1
|
Haysom‐McDowell A, Paudel KR, Yeung S, Kokkinis S, El Sherkawi T, Chellappan DK, Adams J, Dua K, De Rubis G. Recent trends and therapeutic potential of phytoceutical-based nanoparticle delivery systems in mitigating non-small cell lung cancer. Mol Oncol 2025; 19:15-36. [PMID: 39592417 PMCID: PMC11705733 DOI: 10.1002/1878-0261.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer death globally, with non-small cell lung cancer accounting for the majority (85%) of cases. Standard treatments including chemotherapy and radiotherapy present multiple adverse effects. Medicinal plants, used for centuries, are traditionally processed by methods such as boiling and oral ingestion, However, water solubility, absorption, and hepatic metabolism reduce phytoceutical bioavailability. More recently, isolated molecular compounds from these plants can be extracted with these phytoceuticals administered either individually or as an adjunct with standard therapy. Phytoceuticals have been shown to alleviate symptoms, may reduce dosage of chemotherapy and, in some cases, enhance pharmaceutical mechanisms. Research has identified many phytoceuticals' actions on cancer-associated pathways, such as oncogenesis, the tumour microenvironment, tumour cell proliferation, metastasis, and apoptosis. The development of novel nanoparticle delivery systems such as solid lipid nanoparticles, liquid crystalline nanoparticles, and liposomes has enhanced the bioavailability and targeted delivery of pharmaceuticals and phytoceuticals. This review explores the biological pathways associated with non-small cell lung cancer, a diverse range of phytoceuticals, the cancer pathways they act upon, and the pros and cons of several nanoparticle delivery systems.
Collapse
Affiliation(s)
- Adam Haysom‐McDowell
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Keshav Raj Paudel
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
- Centre for Inflammation Centenary Institute, Faculty of Science, School of Life SciencesUniversity of Technology SydneyAustralia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Jon Adams
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| |
Collapse
|
2
|
Riaud M, Maxwell J, Soria-Bretones I, Dankner M, Li M, Rose AAN. The role of CRAF in cancer progression: from molecular mechanisms to precision therapies. Nat Rev Cancer 2024; 24:105-122. [PMID: 38195917 DOI: 10.1038/s41568-023-00650-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
The RAF family of kinases includes key activators of the pro-tumourigenic mitogen-activated protein kinase pathway. Hyperactivation of RAF proteins, particularly BRAF and CRAF, drives tumour progression and drug resistance in many types of cancer. Although BRAF is the most studied RAF protein, partially owing to its high mutation incidence in melanoma, the role of CRAF in tumourigenesis and drug resistance is becoming increasingly clinically relevant. Here, we summarize the main known regulatory mechanisms and gene alterations that contribute to CRAF activity, highlighting the different oncogenic roles of CRAF, and categorize RAF1 (CRAF) mutations according to the effect on kinase activity. Additionally, we emphasize the effect that CRAF alterations may have on drug resistance and how precision therapies could effectively target CRAF-dependent tumours. Here, we discuss preclinical and clinical findings that may lead to improved treatments for all types of oncogenic RAF1 alterations in cancer.
Collapse
Affiliation(s)
- Melody Riaud
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jennifer Maxwell
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabel Soria-Bretones
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew Dankner
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Meredith Li
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - April A N Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada.
