates in the crosstalk of the cells in the tumor micromilieu with divergent effects on the heterogeneous tumor cell and immune cell populations. Thus, the benefits/consequences of therapeutic targeting of NF-κB have to be carefully evaluated. In this review, we address recent knowledge about the mechanisms and consequences of NF-κB dysregulation in gastric cancer development and therapy.
Collapse
|
14
|
Exploring the Crosstalk between Inflammation and Epithelial-Mesenchymal Transition in Cancer. Mediators Inflamm 2021; 2021:9918379. [PMID: 34220337 PMCID: PMC8219436 DOI: 10.1155/2021/9918379] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor cells undergo invasion and metastasis through epithelial-to-mesenchymal cell transition (EMT) by activation of alterations in extracellular matrix (ECM) protein-encoding genes, enzymes responsible for the breakdown of ECM, and activation of genes that drive the transformation of the epithelial cell to the mesenchymal type. Inflammatory cytokines such as TGFβ, TNFα, IL-1, IL-6, and IL-8 activate transcription factors such as Smads, NF-κB, STAT3, Snail, Twist, and Zeb that drive EMT. EMT drives primary tumors to metastasize in different parts of the body. T and B cells, dendritic cells (DCs), and tumor-associated macrophages (TAMs) which are present in the tumor microenvironment induce EMT. The current review elucidates the interaction between EMT tumor cells and immune cells under the microenvironment. Such complex interactions provide a better understanding of tumor angiogenesis and metastasis and in defining the aggressiveness of the primary tumors. Anti-inflammatory molecules in this context may open new therapeutic options for the better treatment of tumor progression. Targeting EMT and the related mechanisms by utilizing natural compounds may be an important and safe therapeutic alternative in the treatment of tumor growth.
Collapse
|
15
|
Regulatory effects of IL-1β in the interaction of GBM and tumor-associated monocyte through VCAM-1 and ICAM-1. Eur J Pharmacol 2021; 905:174216. [PMID: 34058204 DOI: 10.1016/j.ejphar.2021.174216] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor with high inflammation. GBM cells infiltrate microglia and macrophages and are surrounded by pro-inflammatory cytokines. Interleukin (IL)-1β, which is abundantly expressed in the tumor microenvironment, is involved in tumor progression. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mediate cell-cell interactions, and these cell adhesion molecules (CAMs) can be regulated by cytokines in immune cells or cancer cells in the inflammatory tumor microenvironment. In this study, we found that ICAM-1 and VCAM-1 expression was induced when GBM cells were treated with IL-1β, and that adhesive interaction between monocytes and GBM cells increased accordingly. The levels of soluble CAMs (sICAM-1 and sVCAM-1) were also increased in the supernatants induced by IL-1β. Furthermore, the conditioned media contained sICAM-1 and sVCAM-1, which further promoted IL-6 and CCL2 expression in differentiated macrophages. IL-1β downregulated Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1) in GBM. The expression of ICAM-1 and VCAM-1 was regulated by p38, AKT, and NF-κB signaling pathways, which were modulated by SHP-1 signaling. The present study suggests that IL-1β-induced protein expression of ICAM-1 and VCAM-1 in GBM may modulate the adhesive interaction between GBM and monocytes. In addition, IL-1β also induced the soluble form of ICAM-1 and VCAM-1 in GBM, which plays a key role in the regulation of tumor-associated monocyte/macrophage polarization.
Collapse
|
16
|
Chen R, Yang M, Huang W, Wang B. Cascades between miRNAs, lncRNAs and the NF-κB signaling pathway in gastric cancer (Review). Exp Ther Med 2021; 22:769. [PMID: 34055068 PMCID: PMC8145527 DOI: 10.3892/etm.2021.10201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a common digestive tract malignancy that is mainly treated with surgery combined with perioperative adjuvant chemoradiotherapy and biological targeted therapy. However, the diagnosis rate of early gastric cancer is low and both postoperative recurrence and distant metastasis are thorny problems. Therefore, it is essential to study the pathogenesis of gastric cancer and search for more effective means of treatment. The nuclear factor-κB (NF-κB) signaling pathway has an important role in the occurrence and development of gastric cancer and recent studies have revealed that microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are able to regulate this pathway through a variety of mechanisms. Understanding these interrelated molecular mechanisms is helpful in guiding improvements in gastric cancer treatment. In the present review, the functional associations between miRNAs, lncRNAs and the NF-κB signaling pathway in the occurrence, development and prognosis of gastric cancer were discussed. It was concluded that miRNAs and lncRNAs have complex relations with the NF-κB signaling pathway in gastric cancer. miRNAs/target genes/NF-κB/target proteins, signaling molecules/NF-κB/miRNAs/target genes, lncRNAs/miRNAs/NF-κB/genes or mRNAs, lncRNAs/target genes/NF-Κb/target proteins, and lncRNAs/NF-κB/target proteins cascades are all important factors in the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Risheng Chen
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mingxiu Yang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiguo Huang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Baiyun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
17
|
Guo Z, Ye H, Zheng X, Yin W, He J. Extracellular vesicle-encapsulated microRNA-425-derived from drug-resistant cells promotes non-small-cell lung cancer progression through DAPK1-medicated PI3K/AKT pathway. J Cell Physiol 2021; 236:3808-3820. [PMID: 33258116 DOI: 10.1002/jcp.30126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022]
Abstract
Investigations in the area of tumor-derived extracellular vesicles (EVs) open a new horizon in developing cancer biology and its potential as cancer biomarkers. Following this prospect, we aimed to identify that the role of successfully isolated EVs from drug-resistance cells in the progression of non-small-cell lung cancer (NSCLC). P-EVs and R-EVs secreted by A549 cells and drug-resistant A549-R cells respectively were extracted and characterized. The targeting relationship between miR-425 and MED1 was verified. Cell proliferation, invasion, migration and apoptosis after treatment of P-EVs, R-EVs, miR-425 inhibitor, miR-425 mimic, pcDNA-MED1, or phosphatidylinositol-3-kinase (PI3K)/AKT inhibitor LY294002 were detected. Furthermore, xenograft tumor in nude mice was established for further confirming our in vitro findings. P-EVs and R-EVs were successfully extracted and could be internalized by A549 cells. A549-R cells and R-EVs showed higher miR-425 expression compared with A549 cells and P-EVs, respectively. miR-425 delivered by R-EVs could promote the proliferation, migration, and invasion, while inhibit apoptosis of NSCLC cells. MED1 was the target gene of miR-425. EVs-encapsulated miR-425-derived from A549-R cells could promote the progression of NSCLC in vivo through regulating DAPK1-medicated PI3K/AKT pathway. Moreover, miR-425 delivered by R-EVs promoted tumorigenesis in vivo. Taken together, the result suggested that EVs-delivered miR-425-derived from A549-R cells promoted the progression of NSCLC through regulating DAPK1-medicated PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Zhihua Guo
- State Key Laboratory of Respiratory Disease, Department of Thoracic Surgery and Oncology, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huangyang Ye
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Xiaobin Zheng
- Department of Medical Thoracic Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Weiqiang Yin