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Wu J, Huang X, Li X, Zhou H, Chen X, Chen Y, Guo Y, Huang J, Huang H, Huang Z, Chen G, Yang Z, Zhang J, Su W. Suppression of the long non-coding RNA LINC01279 triggers autophagy and apoptosis in lung cancer by regulating FAK and SIN3A. Discov Oncol 2024; 15:3. [PMID: 38168833 PMCID: PMC10761653 DOI: 10.1007/s12672-023-00855-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Long non-coding RNAs play critical roles in the development of lung cancer by functioning as tumor suppressors or oncogenes. Changes in the expression of LINC01279 have been associated with cell differentiation and human diseases. However, the mechanism underlying LINC01279 activity in tumorigenesis is not clear. Here, we analyzed the function of LINC01279 in lung adenocarcinoma using clinical samples, xenografts, and non-small-cell lung cancer cell lines. We found that LINC01279 is highly expressed in lung adenocarcinoma and may be considered as a predictive factor for this cancer. Knockdown of LINC01279 prevents tumor growth in xenografts and in cancer cell lines by activating autophagy and apoptosis. Molecularly, we revealed that LINC01279 regulates the expression of focal adhesion kinase and extracellular-regulated kinase signaling. In addition, it complexes with and stabilizes the transcriptional co-repressor SIN3A protein. Suppression of focal adhesion kinase and SIN3A also induces apoptosis and prevents tumor progression, suggesting that they may at least in part mediate the oncogenic activity of LINC01279. These results identify LINC01279 as a possible oncogene that plays an important role in the development of lung cancer. Our findings provide insights into the mechanism underlying LINC01279-mediated oncogenesis of lung adenocarcinoma. They may help to discover potential therapeutic targets for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Jiancong Wu
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaobi Huang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaofang Li
- Center for Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Honglian Zhou
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorao Chen
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongyang Chen
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yudong Guo
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jian Huang
- Department of Thoracic Surgery, Maoming People's Hospital, Maoming, China
| | - Hanqing Huang
- Department of Thoracic Surgery, Maoming People's Hospital, Maoming, China
| | - Zhong Huang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhixiong Yang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Wenmei Su
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
4
|
Prasad P, Billah Khair AM, Venkatesan K, Shahwan M, Shamsi A. Molecular and functional insight into focal adhesion kinases: Therapeutic implications for oral malignancies. Drug Discov Today 2024; 29:103852. [PMID: 38070702 DOI: 10.1016/j.drudis.2023.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Oral carcinoma is the sixth most common cancer globally, with one death occurring every hour. Focal adhesion kinase (FAK) is an intercellular protein tyrosine kinase, a key indicator of the development of oral cancer. FAK overexpression leads to the initiation and significant progression of metastasis in head and neck cancers, indicating its vital role in cancer progression and potential as a biomarker for early oral malignant transformation. The present review elaborates on FAK's function in oral malignancies since it could serve as a biomarker of the initial stages of oral malignant transformation and a possible predictive factor for risk assessment.
Collapse
Affiliation(s)
- Prathibha Prasad
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Al-Moutassem Billah Khair
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Moyad Shahwan
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
5
|
Si H, Esquivel M, Mendoza Mendoza E, Roarty K. The covert symphony: cellular and molecular accomplices in breast cancer metastasis. Front Cell Dev Biol 2023; 11:1221784. [PMID: 37440925 PMCID: PMC10333702 DOI: 10.3389/fcell.2023.1221784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer has emerged as the most commonly diagnosed cancer and primary cause of cancer-related deaths among women worldwide. Although significant progress has been made in targeting the primary tumor, the effectiveness of systemic treatments to prevent metastasis remains limited. Metastatic disease continues to be the predominant factor leading to fatality in the majority of breast cancer patients. The existence of a prolonged latency period between initial treatment and eventual recurrence in certain patients indicates that tumors can both adapt to and interact with the systemic environment of the host, facilitating and sustaining the progression of the disease. In order to identify potential therapeutic interventions for metastasis, it will be crucial to gain a comprehensive framework surrounding the mechanisms driving the growth, survival, and spread of tumor cells, as well as their interaction with supporting cells of the microenvironment. This review aims to consolidate recent discoveries concerning critical aspects of breast cancer metastasis, encompassing the intricate network of cells, molecules, and physical factors that contribute to metastasis, as well as the molecular mechanisms governing cancer dormancy.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Madelyn Esquivel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Erika Mendoza Mendoza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|
6
|
Atcha H, Choi YS, Chaudhuri O, Engler AJ. Getting physical: Material mechanics is an intrinsic cell cue. Cell Stem Cell 2023; 30:750-765. [PMID: 37267912 PMCID: PMC10247187 DOI: 10.1016/j.stem.2023.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Advances in biomaterial science have allowed for unprecedented insight into the ability of material cues to influence stem cell function. These material approaches better recapitulate the microenvironment, providing a more realistic ex vivo model of the cell niche. However, recent advances in our ability to measure and manipulate niche properties in vivo have led to novel mechanobiological studies in model organisms. Thus, in this review, we will discuss the importance of material cues within the cell niche, highlight the key mechanotransduction pathways involved, and conclude with recent evidence that material cues regulate tissue function in vivo.
Collapse
Affiliation(s)
- Hamza Atcha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Fard D, Testa E, Panzeri V, Rizzolio S, Bianchetti G, Napolitano V, Masciarelli S, Fazi F, Maulucci G, Scicchitano BM, Sette C, Viscomi MT, Tamagnone L. SEMA6C: a novel adhesion-independent FAK and YAP activator, required for cancer cell viability and growth. Cell Mol Life Sci 2023; 80:111. [PMID: 37002363 PMCID: PMC10066115 DOI: 10.1007/s00018-023-04756-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell-matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability.
Collapse
Affiliation(s)
- Damon Fard
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Erika Testa
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giada Bianchetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Virginia Napolitano
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Masciarelli
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Maulucci
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy.
| |
Collapse
|
8
|
Zhao Y, Zhang X, Zhang X, Shen G, Li W, Wang Q. Integrinβ1/FAK/ERK signalling pathway is essential for Chinese mitten crab Eriocheir sinensis hemocyte survival. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108473. [PMID: 36470403 DOI: 10.1016/j.fsi.2022.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Integrins are cellular adhesion molecules that mediate cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrins can stimulate various signaling pathways by binding to different ligands, thereby exerting immunological functions. While integrins have been found to primarily play a role in bacterial agglutination, phagocytosis, and inhibition of apoptosis in invertebrates, the specific signaling pathway and mechanism of action remain unclear. In vertebrates, β1 integrin and extracellular matrix interactions can associate with focal adhesion kinase (FAK) to initiate MAPK/ERK signaling and regulate cell survival; however, in invertebrates (e.g., Chinese mitten crab), the mechanisms of integrins are poorly understood. The purpose of this study was to investigate whether integrinβ1/FAK activation of the MAPK/ERK pathway regulates hemocyte survival and the associated mechanism. Treatment with an integrinβ1 inhibitor RGD (a conserved tripeptide Arg-Gly-Asp), decreased the levels of FAK and ERK expression and phosphorylation, followed by an intensification of apoptosis. Similar results were obtained following siRNA knockdown of integrinβ1 expression. We further found that the attenuation of ERK phosphorylation enhanced the level of Caspase-3 expression. Together, these findings suggest that integrinβ1 activates the FAK/ERK signaling cascade and is involved in the survival of Chinese mitten crab hemocytes.
Collapse
Affiliation(s)
- Yuehong Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaoli Zhang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaona Zhang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqing Shen
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
9
|
Wang C, Deng Z, Zang L, Shu Y, He S, Wu X. Immune cells regulate matrix metalloproteinases to reshape the tumor microenvironment to affect the invasion, migration, and metastasis of pancreatic cancer. Am J Transl Res 2022; 14:8437-8456. [PMID: 36628243 PMCID: PMC9827340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/27/2022] [Indexed: 01/12/2023]
Abstract
This study aimed to identify author, country, institutional, and journal collaborations and assess their impact, along with knowledge base, as well as identify existing trends, and uncover emerging topics related to matrix metalloproteinase and pancreatic-cancer research. A total of 1474 Articles and reviews were obtained from the Web of Science Core Collection and analyzed by Citespace and Vosviewer. CANCER RESEARCH, CLINICAL CANCER RESEARCH, and FRONTIERS IN IMMUNOLOGY are the most influential journals. The three main aspects of research in matrix metalloproteinases-pancreatic cancer-related fields included the pathogenesis mechanism of pancreatic cancer, how matrix metalloproteinases affect the metastasis of pancreatic cancer, and what role matrix metalloproteinases play in pancreatic cancer treatment. Tumor microenvironment, pancreatic stellate cells, drug resistance, and immune cells have recently emerged as research hot spots. In the future, exploring how immune cells affect matrix metalloproteinases and reshape the tumor microenvironment may be the key to curing pancreatic cancer. This study thus offers a comprehensive overview of the matrix metalloproteinases-pancreatic cancer-related field using bibliometrics and visual methods, providing a valuable reference for researchers interested in matrix metalloproteinases-pancreatic cancer.