- State Key Laboratory of Respiratory Disease, Department of Thoracic Surgery and Oncology, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, Department of Thoracic Surgery and Oncology, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Chhabra R, Rockfield S, Guergues J, Nadeau OW, Hill R, Stevens SM, Nanjundan M. Global miRNA/proteomic analyses identify miRNAs at 14q32 and 3p21, which contribute to features of chronic iron-exposed fallopian tube epithelial cells. Sci Rep 2021; 11:6270. [PMID: 33737539 PMCID: PMC7973504 DOI: 10.1038/s41598-021-85342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant transformation of fallopian tube secretory epithelial cells (FTSECs) is a key contributing event to the development of high-grade serous ovarian carcinoma (HGSOC). Our recent findings implicate oncogenic transformative events in chronic iron-exposed FTSECs, including increased expression of oncogenic mediators, increased telomerase transcripts, and increased growth/migratory potential. Herein, we extend these studies by implementing an integrated transcriptomic and mass spectrometry-based proteomics approach to identify global miRNA and protein alterations, for which we also investigate a subset of these targets to iron-induced functional alterations. Proteomic analysis identified > 4500 proteins, of which 243 targets were differentially expressed. Sixty-five differentially expressed miRNAs were identified, of which 35 were associated with the “top” proteomic molecules (> fourfold change) identified by Ingenuity Pathway Analysis. Twenty of these 35 miRNAs are at the 14q32 locus (encoding a cluster of 54 miRNAs) with potential to be regulated by DNA methylation and histone deacetylation. At 14q32, miR-432-5p and miR-127-3p were ~ 100-fold downregulated whereas miR-138-5p was 16-fold downregulated at 3p21 in chronic iron-exposed FTSECs. Combinatorial treatment with methyltransferase and deacetylation inhibitors reversed expression of these miRNAs, suggesting chronic iron exposure alters miRNA expression via epigenetic alterations. In addition, PAX8, an important target in HGSOC and a potential miRNA target (from IPA) was epigenetically deregulated in iron-exposed FTSECs. However, both PAX8 and ALDH1A2 (another IPA-predicted target) were experimentally identified to be independently regulated by these miRNAs although TERT RNA was partially regulated by miR-138-5p. Interestingly, overexpression of miR-432-5p diminished cell numbers induced by long-term iron exposure in FTSECs. Collectively, our global profiling approaches uncovered patterns of miRNA and proteomic alterations that may be regulated by genome-wide epigenetic alterations and contribute to functional alterations induced by chronic iron exposure in FTSECs. This study may provide a platform to identify future biomarkers for early ovarian cancer detection and new targets for therapy.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Owen W Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Robert Hill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
19
|
Weidle UH, Birzele F, Nopora A. microRNAs Promoting Growth of Gastric Cancer Xenografts and Correlation to Clinical Prognosis. Cancer Genomics Proteomics 2021; 18:1-15. [PMID: 33419892 DOI: 10.21873/cgp.20237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The annual death toll for gastric cancer is in the range of 700,000 worldwide. Even in patients with early-stage gastric cancer recurrence within five years has been observed after surgical resection and following chemotherapy with therapy-resistant features. Therefore, the identification of new targets and treatment modalities for gastric cancer is of paramount importance. In this review we focus on the role of microRNAs with documented efficacy in preclinical xenograft models with respect to growth of human gastric cancer cells. We have identified 31 miRs (-10b, -19a, -19b, -20a, -23a/b, -25, -27a-3p, -92a, -93, -100, -106a, -130a, -135a, -135b-5p, -151-5p, -187, -199-3p, -215, -221-3p, -224, -340a, -382, -421, -425, -487a, -493, -532-3p, -575, -589, -664a-3p) covering 26 different targets which promote growth of gastric cancer cells in vitro and in vivo as xenografts. Five miRs (miRs -10b, 151-5p, -187, 532-3p and -589) additionally have an impact on metastasis. Thirteen of the identified miRs (-19b, -20a/b, -25, -92a, -106a, -135a, -187, -221-3p, -340a, -421, -493, -575 and -589) have clinical impact on worse prognosis in patients.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| |
Collapse
|
20
|
Investigation of the miRNA and mRNA Coexpression Network and Their Prognostic Value in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8726567. [PMID: 33274225 PMCID: PMC7676931 DOI: 10.1155/2020/8726567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Purpose To identify pivotal differentially expressed miRNAs and genes and construct their regulatory network in hepatocellular carcinoma. Methods mRNA (GSE101728) and microRNA (GSE108724) microarray datasets were obtained from the NCBI Gene Expression Omnibus (GEO) database. Then, we identified the differentially expressed miRNAs and mRNAs. Sequentially, transcription factor enrichment and gene ontology (GO) enrichment analysis for miRNA were performed. Target genes of these differential miRNAs were obtained using packages in R language (R package multiMiR). After that, downregulated miRNAs were matched with target mRNAs which were upregulated, while upregulated miRNAs were paired with downregulated target mRNA using scripts written in Perl. An miRNA-mRNA network was constructed and visualized in Cytoscape software. For miRNAs in the network, survival analysis was performed. And for genes in the network, we did gene ontology (GO) and KEGG pathway enrichment analysis. Results A total of 35 miRNAs and 295 mRNAs were involved in the network. These differential genes were enriched in positive regulation of cell-cell adhesion, positive regulation of leukocyte cell-cell adhesion, and so on. Eight differentially expressed miRNAs were found to be associated with the OS of patients with HCC. Among which, miR-425 and miR-324 were upregulated while the other six, including miR-99a, miR-100, miR-125b, miR-145, miR-150, and miR-338, were downregulated. Conclusion In conclusion, these results can provide a potential research direction for further studies about the mechanisms of how miRNA affects malignant behavior in hepatocellular carcinoma.
Collapse
|
21
|
miR-425-5p Acts as a Molecular Marker and Promoted Proliferation, Migration by Targeting RNF11 in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6530973. [PMID: 33123581 PMCID: PMC7586158 DOI: 10.1155/2020/6530973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and dangerous malignant tumors in China, which causes a large number of deaths every year. MicroRNAs (miRNAs) dysfunction contributes to the malignant progression of tumors. The aim of our study was to investigate the relationship between the biological role of miR-425-5p and malignant progression of HCC. Our results showed that miR-425-5p expression was significantly upregulated in HCC tissues and closely related to the poor prognosis of HCC patients. The knockdown of miR-425-5p inhibited cell proliferation and migration. Further, we identified RNF11 as the downstream target gene of miR-425-5p. In addition, the rescue experiments showed that the upregulation of RNF11 could rescue the inhibitory effect of miR-425-5p on HCC. In general, miR-425-5p as an oncogene promotes the malignant development of HCC via RNF11 and serves as a molecular target for predicting the prognosis of HCC patients.
Collapse
|
22
|
Mishra SR, Mahapatra KK, Behera BP, Bhol CS, Praharaj PP, Panigrahi DP, Patra S, Singh A, Patil S, Dhiman R, Patra SK, Bhutia SK. Inflammasomes in cancer: Effect of epigenetic and autophagic modulations. Semin Cancer Biol 2020; 83:399-412. [PMID: 33039557 DOI: 10.1016/j.semcancer.2020.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Tumour-promoting inflammation is a critical hallmark in cancer development, and inflammasomes are well-known regulators of inflammatory processes within the tumour microenvironment. Different inflammasome components along with the adaptor, apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC), and the effector, caspase-1, have a significant influence on tumorigenesis but in a tissue-specific and stage-dependent manner. The downstream products of inflammasome activation, that is the proinflammatory cytokines such as IL-1β and IL-18, regulate tissue homeostasis and induce antitumour immune responses, but in contrast, they can also favour cancer growth and proliferation by directing various oncogenic signalling pathways in cancer cells. Moreover, different epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNAs, control inflammasomes and their components by regulating gene expression during cancer progression. Furthermore, autophagy, a master controller of cellular homeostasis, targets inflammasome-induced carcinogenesis by maintaining cellular homeostasis and removing potential cancer risk factors that promote inflammasome activation in support of tumorigenesis. Here, in this review, we summarize the effect of inflammasome activation in cancers and discuss the role of epigenetic and autophagic regulatory mechanisms in controlling inflammasomes. A proper understanding of the interactions among these key processes will be useful for developing novel therapeutic regimens for targeting inflammasomes in cancer.