Collapse
Affiliation(s)
- Chunqiu Wang
- Department of Gastroenterology, The Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - Zhen Deng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Longjun Zang
- Department of General Surgery, Taiyuan Central HospitalTaiyuan 030000, Shanxi, China
| | - Yufeng Shu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Suifang He
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Xin Wu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|
10
|
Benesch MGK, Wu R, Menon G, Takabe K. High beta integrin expression is differentially associated with worsened pancreatic ductal adenocarcinoma outcomes. Am J Cancer Res 2022; 12:5403-5424. [PMID: 36628277 PMCID: PMC9827087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/27/2022] [Indexed: 01/12/2023] Open
Abstract
Outcomes in pancreatic ductal adenocarcinoma (PDAC) are known to be worse in tumors with high integrin β1 expression, but targeted monotherapy against this integrin has not been effective. Seven other beta integrins are expressed in mammalian biology and they are known to have overlapping and compensatory signaling in biological systems. However, their roles in PDAC are poorly understood and have not been systematically compared to integrin β1 biology. In this study, we analyzed the clinical outcomes against beta integrin 1-8 (ITGB1-8) expression in PDAC samples from two large independent cohorts, The Cancer Genome Atlas (TCGA) and GSE21501. Biological function and tumor microenvironment composition were studied using Gene Set Enrichment Analysis and xCell. Expression of all eight beta integrins is significantly increased in PDACs relative to normal pancreatic tissues (all P<0.001). ITGB1, 2, 5, and 6 have similarly enriched gene patterns related to transforming growth factor (TGF)-β, epithelial mesenchymal transition, inflammation, stemness, and angiogenesis pathways. Homologous recombination defects and neoantigens are increased in high-ITGB4, 5, and 6 tumors, with decreased overall survival in high-ITGB1, 5, and 6 tumors compared to low expression tumors (hazard ratios 1.5-2.0). High-ITGB1, 2, and 5 tumors have increased fibroblast infiltration (all P<0.01) while endothelial cells are increased in high-ITGB2 and 3 tumors (all P<0.05). Overall, beta integrin expression does not correlate to immune cell populations in PDACs. Therefore, while all beta integrins are overexpressed in PDACs, they exert differential effects on PDAC biology. ITGB2, 5, and 6 have a similar profile to ITGB1, suggesting that future research in PDAC integrin therapy needs to consider the complementary signaling profiles mediated by these integrins.
Collapse
Affiliation(s)
- Matthew GK Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA,Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Gopal Menon
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA,Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan,Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
| |
Collapse
|
11
|
Aung KL, McWhirter E, Welch S, Wang L, Lovell S, Stayner LA, Ali S, Malpage A, Makepeace B, Ramachandran M, Jang GH, Gallinger S, Zhang T, Stockley TL, Fischer SE, Dhani N, Hedley D, Knox JJ, Siu LL, Goodwin R, Bedard PL. A phase II trial of GSK2256098 and trametinib in patients with advanced pancreatic ductal adenocarcinoma. J Gastrointest Oncol 2022; 13:3216-3226. [PMID: 36636049 PMCID: PMC9830369 DOI: 10.21037/jgo-22-86] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/12/2022] [Indexed: 11/06/2022] Open
Abstract
Background Mitogen-activated protein kinase kinase (MEK) is activated by mutated KRAS in >90% of pancreatic ductal adenocarcinoma (PDAC). MEK and focal adhesion kinase (FAK) are frequently co-activated in PDAC providing a rationale for combining trametinib, an oral allosteric MEK1/2 inhibitor, with GSK2256098, an oral FAK inhibitor. Methods Advanced PDAC patients whose disease progressed after first line palliative chemotherapy were treated with GSK2256098 250 mg twice daily and trametinib 0.5 mg once daily orally. The primary endpoint was clinical benefit (CB; complete response, partial response, or stable disease ≥24 weeks). Twenty-four patients were planned to enroll using a 2-stage minimax design (P0=0.15, P1=0.40; alpha =0.05, power 0.86). The combination would be considered inactive if 2/12 or fewer patients achieved CB at the end of stage 1, and would be considered active if >7/24 response-evaluable patients achieved CB by the end of stage 2. Serial blood samples were collected for circulating tumor DNA (ctDNA) mutation profiling. Results Sixteen patients were enrolled and 11 were response evaluable. Of those 11, 10 had progressive disease as best tumor response and one had stable disease for 4 months. No treatment related grade ≥3 adverse events (AEs) were observed. The median progression free survival (PFS) was 1.6 (95% CI: 1.5-1.8) months and the median overall survival (OS) was 3.6 (95% CI: 2.7-not reached) months. One response-inevaluable patient achieved clinical stability for 5 months with reduction in CA19-9 and ctDNA levels with a MAP2K1 treatment resistance mutation detected in ctDNA at clinical progression. Conclusions The combination of GSK2256098 and trametinib was well tolerated but was not active in unselected advanced PDAC.
Collapse
Affiliation(s)
- Kyaw L. Aung
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada;,Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | - Lisa Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sophia Lovell
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lee-Anne Stayner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Saara Ali
- Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | - Anne Malpage
- London Health Science Centre, London, ON, Canada
| | | | | | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | - Tong Zhang
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tracy L. Stockley
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada;,Divison of Laboratory Genetics, Laboratory Medicine Program, Department of Pathology, University Health Network, Toronto, ON, Canada;,Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | - Sandra E. Fischer
- Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Neesha Dhani
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada;,Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - David Hedley
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada;,Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jennifer J. Knox
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada;,Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lillian L. Siu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada;,Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Philippe L. Bedard
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada;,Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Niu X, Han Q, Li X, Li J, Liu Y, Li Y, Wu Y, Zhang K. EDIL3 influenced the αvβ3-FAK/MEK/ERK axis of endothelial cells in psoriasis. J Cell Mol Med 2022; 26:5202-5212. [PMID: 36065978 PMCID: PMC9575107 DOI: 10.1111/jcmm.17544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
One of the earliest events in the development of psoriatic lesion is a vascular network expansion. The abnormal vascular network is associated with increased endothelial cells (ECs) survival, proliferation, adhesion, migration, angiogenesis and permeability in psoriatic lesion. Our previous study demonstrated that epidermal growth factor‐like repeats and discoidin I‐like domains 3 (EDIL3) derived from psoriatic dermal mesenchymal stem cells (DMSCs) promoted cell–cell adhesion, migration and angiogenesis of ECs, but the molecular mechanism of upstream or downstream has not been explored. So, this study aimed to explore the association between EDIL3 derived from DMSCs (DMSCs‐derived EDIL3) and psoriasis‐associated angiogenesis. We injected recombinant EDIL3 protein to mouse model of psoriasis to confirm the roles of EDIL3 in psoriasis. Besides, we employed both short‐interference RNA (si‐RNA) and lentiviral vectors to explore the molecular mechanism of EDIL3 promoting angiogenesis in psoriasis. In vivo, this research found that after injected recombination EDIL3 protein, the epidermis thickness and microvessel density were both elevated. EDIL3 accelerated the process of psoriasis in the IMQ‐induced psoriasis‐like mouse model. Additionally, we confirmed that in vitro DMSCs‐derived EDIL3 is involved in the tube formation of ECs via αvβ3‐FAK/MEK/ERK signal pathway. This suggested that DMSCs‐derived EDIL3 and αvβ3‐FAK/MEK/ERK signal pathway in ECs play an important role in the pathogenesis of psoriasis. And the modification of DMSCs, EDIL3 and αvβ3‐FAK/MEK/ERK signal pathway will provide a valuable therapeutic target to control the angiogenesis in psoriasis.
Collapse
Affiliation(s)
- Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qixin Han
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanmin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Li
- No. 1 English Department, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, Key Laboratory of Immunodermatology, Ministry of Education and NHC, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
13
|
Gu Y, Wei C, Chung M, Li H, Guo Z, Long M, Li Y, Wang W, Aimaier R, Li Q, Wang Z. Concurrent inhibition of FAK/SRC and MEK overcomes MEK inhibitor resistance in Neurofibromatosis Type I related malignant peripheral nerve sheath tumors. Front Oncol 2022; 12:910505. [PMID: 35965583 PMCID: PMC9372505 DOI: 10.3389/fonc.2022.910505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft-tissue sarcomas which lack effective drugs. Loss of the RAS GTPase-activating protein NF1 and subsequent overactivation of mitogen-activated protein kinase kinase (MAPK) signaling exist nearly uniformly in MPNST, making MAPK inhibition a promising therapeutic intervention. However, the efficacy of MEK inhibitor (MEKi) monotherapy was limited in MPNST and the relative mechanisms remained largely unexplored. In this study, we generated three MEKi-resistant cell models and investigated the mechanisms of MEKi resistance using high-throughput transcriptomic sequencing. We discovered that cell apoptosis and cell cycle arrest induced by MEKi were rescued in MEKi-resistant cells and the upregulation of LAMA4/ITGB1/FAK/SRC signaling conferred resistance to MEKi. In addition, concurrent inhibition of MAPK signaling and FAK/SRC cascade could sensitize MPNST cells to MEKi. Our findings provide potential solutions to overcome MEKi resistance and effective combination therapeutic strategies for treating MPNSTs.