Collapse
Affiliation(s)
- Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
23
|
Haig D, Mainieri A. The Evolution of Imprinted microRNAs and Their RNA Targets. Genes (Basel) 2020; 11:genes11091038. [PMID: 32899179 PMCID: PMC7564603 DOI: 10.3390/genes11091038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian genomes contain many imprinted microRNAs. When an imprinted miRNA targets an unimprinted mRNA their interaction may have different fitness consequences for the loci encoding the miRNA and mRNA. In one possible outcome, the mRNA sequence evolves to evade regulation by the miRNA by a simple change of target sequence. Such a response is unavailable if the targeted sequence is strongly constrained by other functions. In these cases, the mRNA evolves to accommodate regulation by the imprinted miRNA. These evolutionary dynamics are illustrated using the examples of the imprinted C19MC cluster of miRNAs in primates and C2MC cluster in mice that are paternally expressed in placentas. The 3′ UTR of PTEN, a gene with growth-related and metabolic functions, appears to be an important target of miRNAs from both clusters.
Collapse
|
24
|
Liu D, Zhang H, Cui M, Chen C, Feng Y. Hsa-miR-425-5p promotes tumor growth and metastasis by activating the CTNND1-mediated β-catenin pathway and EMT in colorectal cancer. Cell Cycle 2020; 19:1917-1927. [PMID: 32594834 PMCID: PMC7469528 DOI: 10.1080/15384101.2020.1783058] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. However, the roles of miR-425-5p and its underlying mechanism in CRC remain unknown. Here, RT-qPCR confirmed that miR-425-5p expression was increased by miR-425-5p mimic in SW480 cells and decreased by miR-425-5p inhibitor in LOVO cells. CCK-8, flow cytometry, wound healing and transwell assays revealed that the increased miR-425-5p promoted cell viability, cell cycle entry, migration and invasion in CRC. Besides, miR-425-5p overexpression induced epithelial-mesenchymal transition (EMT) with upregulation of Fibronectin, N-cadherin, Vimentin, and downregulation of E-cadherin. Moreover, miR-425-5p overexpression induced c-myc, Cyclin D1 and MMP7 levels, and promoted β-catenin translocation to the nucleus. Knockdown of miR-425-5p exerted opposite effects. Luciferase reporter assay indicated that miR-425-5p directly targeted CTNND1. Overexpression of miR-425-5p repressed CTNND1 expression at mRNA and protein levels. Silencing of CTNND1 had the inhibitory effect of miR-425-5p inhibitor on cell proliferation, migration, invasion, EMT, and the activation of β-catenin signaling pathway. Furthermore, miR-425-5p promoted tumor growth and metastasis in vivo. In conclusion, miR-425-5p may promote tumorigenesis and metastasis through activating CTNND1-mediated β-catenin pathway, which may provide therapeutic targets for human CRC.
Collapse
Affiliation(s)
- Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Mingming Cui
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chunsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yong Feng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
25
|
Chen J, Li Y, Xie X. MicroRNA-425 inhibits proliferation of chronic lymphocytic leukaemia cells through regulation of the Bruton's tyrosine kinase/phospholipase Cγ2 signalling pathway. Exp Ther Med 2020; 20:1169-1175. [PMID: 32742355 PMCID: PMC7388289 DOI: 10.3892/etm.2020.8771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the effects of microRNA (miR)-425 on the proliferation of chronic lymphocytic leukaemia (CLL) cells and the possible underlying mechanisms. The expression of miR-425 was determined in the B lymphocytes of CLL patients and in normal B lymphocytes by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, MEC-1 cells transfected with miR-425 negative control (NC) or miR-425 mimic were examined. The cell proliferation of different groups was evaluated using an MTT assay, and cell cycle distribution was evaluated using flow cytometry analysis. A dual-luciferase reporter assay was used to verify whether Bruton's tyrosine kinase (BTK) was a target of miR-425. Furthermore, the expression levels of BTK, phospholipase Cγ2 (PLCγ2), Ki-67 and proliferating cell nuclear antigen (PCNA) were determined by RT-qPCR and western blotting. The results revealed that the expression of miR-425 was significantly downregulated in B lymphocytes obtained from CLL patients as compared with that in normal B lymphocytes. When cells were transfected with miR-425 mimic, the proliferation of MEC-1 cells was significantly inhibited at 24, 48 and 72 h compared with the proliferation of control cells. Additionally, the ratio of G0/G1 cells was significantly increased and the ratio of G2/M cells was significantly decreased in miR-425-overexpressing cells compared with that in control cells. The luciferase reporter assay revealed that miR-425 binds to the 3'-untranslated region of BTK mRNA. Finally, BTK, PLCγ2, Ki-67 and PCNA expression was significantly inhibited at the mRNA and protein level in cells where miR-425 was upregulated. In conclusion, miR-425 inhibits the proliferation of MEC-1 cells, potentially by inhibiting BTK/PLCγ2 signalling, and Ki-67 and PCNA expression levels. These results provide a deeper insight for understanding the development of CLL and suggest a potential novel target for the treatment of CLL patients.
Collapse
Affiliation(s)
- Jianying Chen
- Department of Rheumatology, Hunan Provincial People's Hospital, Changsha, Hunan 410012, P.R. China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
26
|
Non-Thermal Plasma Couples Oxidative Stress to TRAIL Sensitization through DR5 Upregulation. Int J Mol Sci 2020; 21:ijms21155302. [PMID: 32722598 PMCID: PMC7432737 DOI: 10.3390/ijms21155302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various tumor cells without affecting most normal cells. Despite being in clinical testing, novel strategies to induce TRAIL-mediated apoptosis are in need to overcome cancer cell unresponsiveness and resistance. Plasma-activated medium (PAM) markedly stimulates reactive oxygen/nitrogen species (ROS/RNS)-dependent apoptosis in cancer cells. We investigate the capability of PAM and TRAIL (PAM/TRAIL) combination therapy to overcome TRAIL resistance and improve the anticancer efficacy of TRAIL. The combinatorial treatment of PAM and TRAIL shows synergistic effects on growth inhibition in TRAIL-resistant cancer cells via augmented apoptosis by two attributes. DR5 (TRAIL-R2) transcription by CHOP is upregulated in a PAM-generated ROS/RNS-dependent manner, and PAM itself upregulates PTEN expression mediated by suppression of miR-425 which is involved in Akt inactivation, leading to increased apoptosis induction. Treatment of cancer cell lines with the antioxidant N-acetylcysteine reduces the extent of membrane dysfunction and the expression of both CHOP-DR5 and miR-425-PTEN axes, attenuating PAM/TRAIL-induced cancer cell apoptosis. These data suggest that PAM/TRAIL treatment is a novel approach to sensitizing cancer cells to TRAIL-induced apoptosis and overcoming TRAIL resistance. PAM is a promising candidate for further investigations as a chemotherapeutic sensitizer in the treatment of cancer.