Collapse
Affiliation(s)
- Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhichao Wang, ; ; Qingfeng Li, ;
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhichao Wang, ; ; Qingfeng Li, ;
| |
Collapse
|
14
|
Shao S, Piao L, Guo L, Wang J, Wang L, Wang J, Tong L, Yuan X, Zhu J, Fang S, Wang Y. Tetraspanin 7 promotes osteosarcoma cell invasion and metastasis by inducing EMT and activating the FAK-Src-Ras-ERK1/2 signaling pathway. Cancer Cell Int 2022; 22:183. [PMID: 35524311 PMCID: PMC9074275 DOI: 10.1186/s12935-022-02591-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/18/2022] [Indexed: 02/08/2023] Open
Abstract
Background Tetraspanins are members of the 4-transmembrane protein superfamily (TM4SF) that function by recruiting many cell surface receptors and signaling proteins into tetraspanin-enriched microdomains (TEMs) that play vital roles in the regulation of key cellular processes including adhesion, motility, and proliferation. Tetraspanin7 (Tspan7) is a member of this superfamily that plays documented roles in hippocampal neurogenesis, synaptic transmission, and malignant transformation in certain tumor types. How Tspan7 influences the onset or progression of osteosarcoma (OS), however, remains to be defined. Herein, this study aimed to explore the relationship between Tspan7 and the malignant progression of OS, and its underlying mechanism of action. Methods In this study, the levels of Tspan7 expression in human OS cell lines were evaluated via qRT-PCR and western blotting. The effect of Tspan7 on proliferation was examined using CCK-8 and colony formation assays, while metastatic role of Tspan7 was assessed by functional assays both in vitro and in vivo. In addition, mass spectrometry and co-immunoprecipitation were performed to verify the interaction between Tspan7 and β1 integrin, and western blotting was used to explore the mechanisms of Tspan7 in OS progresses. Results We found that Tspan7 is highly expressed in primary OS tumors and OS cell lines. Downregulation of Tspan7 significantly suppressed OS growth, metastasis, and attenuated epithelial-mesenchymal transition (EMT), while its overexpression had the opposite effects in vitro. Furthermore, it exhibited reduced OS pulmonary metastases in Tspan7-deleted mice comparing control mice in vivo. Additionally, we proved that Tspan7 interacted with β1 integrin to facilitate OS metastasis through the activation of integrin-mediated downstream FAK-Src-Ras-ERK1/2 signaling pathway. Conclusion In summary, this study demonstrates for the first time that Tspan7 promotes OS metastasis via interacting with β1 integrin and activating the FAK-Src-Ras-ERK1/2 pathway, which could provide rationale for a new therapeutic strategy for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02591-1.
Collapse
Affiliation(s)
- Shijie Shao
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213000, People's Republic of China.
| | - Liwei Guo
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Jiangsong Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Luhui Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Jiawen Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Lei Tong
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Xiaofeng Yuan
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Junke Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Sheng Fang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Yimin Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China.