Collapse
|
27
|
Rébé C, Ghiringhelli F. Interleukin-1β and Cancer. Cancers (Basel) 2020; 12:E1791. [PMID: 32635472 PMCID: PMC7408158 DOI: 10.3390/cancers12071791] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Within a tumor, IL-1β is produced and secreted by various cell types, such as immune cells, fibroblasts, or cancer cells. The IL1B gene is induced after "priming" of the cells and a second signal is required to allow IL-1β maturation by inflammasome-activated caspase-1. IL-1β is then released and leads to transcription of target genes through its ligation with IL-1R1 on target cells. IL-1β expression and maturation are guided by gene polymorphisms and by the cellular context. In cancer, IL-1β has pleiotropic effects on immune cells, angiogenesis, cancer cell proliferation, migration, and metastasis. Moreover, anti-cancer treatments are able to promote IL-1β production by cancer or immune cells, with opposite effects on cancer progression. This raises the question of whether or not to use IL-1β inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
28
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. The Interplay among miRNAs, Major Cytokines, and Cancer-Related Inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:606-620. [PMID: 32348938 PMCID: PMC7191126 DOI: 10.1016/j.omtn.2020.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is closely related with the progression of cancer and is an indispensable component that orchestrates the tumor microenvironment. Studies suggest that different mediator and cellular effectors, including cytokines (interleukins, tumor necrosis factor-α [TNF-α], transforming growth factor-β [TGF-β], and granulocyte macrophage colony-stimulating factor [GM-CSF]), chemokines, as well as some transcription factors (nuclear factor κB [NF-κB], signal transducer and activator of transcription 3 [STAT3], hypoxia-inducible factor-1α [HIF1α]), play a crucial role during cancer-related inflammation (CRI). MicroRNAs (miRNAs) are the key components of cellular physiology. They play notable roles during posttranscriptional gene regulation and, thus, might have a potential role in controlling the inflammatory cascade during cancer progression. Taking into consideration the role identified for miRNAs in relation to inflammatory cytokines, we have tried to review their participation in neoplastic progression. Additionally, the involvement of miRNAs with some important transcription factors (NF-κB, STAT3, HIF1α) and proteins (cyclooxygenase-2 [COX-2], inducible nitric oxide synthase [iNOS]) closely associated with inflammation during cancer has also been discussed. A clear insight into the responsibility of miRNAs in cytokine signaling and inflammation related to CRI could project them as new therapeutic molecules, which could lead to improved treatment of CRI in the near future.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India; Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| |
Collapse
|
29
|
Ou M, Zhang C, Chen J, Zhao S, Cui S, Tu J. Overexpression of MicroRNA-340-5p Inhibits Pulmonary Arterial Hypertension Induced by APE by Downregulating IL-1β and IL-6. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:542-554. [PMID: 32712318 PMCID: PMC7378273 DOI: 10.1016/j.omtn.2020.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal cardiovascular disease that could eventually result in right ventricular failure. Recently, the roles of microRNAs (miRNAs) in PAH have been highlighted. The present study aims to investigate the effects of miRNA (miR)-340-5p on PAH induced by acute pulmonary embolism (APE) and the underlying mechanisms. miR-340-5p was lowly expressed, whereas interleukin 1β (IL-1β) and IL-6 were highly expressed in plasma of APE-PAH patients as compared to normal human plasma. Subsequently, IL-1β and IL-6 were confirmed to be two target genes of miR-340-5p using a dual-luciferase reporter gene assay. By conducting overexpression and rescue experiments, overexpression of miR-340-5p was evidenced to inhibit proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and inflammation via reducing IL-1β and IL-6 levels. Meanwhile, miR-340-5p led to the blocked nuclear factor κB (NF-κB) pathway with reduced NF-κB p65, matrix metalloproteinase 2 (MMP2), and MMP9 expression in PASMCs. Finally, the ameliorative effect of miR-340-5p on pathological lesions was further verified in rat models of APE-PAH. Altogether, overexpressed miR-340-5p inhibited the inflammatory response, proliferation, and migration of PASMCs by downregulating IL-1β and IL-6, thereby suppressing the progression of APE-PAH. miR-340-5p therefore holds promise as an anti-inflammatory therapeutic target.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Chuntang Zhang
- Department of Orthopedics, Shengli Oilfield Hospital of Dongying City, Dongying 257000, P.R. China
| | - Jing Chen
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Shibo Zhao
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Shichao Cui
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Jie Tu
- Science and Education Department, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, P.R. China.
| |
Collapse
|
30
|
Ahadi A. Dysregulation of miRNAs as a signature for diagnosis and prognosis of gastric cancer and their involvement in the mechanism underlying gastric carcinogenesis and progression. IUBMB Life 2020; 72:884-898. [DOI: 10.1002/iub.2259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
31
|
Akgun S, Kucuksayan H, Ozes ON, Can O, Alikanoglu AS, Yildiz M, Akca H. NF-κB-Induced Upregulation of miR-548as-3p Increases Invasion of NSCLC by Targeting PTEN. Anticancer Agents Med Chem 2020; 19:1058-1068. [PMID: 30727918 DOI: 10.2174/1871520619666190206165215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Non-Small Cell Lung Cancer (NSCLC) is an aggressive cancer type due to high metastatic capacity. Nuclear Factor Kappa B (NF-κB) is a consistently active transcription factor in malignant lung cancer cells and has crucial significance in NSCLC progression. It is also implicated in the transcriptional regulation of many genes including microRNAs (miRNAs) that function as tumor suppressor or oncogene. It has been increasingly reported that several miRNAs defined as gene members are induced by NF-κB. The present study aimed to find novel miRNAs that are regulated by NF-κB. METHODS Chromatin İmmunoprecipitation Sequencing (ChIP-Seq) experiment and bioinformatic analysis were used to determine NF-κB-dependent miRNAs. Western blot analysis, quantitative real-time polymerase chain reaction (qRT-PCR), luciferase reporter gene assays were carried out to investigate the target genes of miRNAs. To determine biologic activity, transwell invasion and MTT assay were carried out on H1299 NSCLC cell line. miRNA expression level was evaluated in metastatic and non-metastatic tissue samples of NSCLC patients. RESULTS ChIP-Seq and qRT-PCR experiments showed that miR-548as-3p is transcriptionally regulated by NF- κB in response to Tumor Necrosis Factor-α (TNF-α) treatment. Then, we found that tumor suppressor Phosphatase and Tension homolog (PTEN) is a direct target of miR-548as-3p. Furthermore, miR-548as-3p mediates phosphatidylinositol-3-OH kinase (PI3K)/Akt pathway and NF-κB-implicated genes including Matrix Metalloproteinases 9 (MMP9), Slug and Zeb1. We further showed that miR-548as-3p increased invasiveness of NSCLC cells and was upregulated in metastatic tumor tissues compared to non-metastatic ones. CONCLUSION All these findings provide a miRNAs-mediated novel mechanism for NF-κB signaling and that miR-548as-3p could be a biomarker for NSCLC metastasis.
Collapse
Affiliation(s)
- Sakir Akgun
- Department of Medical Biology, Pamukkale University, Kinikli, Denizli, Turkey.,Medical Biology Department, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Hakan Kucuksayan
- Department of Medical Biology, Pamukkale University, Kinikli, Denizli, Turkey
| | - Osman N Ozes
- Department of Medical Biology and Genetics, Akdeniz University, Antalya, Turkey
| | - Ozge Can
- Department of Medical Biology, Pamukkale University, Kinikli, Denizli, Turkey
| | | | - Mustafa Yildiz
- Medical Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Hakan Akca
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Kinikli, Denizli, Turkey.,ILTAM Cancer Biology Laboratory, Pamukkale University, Kinikli, Denizli, Turkey
| |
Collapse
|
32
|
Luo E, Wang D, Yan G, Qiao Y, Zhu B, Liu B, Hou J, Tang C. The NF-κB/miR-425-5p/MCT4 axis: A novel insight into diabetes-induced endothelial dysfunction. Mol Cell Endocrinol 2020; 500:110641. [PMID: 31711985 DOI: 10.1016/j.mce.2019.110641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
Endothelial cells (ECs) primarily rely on glycolysis for their energy metabolism, and the final product of glycolysis-lactate-is transferred out of cells via monocarboxylate transporter 4 (MCT4). We previously showed that MCT4 downregulation is involved in diabetic endothelial injury. However, the underlying regulatory mechanisms of MCT4 in diabetes remain unclear. This study showed that miR-425-5p was significantly upregulated in diabetic patients and human umbilical vein endothelial cells (HUVECs) treated with high glucose (HG) and interleukin-1β (IL-1β). MCT4 was shown to be a direct target gene of miR-425-5p, and miR-425-5p expression led to MCT4 downregulation, lactate accumulation and increased apoptosis in HUVECs. Furthermore, the results indicated that NF-κB signaling activation increased miR-425-5p levels and induced MCT4 downregulation, lactate accumulation and apoptosis in HUVECs. In conclusion, NF-κB/miR-425-5p/MCT4 axis activation plays a crucial role in the EC injury induced by HG and IL-1β.
Collapse
Affiliation(s)
- Erfei Luo
- School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Boqian Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Bo Liu
- School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Jiantong Hou
- School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
33
|
Kim J, Lee J, Jun JH. Identification of differentially expressed microRNAs in outgrowth embryos compared with blastocysts and non-outgrowth embryos in mice. Reprod Fertil Dev 2019; 31:645-657. [PMID: 30428300 DOI: 10.1071/rd18161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/06/2018] [Indexed: 12/27/2022] Open
Abstract
Recurrent implantation failure (RIF) is one of the main causes for the repeated failure of IVF, and the major reason for RIF is thought to be a miscommunication between the embryo and uterus. However, the exact mechanism underlying embryo-uterus cross-talk is not fully understood. The aim of the present study was to identify differentially expressed microRNAs (miRNAs) among blastocysts, non-outgrowth and outgrowth embryos in mice using microarray analysis. A bioinformatics analysis was performed to predict the potential mechanisms of implantation. The miRNA expression profiles differed significantly between non-outgrowth and outgrowth embryos. In all, 3163 miRNAs were detected in blastocysts and outgrowth embryos. Of these, 10 miRNA candidates (let-7b, miR-23a, miR-27a, miR-92a, miR-183, miR-200c, miR-291a, miR-425, miR-429 and miR-652) were identified as significant differentially expressed miRNAs of outgrowth embryos by in silico analysis. The expression of the miRNA candidates was markedly changed during preimplantation embryo development. In particular, let-7b-5p, miR-200c-3p and miR-23a-3p were significantly upregulated in outgrowth embryos compared with non-outgrowth blastocysts. Overall, differentially expressed miRNAs in outgrowth embryos compared with blastocysts and non-outgrowth embryos could be involved in embryo attachment, and interaction between the embryo proper and maternal endometrium during the implantation process.
Collapse
Affiliation(s)
- Jihyun Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13135, Republic of Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13135, Republic of Korea
| |
Collapse
|
34
|
Overexpression of MALAT1 Relates to Lung Injury through Sponging miR-425 and Promoting Cell Apoptosis during ARDS. Can Respir J 2019; 2019:1871394. [PMID: 31871512 PMCID: PMC6913333 DOI: 10.1155/2019/1871394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/21/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury during which severe inflammatory responses induce cell apoptosis, necrosis, and fibrosis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a multiple function long noncoding RNA that was found overexpressed during acute lung injury. However, the roles of MALAT1 in ARDS patients are still unknown. Methods Total RNA was extracted from the plasma, plasma exosome, and peripheral blood mononuclear cells (PBMCs) from 65 ARDS patients and 36 healthy controls. The MALAT1 and six candidate miRNAs levels were detected by qRT-PCR. The interaction between MALAT1 and miR-425 was predicted using a bioinformatics tool and verified by dual luciferase assay. Exosomes from ARDS patients were cultured with A549 and HFL-1 cells to confirm the delivery of miR-425 by exosomes. Cell apoptosis and viability were determined by flow cytometry and MTT assay. Results We found MALAT1 was significantly increased in the ARDS patients' plasma and PBMCs. The MALAT1 level in PBMCs was negatively correlated with exosomal miR-425 level. MALAT1 interacted with miR-425 and protected phosphatase and tensin homolog (PTEN) expression in A549 and HFL-1 cells. Exosomes from ARDS patients delivered less miR-425 into A549 and HFL-1 cells and induced cell apoptosis via upregulating PTEN. Conclusion This study identified increased MALAT1 and decreased miR-425 in ARDS patients and unveiled their roles during the pathogenesis of ARDS.
Collapse
|
35
|
Zhou W, Gong J, Chen Y, Chen J, Zhuang Q, Cao J, Mei Z, Hu B. Long noncoding RNA LINC00899 suppresses breast cancer progression by inhibiting miR-425. Aging (Albany NY) 2019; 11:10144-10153. [PMID: 31739288 PMCID: PMC6914403 DOI: 10.18632/aging.102426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important regulators in cancer, including breast cancer. The precise expression pattern of long noncoding RNA 00899 (LINC00899) in breast cancer and its mechanisms of action have not been reported. Here, we found that LINC00899 is downregulated in breast cancer tissues and cell lines. Kaplan-Meier analysis showed that elevated LINC00899 expression is closely associated with better relapse-free survival (RFS) in breast cancer, including the basal, luminal A or luminal B breast cancer subtypes. Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that LINC00899 is closely related to several cancer associated processes, including tight junction- and metabolism-associated pathways. Functional assays indicated that LINC00899 overexpression suppresses proliferation, migration and invasion of breast cancer cells in vitro. Moreover, LINC00899 was found to competitively bind miR-425, thereby functioning as a tumor suppressor by enhancing DICER1. Overexpression of miR-425 attenuated the LINC00899-induced inhibition of breast cancer cell proliferation and invasion. These findings highlight the important role of the LINC00899-miR-425-DICER1 axis in breast cancer cell proliferation and invasion, and could potentially lead to new lncRNA-based diagnostics or therapeutics for breast cancer.
Collapse
Affiliation(s)
- Wenying Zhou
- Department of Laboratory Medicine, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jiao Gong
- Department of Laboratory Medicine, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Yaqiong Chen
- Department of Laboratory Medicine, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jiahao Chen
- Department of Laboratory Medicine, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Qi Zhuang
- Department of Laboratory Medicine, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jing Cao
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhixiong Mei
- Obstetrical Department, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Bo Hu
- Department of Laboratory Medicine, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
36
|
Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells 2019; 8:cells8101143. [PMID: 31557902 PMCID: PMC6829508 DOI: 10.3390/cells8101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The neoplastic transformation of normal to metastatic cancer cells is a complex multistep process involving the progressive accumulation of interacting genetic and epigenetic changes that alter gene function and affect cell physiology and homeostasis. Epigenetic changes including DNA methylation, histone modifications and changes in noncoding RNA expression, and deregulation of epigenetic processes can alter gene expression during the multistep process of carcinogenesis. Cancer progression and metastasis through an ‘invasion–metastasis cascade’ involving an epithelial-to-mesenchymal cell transition (EMT), the generation of cancer stem cells (CSCs), invasion of adjacent tissues, and dissemination are fueled by inflammation, which is considered a hallmark of cancer. Chronic inflammation is generated by inflammatory cytokines secreted by the tumor and the tumor-associated cells within the tumor microenvironment. Inflammatory cytokine signaling initiates signaling pathways leading to the activation of master transcription factors (TFs) such as Smads, STAT3, and NF-κB. Moreover, the same inflammatory responses also activate EMT-inducing TF (EMT-TF) families such as Snail, Twist, and Zeb, and epigenetic regulators including DNA and histone modifying enzymes and micoRNAs, through complex interconnected positive and negative feedback loops to regulate EMT and CSC generation. Here, we review the molecular regulatory feedback loops and networks involved in inflammatory cytokine-induced EMT and CSC generation.
Collapse
|
37
|
Multifaceted Regulation of PTEN Subcellular Distributions and Biological Functions. Cancers (Basel) 2019; 11:cancers11091247. [PMID: 31454965 PMCID: PMC6770588 DOI: 10.3390/cancers11091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene frequently found to be inactivated in over 30% of human cancers. PTEN encodes a 54-kDa lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase pathway involved in the promotion of multiple pro-tumorigenic phenotypes. Although the PTEN protein plays a pivotal role in carcinogenesis, cumulative evidence has implicated it as a key signaling molecule in several other diseases as well, such as diabetes, Alzheimer's disease, and autism spectrum disorders. This finding suggests that diverse cell types, especially differentiated cells, express PTEN. At the cellular level, PTEN is widely distributed in all subcellular compartments and organelles. Surprisingly, the cytoplasmic compartment, not the plasma membrane, is the predominant subcellular location of PTEN. More recently, the finding of a secreted 'long' isoform of PTEN and the presence of PTEN in the cell nucleus further revealed unexpected biological functions of this multifaceted molecule. At the regulatory level, PTEN activity, stability, and subcellular distribution are modulated by a fascinating array of post-translational modification events, including phosphorylation, ubiquitination, and sumoylation. Dysregulation of these regulatory mechanisms has been observed in various human diseases. In this review, we provide an up-to-date overview of the knowledge gained in the last decade on how different functional domains of PTEN regulate its biological functions, with special emphasis on its subcellular distribution. This review also highlights the findings of published studies that have reported how mutational alterations in specific PTEN domains can lead to pathogenesis in humans.