| |
Collapse
|
15
|
Li W, Li T, Sun C, Du Y, Chen L, Du C, Shi J, Wang W. Identification and prognostic analysis of biomarkers to predict the progression of pancreatic cancer patients. Mol Med 2022; 28:43. [PMID: 35428170 PMCID: PMC9013045 DOI: 10.1186/s10020-022-00467-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a malignancy with a poor prognosis and high mortality. Surgical resection is the only "curative" treatment. However, only a minority of patients with PC can obtain surgery. Improving the overall survival (OS) rate of patients with PC is still a major challenge. Molecular biomarkers are a significant approach for diagnostic and predictive use in PCs. Several prediction models have been developed for patients newly diagnosed with PC that is operable or patients with advanced and metastatic PC; however, these models require further validation. Therefore, precise biomarkers are urgently required to increase the efficiency of predicting a disease-free survival (DFS), OS, and sensitivity to immunotherapy in PC patients and to improve the prognosis of PC. METHODS In the present study, we first evaluated the highly and selectively expressed targets in PC, using the GeoMxTM Digital Spatial Profiler (DSP) and then, we analyzed the roles of these targets in PCs using TCGA database. RESULTS LAMB3, FN1, KRT17, KRT19, and ANXA1 were defined as the top five upregulated targets in PC compared with paracancer. The TCGA database results confirmed the expression pattern of LAMB3, FN1, KRT17, KRT19, and ANXA1 in PCs. Significantly, LAMB3, FN1, KRT19, and ANXA1 but not KRT17 can be considered as biomarkers for survival analysis, univariate and multivariate Cox proportional hazards model, and risk model analysis. Furthermore, in combination, LAMB3, FN1, KRT19, and ANXA1 predict the DFS and, in combination, LAMB3, KRT19, and ANXA1 predict the OS. Immunotherapy is significant for PCs that are inoperable. The immune checkpoint blockade (ICB) analysis indicated that higher expressions of FN1 or ANXA1 are correlated with lower ICB response. In contrast, there are no significant differences in the ICB response between high and low expression of LAMB3 and KRT19. CONCLUSIONS In conclusion, LAMB3, FN1, KRT19, and ANXA1 are good predictors of PC prognosis. Furthermore, FN1 and ANXA1 can be predictors of immunotherapy in PCs.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chenguang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yimeng Du
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linna Chen
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jianxiang Shi
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Weijie Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
16
|
MCPIP1 regulates focal adhesion kinase and rho GTPase-dependent migration in clear cell renal cell carcinoma. Eur J Pharmacol 2022; 922:174804. [DOI: 10.1016/j.ejphar.2022.174804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022]
|
17
|
Nicholson CJ, Xing Y, Lee S, Liang S, Mohan S, O'Rourke C, Kang J, Morgan KG. Ageing causes an aortic contractile dysfunction phenotype by targeting the expression of members of the extracellular signal-regulated kinase pathway. J Cell Mol Med 2022; 26:1456-1465. [PMID: 35181997 PMCID: PMC8899171 DOI: 10.1111/jcmm.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) pathway is a well-known regulator of vascular smooth muscle cell proliferation, but it also serves as a regulator of caldesmon, which negatively regulates vascular contractility. This study examined whether aortic contractile function requires ERK activation and if this activation is regulated by ageing. Biomechanical experiments revealed that contractile responses to the alpha1-adrenergic agonist phenylephrine are attenuated specifically in aged mice, which is associated with downregulation of ERK phosphorylation. ERK inhibition attenuates phenylephrine-induced contractility, indicating that the contractile tone is at least partially ERK-dependent. To explore the mechanisms of this age-related downregulation of ERK phosphorylation, we transfected microRNAs, miR-34a and miR-137 we have previously shown to increase with ageing and demonstrated that in A7r5 cells, both miRs downregulate the expression of Src and paxillin, known regulators of ERK signalling, as well as ERK phosphorylation. Further studies in aortic tissues transfected with miRs show that miR-34a but not miR-137 has a negative effect on mRNA levels of Src and paxillin. Furthermore, ERK phosphorylation is decreased in aortic tissue treated with the Src inhibitor PP2. Increases in miR-34a and miR-137 with ageing downregulate the expression of Src and paxillin, leading to impaired ERK signalling and aortic contractile dysfunction.
Collapse
Affiliation(s)
- Christopher J Nicholson
- Department of Health Sciences, Boston University, Boston, MA, USA.,Department of Medicine, Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Xing
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Sophie Lee
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Stephanie Liang
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Shivani Mohan
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Caitlin O'Rourke
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Joshua Kang
- Department of Health Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
18
|
Ivashkevich A. The role of isoflavones in augmenting the effects of radiotherapy. Front Oncol 2022; 12:800562. [PMID: 36936272 PMCID: PMC10016616 DOI: 10.3389/fonc.2022.800562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 08/31/2022] [Indexed: 03/05/2023] Open
Abstract
Cancer is one of the major health problems and the second cause of death worldwide behind heart disease. The traditional soy diet containing isoflavones, consumed by the Asian population in China and Japan has been identified as a protective factor from hormone-related cancers. Over the years the research focus has shifted from emphasizing the preventive effect of isoflavones from cancer initiation and promotion to their efficacy against established tumors along with chemo- and radiopotentiating effects. Studies performed in mouse models and results of clinical trials emphasize that genistein or a mixture of isoflavones, containing in traditional soy diet, could be utilized to both potentiate the response of cancer cells to radiotherapy and reduce radiation-induced toxicity in normal tissues. Currently ongoing clinical research explores a potential of another significant isoflavone, idronoxil, also known as phenoxodiol, as radiation enhancing agent. In the light of the recent clinical findings, this article reviews the accumulated evidence which support the clinically desirable interactions of soy isoflavones with radiation therapy resulting in improved tumor treatment. This review discusses important aspects of the development of isoflavones as anticancer agents, and mechanisms potentially relevant to their activity in combination with radiation therapy of cancer. It gives a critical overview of studies characterizing isoflavone targets such as topoisomerases, ENOX2/PMET, tyrosine kinases and ER receptor signaling, and cellular effects on the cell cycle, DNA damage, cell death, and immune responses.