Collapse
|
38
|
Lang L, Xu B, Li SZ, Guo W, Yuan J, Zang S, Chen Y, Yang HM, Lian S. Rno-miR-425-5p targets the DLST and SLC16A1 genes to reduce liver damage caused by excessive energy mobilization under cold stress. J Anim Physiol Anim Nutr (Berl) 2019; 103:1251-1262. [PMID: 31087708 DOI: 10.1111/jpn.13100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/24/2019] [Accepted: 03/20/2019] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded non-coding small RNA molecules, which participate in the regulation of many physiological processes, and play a crucial role in cancer, metabolism and other processes. Rno-miR-425-5p has been shown to play a role in the response to cold stress. To explore the mechanism by which rno-miR-425-5p regulates the response to cold stress, we analysed the candidate target genes of rno-miR-425-5p. After verification in rat hepatocyte BRL cells and in rat liver tissue, we identified several target genes that were altered in expression in response to cold stress. In rat liver tissue, the expression of rno-miR-425-5p was significantly increased and the expression levels of target genes DLST and SLC16A1 were decreased under cold stress. The miRNA and mRNA levels were analysed by quantitative real-time PCR and the protein levels were detected by Western blot analysis. Combined with the results of bioinformatic analysis, we concluded that rno-miR-425-5p reduced the expression of DLST and SLC16A1, inhibiting energy release from the tricarboxylic acid cycle and preventing the liver from being injured by excessive energy mobilization.
Collapse
Affiliation(s)
- Limin Lang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjin Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianbin Yuan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shucheng Zang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
39
|
MiR-195 modulates oxidative stress-induced apoptosis and mitochondrial energy production in human trophoblasts via flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 and pyruvate dehydrogenase phosphatase regulatory subunit. J Hypertens 2019; 36:306-318. [PMID: 28858979 DOI: 10.1097/hjh.0000000000001529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Preeclampsia is a severe pregnancy-specific syndrome defined as newly onset hypertension and proteinuria. Abnormal placental development has been generally accepted as the initial cause of the disorder. Recently, miR-195 was identified as one of the downregulated small RNAs in preeclamptic placentas. METHODS The potential targets of miR-195 in human trophoblast cells were screened by isobaric tags for relative and absolute quantification-based mass spectrum analysis. Localization of miR-195 and its targets was examined by in-situ hybridization and immunohistochemistry in human placenta. Real-time PCR, western blotting and luciferase assay were used for target validation. Apoptosis was accessed by Annexin V/PI costaining, whereas mitochondrial function by ATP measurement and tetramethylrhodamine ethyl ester fluorescence. RESULTS Two mitochondria-associated proteins, flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 (FOXRED1) and pyruvate dehydrogenase phosphatase regulatory subunit (PDPR), were identified as targets of miR-195. Overexpression of miR-195 in HTR8/SVneo cells resulted in enhanced apoptosis, decreased mitochondrial membrane potential and cellular ATP content upon hydrogen peroxide stimulation. The effects could be partially rescued by FOXRED1 or PDPR. In preeclamptic patients, lowered circulating level of miR-195 were found at early-to-mid gestation and term pregnancy, and marked increase in FOXRED1 and PDPR expression were observed in the placenta when compared with gestational week-matched controls. In addition, chronic hydrogen peroxide stimuli suppressed miR-195 expression in trophoblast cells. CONCLUSION MiR-195 could suppress mitochondrial energy production via targeting FOXRED1 and PDPR, and lead to trophoblast cell apoptosis under oxidative stress. In preeclamptic placenta, lowered level of miR-195 might be induced by chorionic oxidative stress and subsequently form a compensation mechanism to defend the disturbed energy production and cell apoptosis upon oxidative stress.
Collapse
|
40
|
Chai C, Wu H, Wang B, Eisenstat DD, Leng RP. MicroRNA-498 promotes proliferation and migration by targeting the tumor suppressor PTEN in breast cancer cells. Carcinogenesis 2019; 39:1185-1196. [PMID: 29985991 DOI: 10.1093/carcin/bgy092] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis and high mortality rate. The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays an important role in cell proliferation and cell migration by negatively regulating the PI3K/Akt pathway. PTEN is downregulated by microRNAs in multiple cancers. However, few microRNAs have been reported to directly target PTEN in TNBC. In this study, microRNAs predicted to target PTEN were screened by immunoblotting and luciferase reporter assays. Expression levels of microRNA-498 (miR-498) were measured by TaqMan microRNA assays. We performed clonogenic, cell cycle and scratch wound assays to examine the oncogenic role of miR-498. We demonstrated that miR-498 directly targeted the 3'untranslated region of PTEN mRNA and reduced PTEN protein levels in TNBC cells. Compared with the non-tumorigenic breast epithelial cell line MCF-10A, TNBC cell lines overexpressed miR-498. Moreover, miR-498 promoted cell proliferation and cell cycle progression in TNBC cells in a PTEN-dependent manner. Suppressing miR-498 overexpression impaired the oncogenic effects of miR-498 on cell proliferation and cell migration. This study identified a novel microRNA (miR-498) overexpressed in TNBC cells and its oncogenic role in suppressing PTEN. These results provide new insight into the downregulation of PTEN and indicate a potential therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Chengsen Chai
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Hong Wu
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Benfan Wang
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, University Ave., University of Alberta, Edmonton, Alberta, Canada
| | - Roger P Leng
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Center, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
41
|
Liu Y, Chen J. miR-425 suppresses EMT and the development of TNBC (triple-negative breast cancer) by targeting the TGF-β 1/SMAD 3 signaling pathway. RSC Adv 2019; 9:151-165. [PMID: 35521597 PMCID: PMC9059317 DOI: 10.1039/c8ra08872a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Background: EMT has a crucial effect on the progression and metastasis of tumors. This work will elucidate the role of miR-425 in EMT and the development of TNBC. Methods: The differential miRNA expression among non-tumor, para-tumor (adjacent tissue of tumor) and tumor tissues was analyzed. The luciferase activities of TGF-β1 3′UTR treated with miR-425 were determined. Then human breast cancer cell lines were treated with mimics or inhibitors of miR-425, and then the cell proliferation and migration, and invasion ability were assessed. The expression of TGF-β1 and markers of epithelial cells and mesenchymal cells were analyzed. The influences of miR-425 on the development of TNBC through inducing EMT by targeting the TGF-β1/SMAD3 signaling pathway in TNBC cell lines were investigated. Furthermore, xenograft mice were used to explore the potential roles of miR-425 on EMT and the development of TNBC in vivo. Results: Compared with non-tumor tissues, 9 miRNAs were upregulated and 3 miRNAs were down-regulated in tumor tissues. The relative expression of miR-425 in tumor tissues was obviously much lower than that in para-tumor and non-tumor tissues. MiR-425 suppressed TGF-β1 expression, and further inhibited expression of mesenchymal cell markers, while it exerted effects on cell proliferation and migration of TNBC cell lines. Moreover, the agomir of miR-425 could protect against the development process in a murine TNBC xenograft model. Conclusions: Our results demonstrated that miR-425 targets TGF-β1, and was a crucial suppressor on EMT and the development of TNBC through inhibiting the TGF-β1/SMAD3 signaling pathway. This suggests that aiming at the TGF-β1/SMAD3 signaling pathway by enhancing relative miR-425 expression, is a feasible therapy strategy for TNBC. EMT has a crucial effect on the progression and metastasis of tumors.![]()
Collapse
Affiliation(s)
- Yingping Liu
- Department of Obstetrics and Gynecology
- Beijing Obstetrics and Gynecology Hospital
- Capital Medical University
- Beijing 100026
- P. R. China
| | - Jinglong Chen
- Department of Oncology
- Beijing Ditan Hospital
- Capital Medical University
- Beijing 100015
- PR China
| |
Collapse
|
42
|
Angius A, Pira G, Scanu AM, Uva P, Sotgiu G, Saderi L, Manca A, Serra C, Uleri E, Piu C, Caocci M, Ibba G, Zinellu A, Cesaraccio MR, Sanges F, Muroni MR, Dolei A, Cossu-Rocca P, De Miglio MR. MicroRNA-425-5p Expression Affects BRAF/RAS/MAPK Pathways In Colorectal Cancers. Int J Med Sci 2019; 16:1480-1491. [PMID: 31673240 PMCID: PMC6818206 DOI: 10.7150/ijms.35269] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/18/2019] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide and about 20% is metastatic at diagnosis and untreatable. The anti-EGFR therapy in metastatic patients is led by the presence of KRAS-mutations in tumor tissue. KRAS-wild-type CRC patients showed a positive response rate of about 70% to cetuximab or panitumumab combined with chemotherapy. MiRNAs are promising markers in oncology and could improve our knowledge on pathogenesis and drug resistance in CRC patients. This class of molecules represents an opportunity for the development of miRNA-based strategies to overcome the ineffectiveness of anti-EGFR therapy. We performed an integrative analysis of miRNA expression profile between KRAS-mutated CRC and KRAS-wildtype CRC and paired normal colic tissue (NCT). We revealed an overexpression of miR-425-5p in KRAS-mutated CRC compared to KRAS-wild type CRC and NCT and demonstrated that miR-425-5p exerts regulatory effects on target genes involved in cellular proliferation, migration, invasion, apoptosis molecular networks. These epigenetic mechanisms could be responsible of the strong aggressiveness of KRAS-mutated CRC compared to KRAS-wildtype CRC. We proved that some miR-425-5p targeted genes are involved in EGFR tyrosine kinase inhibitor resistance pathway, suggesting that therapies based on miR-425-5p may have strong potential in targeting KRAS-driven CRC. Moreover, we demonstrated a role in the oncogenesis of miR-31-5p, miR-625-5p and miR-579 by comparing CRC versus NCT. Our results underlined that miR-425-5p might act as an oncogene to participate in the pathogenesis of KRAS-mutated CRC and contribute to increase the aggressiveness of this subcategory of CRC, controlling a complex molecular network.
Collapse
Affiliation(s)
- Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato (CA), Italy
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Antonio Mario Scanu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010 Pula, CA, Italy
| | - Giovanni Sotgiu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Laura Saderi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Alessandra Manca
- Department of Pathology, AOU Sassari, Via Matteotti 60, 07100 Sassari, Italy
| | - Caterina Serra
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Elena Uleri
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Claudia Piu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Maurizio Caocci
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Gabriele Ibba
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Maria Rosaria Cesaraccio
- Department of Prevention, Registro Tumori Provincia di Sassari, ASSL Sassari-ATS Sardegna, Via Rizzeddu 21, Sassari, Italy
| | - Francesca Sanges
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Antonina Dolei
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Paolo Cossu-Rocca
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy.,Department of Diagnostic Services, "Giovanni Paolo II" Hospital, ASSL Olbia-ATS Sardegna, Via Bazzoni-Sircana, 07026 Olbia, Italy
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| |
Collapse
|
43
|
Hu M, Xiong S, Chen Q, Zhu S, Zhou X. Novel role of microRNA-126 in digestive system cancers: From bench to bedside. Oncol Lett 2018; 17:31-41. [PMID: 30655735 PMCID: PMC6313097 DOI: 10.3892/ol.2018.9639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are ubiquitously expressed, small, non-coding RNAs that regulate the expression of approximately 30% of the human genes at the post-transcriptional level. miRNAs have emerged as crucial modulators in the initiation and progression of various diseases, including numerous cancer types. The high incidence rate of cancer and the large number of cancer-associated cases of mortality are mostly due to a lack of effective treatments and biomarkers for early diagnosis. Therefore there is an urgent requirement to further understand the underlying mechanisms of tumorigenesis. MicroRNA-126 (miR-126) is significantly downregulated in a number of tumor types and is commonly identified as a tumor suppressor in digestive system cancers (DSCs). miR-126 downregulates various oncogenes, including disintegrin and metalloproteinase domain-containing protein 9, v-crk sarcoma virus CT10 oncogene homolog and phosphoinositide-3-kinase regulatory subunit 2. These genes are involved in a number of tumor-associated signaling pathways, including angiogenesis, epithelial-mensenchymal transition and metastasis pathways. The aim of the current review was to summarize the role of miR-126 in DSCs, in terms of its dysregulation, target genes and associated signaling pathways. In addition, the current review has discussed the potential clinical application of miR-126 as a biomarker and therapeutic target for DSCs.
Collapse
Affiliation(s)
- Mingli Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shengwei Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Qiaofeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shixuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
44
|
Yang C, Shao T, Zhang H, Zhang N, Shi X, Liu X, Yao Y, Xu L, Zhu S, Cao J, Cheng H, Yan Z, Li Z, Niu M, Xu K. MiR-425 expression profiling in acute myeloid leukemia might guide the treatment choice between allogeneic transplantation and chemotherapy. J Transl Med 2018; 16:267. [PMID: 30285885 PMCID: PMC6167790 DOI: 10.1186/s12967-018-1647-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/26/2018] [Indexed: 01/08/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly heterogeneous disease. MicroRNAs function as important biomarkers in the clinical prognosis of AML. Methods This study identified miR-425 as a prognostic factor in AML by screening the TCGA dataset. A total of 162 patients with AML were enrolled for the study and divided into chemotherapy and allogeneic hematopoietic stem cell transplantation (allo-HSCT) groups. Results In the chemotherapy group, patients with high miR-425 expression had significantly longer overall survival (OS) and event-free survival (EFS) compared with patients with low miR-425 expression. In multivariate analyses, high miR-425 expression remained independently predictive of a better OS (HR = 0.502, P = 0.005) and EFS (HR = 0.432, P = 0.001) compared with patients with low miR-425 expression. Then, all patients were divided into two groups based on the median expression levels of miR-425. Notably, the patients undergoing allo-HSCT had significantly better OS (HR = 0.302, P < 0.0001) and EFS (HR = 0.379, P < 0.0001) compared with patients treated with chemotherapy in the low-miR-425-expression group. Mechanistically, high miR-425 expression levels were associated with a profile significantly involved in regulating cellular metabolism. Among these genes, MAP3K5, SMAD2, and SMAD5 were predicted targets of miR-425. Conclusions The expression of miR-425 may be useful in identifying patients in need of strategies to select the optimal therapy between chemotherapy and allo-HSCT treatment regimens. Patients with low miR-425 expression may consider early allo-HSCT.
Collapse
Affiliation(s)
- Chen Yang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tingting Shao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huihui Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ninghan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Shi
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yao Yao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linyan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shengyun Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hai Cheng
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiling Yan
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
45
|
Wang W, Wang Z, Chen S, Zang X, Miao J. Interleukin-1β/nuclear factor-κB signaling promotes osteosarcoma cell growth through the microRNA-181b/phosphatase and tensin homolog axis. J Cell Biochem 2018; 120:1763-1772. [PMID: 30977354 DOI: 10.1002/jcb.27477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023]
Abstract
So far, microRNA has attracted plenty of interest due to its role in tumorigenesis. Reportedly, miR-181b may be involved in the tumorigenesis of osteosarcoma (OS). In the current study, we attempted to investigate the detailed function and mechanism of miR-181b in OS carcinogenesis. Herein, miR-181a, miR-181b, miR-181c, and miR-181d expressions in OS tissues were higher than that in nontumor tissue samples as examined real-time polymerase chain reaction. Via direct targeting, miR-181b negatively regulated the expression of phosphatase and tensin homolog (PTEN), a well-known tumor suppressor. Furthermore, a small interfering RNA strategy was used to find that interleukin (IL)-1B and nuclear factor-κB (NF-κB) regulate miR-181b and PTEN expression. Consequently, the repression of PTEN by miR-181b promotes OS cell proliferation. In summary, our data support a critical role for NF-κB-dependent upregulation of miR-181b, which further inhibited PTEN expression and promoted the cell proliferation of OS cell lines. The above findings represent a new pathway for the repression of PTEN and the promotion of cell proliferation upon IL-1β induction.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhengguang Wang
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shijie Chen
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaofang Zang
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinglei Miao
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
46
|
Roles of NF-κB Signaling in the Regulation of miRNAs Impacting on Inflammation in Cancer. Biomedicines 2018; 6:biomedicines6020040. [PMID: 29601548 PMCID: PMC6027290 DOI: 10.3390/biomedicines6020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Collapse
|
47
|
Fang F, Song T, Zhang T, Cui Y, Zhang G, Xiong Q. MiR-425-5p promotes invasion and metastasis of hepatocellular carcinoma cells through SCAI-mediated dysregulation of multiple signaling pathways. Oncotarget 2018; 8:31745-31757. [PMID: 28423650 PMCID: PMC5458244 DOI: 10.18632/oncotarget.15958] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/13/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play critical roles in hepatocellular carcinoma (HCC) progression and are key determinants of prognosis. In this study, we found that miR-425-5p was elevated in HCC and correlated with poor prognostic clinicopathological features and low post-operative long-term survival. Multivariate survival analysis indicated that miR-425-5p expression was an independent risk factor for overall and disease-free survival. Interestingly, miR-425-5p promoted invasion and metastasis by HCC cells, but not HCC cell proliferation or apoptosis in vitro. SCAI and PTEN were determined to be downstream targets of miR-425-5p. miR-425-5p-mediated effects were inhibited by ectopic expression of SCAI, and PTEN exhibited a smaller inhibitory effect. SCAI also suppressed PTEN expression. In addition, miR-425-5p promoted epithelial-to-mesenchymal transition (EMT), which was antagonized by SCAI. miR-425-5p also promoted HCC cell invasion and metastasis via SCAI-mediated dysregulation of integrin β1-Fak/Src-RhoA/CDC42, PTEN-AKT, and TIMP2-MMP2/MMP9 signaling. Finally, miR-425-5p promoted metastasis in a xenograft mouse model of HCC. These results indicate that miR-425-5p facilitates EMT and extracellular matrix degradation and promotes HCC metastasis through SCAI-mediated dysregulation of multiple signaling pathways. MiR-425-5p is therefore a potential prognostic biomarker and novel therapeutic target in HCC.
Collapse
Affiliation(s)
- Feng Fang
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Ti-Yuan-Bei, Tianjin 300060, China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Ti-Yuan-Bei, Tianjin 300060, China
| | - Ti Zhang
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Ti-Yuan-Bei, Tianjin 300060, China
| | - Yunlong Cui
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Ti-Yuan-Bei, Tianjin 300060, China
| | - Gewen Zhang
- Department of Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Ti-Yuan-Bei, Tianjin 300060, China
| |
Collapse
|
48
|
Yang X, He Q, Guo Z, Xiong F, Li Y, Pan Y, Gao C, Li L, He C. MicroRNA-425 facilitates pathogenic Th17 cell differentiation by targeting forkhead box O1 (Foxo1) and is associated with inflammatory bowel disease. Biochem Biophys Res Commun 2018; 496:352-358. [PMID: 29331376 DOI: 10.1016/j.bbrc.2018.01.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 11/25/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune disease, and its pathogenesis remains mostly unknown. MicroRNAs (miRs) has drawn much attention as a crucial regulator of autoimmune diseases. In this study, we demonstrated, for the first time, that miR-425 was significantly up-regulated in peripheral blood mononuclear cells (PBMC) and mucosa of patients with IBD. In note, T helper (Th) 17 cells were found to be the major source of miR-425 expression. Using gain-of-function approaches, we demonstrated that miR-425 could facilitate the differentiation of CD4+ T cells into Th17 lineage. In addition, forkhead box O1 (Foxo1) was identified as a novel target gene of miR-425, which was able to inhibit Th17 cell differentiation, and it was observed to be markedly decreased in PBMC and mucosa of patients with IBD. Notably, in vivo inhibition of miR-425 significantly alleviated the disease severity of TNBS-induced colitis in mice, with down-regulated levels of IL-17A. Our data reveal a novel mechanism in which the elevated miR-425 in IBD mediates pathogenic Th17 cell generation through down-regulation of Foxo1. In vivo blockade of miR-425 may serve as a novel therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Xue Yang
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Qinyu He
- Department of Rehabilitation, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhenzhen Guo
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Xiong
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Yi Li
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Yan Pan
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Caiping Gao
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liangping Li
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China.
| | - Chong He
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
49
|
Li N, Qin JF, Han X, Jin FJ, Zhang JH, Lan L, Wang Y. miR-21a negatively modulates tumor suppressor genes PTEN and miR-200c and further promotes the transformation of M2 macrophages. Immunol Cell Biol 2017; 96:68-80. [DOI: 10.1111/imcb.1016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Li
- School of Medicine; Nankai University; Tianjin China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Nankai University; Tianjin China
| | - Jun-Fang Qin
- School of Medicine; Nankai University; Tianjin China
| | - Xiao Han
- School of Medicine; Nankai University; Tianjin China
| | - Feng-Jiao Jin
- School of Medicine; Nankai University; Tianjin China
| | - Jia-Hui Zhang
- School of Medicine; Nankai University; Tianjin China
| | - Lan Lan
- Tianjin Cancer Hospital; Tianjin Medical University; Tianjin China
| | - Yue Wang
- School of Medicine; Nankai University; Tianjin China
| |
Collapse
|
50
|
Samukawa E, Fujihara S, Oura K, Iwama H, Yamana Y, Tadokoro T, Chiyo T, Kobayashi K, Morishita A, Nakahara M, Kobara H, Mori H, Okano K, Suzuki Y, Himoto T, Masaki T. Angiotensin receptor blocker telmisartan inhibits cell proliferation and tumor growth of cholangiocarcinoma through cell cycle arrest. Int J Oncol 2017; 51:1674-1684. [PMID: 29075786 PMCID: PMC5673010 DOI: 10.3892/ijo.2017.4177] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
Cholangiocarcinoma (CCA) is at an advanced stage at the time of its diagnosis, and developing a more effective treatment of CCA would be desirable. Angiotensin II type 1 (AT1) receptor blocker (ARB), telmisartan may inhibit cancer cell proliferation, but the mechanisms by which telmisartan affects various cancers remain unknown. In this study, we evaluated the effects of telmisartan on human CCA cells and to assess the expression of microRNAs (miRNAs). We studied the effects of telmisartan on CCA cells using two cell lines, HuCCT-1 and TFK-1. In our experiments, telmisartan inhibited the proliferation of HuCCT-1 and TFK-1 cells. Additionally, telmisartan induced G0/G1 cell cycle arrest via blockade of the G0 to G1 cell cycle transition. Notably, telmisartan did not induce apoptosis in HuCCT-1 cells. This blockade was accompanied by a strong decrease in cell cycle-related protein, especially G1 cyclin, cyclin D1, and its catalytic subumits, Cdk4 and Cdk6. Telmisartan reduced the phosphorylation of EGFR (p-EGFR) and TIMP-1 by using p-RTK and angiogenesis array. Furthermore, miRNA expression was markedly altered by telmisartan in HuCCT-1. Telmisartan inhibits tumor growth in CCA xenograft model in vivo. In conclusion, telmisartan was shown to inhibit human CCA cell proliferation by inducing cell cycle arrest.
Collapse
Affiliation(s)
- Eri Samukawa
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yoshimi Yamana
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kiyoyuki Kobayashi
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Keiichi Okano
- Gastroenterological Surgery, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yasuyuki Suzuki
- Gastroenterological Surgery, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takashi Himoto
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|