Collapse
Affiliation(s)
- Alesia Ivashkevich
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
- Noxopharm, Gordon, NSW, Australia
- *Correspondence: Alesia Ivashkevich,
| |
Collapse
|
19
|
Periyasamy L, Muruganantham B, Park WY, Muthusami S. Phyto-targeting the CEMIP Expression as a Strategy to Prevent Pancreatic Cancer Metastasis. Curr Pharm Des 2022; 28:922-946. [PMID: 35236267 DOI: 10.2174/1381612828666220302153201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Metastasis of primary pancreatic cancer (PC) to adjacent or distant organs is responsible for the poor survival rate of affected individuals. Chemotherapy, radiotherapy, and immunotherapy are currently being prescribed to treat PC in addition to surgical resection. Surgical resection is the preferred treatment for PC that leads to 20% of 5-year survival, but only less than 20% of patients are eligible for surgical resection because of the poor prognosis. To improve the prognosis and clinical outcome, early diagnostic markers need to be identified, and targeting them would be of immense benefit to increase the efficiency of the treatment. Cell migration-inducing hyaluronan-binding protein (CEMIP) is identified as an important risk factor for the metastasis of various cancers, including PC. Emerging studies have pointed out the crucial role of CEMIP in the regulation of various signaling mechanisms, leading to enhanced migration and metastasis of PC. METHODS The published findings on PC metastasis, phytoconstituents, and CEMIP were retrieved from Pubmed, ScienceDirect, and Cochrane Library. Computational tools, such as gene expression profiling interactive analysis (GEPIA) and Kaplan-Meier (KM) plotter, were used to study the relationship between CEMIP expression and survival of PC individuals. RESULTS Gene expression analysis using the GEPIA database identified a stupendous increase in the CEMIP transcript in PC compared to adjacent normal tissues. KM plotter analysis revealed the impact of CEMIP on the overall survival (OS) and disease-free survival (DFS) among PC patients. Subsequently, several risk factors associated with PC development were screened, and their ability to regulate CEMIP gene expression was analyzed using computational tools. CONCLUSION The current review is focused on gathering information regarding the regulatory role of phytocomponents in PC migration and exploring their possible impact on the CEMIP expression.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| |
Collapse
|
20
|
Li K, Lu X, Liu S, Wu X, Xie Y, Zheng X. Boron-incorporated micro/nano-topographical calcium silicate coating dictates osteo/angio-genesis and inflammatory response toward enhanced osseointegration. Biol Trace Elem Res 2021; 199:3801-3816. [PMID: 33405083 DOI: 10.1007/s12011-020-02517-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Orthopedic implant coatings with optimal surface features to achieve favorable osteo/angio-genesis and inflammatory response would be of great importance. However, to date, few coatings are capable of fully satisfying these requirements. In this work, to take advantage of the structural complexity of micro/nano-topography and benefits of biological trace elements, two types of boron-containing nanostructures (nanoflakes and nanolamellars) were introduced onto plasma-sprayed calcium silicate (F-BCS and L-BCS) coatings via hydrothermal treatment. The C-CS coating using deionized water as hydrothermal medium served as control. Boron-incorporated CS coating stimulated osteoblastic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Specifically, the combination of β1 integrin-vinculin-mediated cell spreading and activation of bone morphogenetic protein signaling pathway acted synergistically to cause significant upregulation of runt-related transcription factor 2 (RUNX2) protein and Runx2 gene expression in BMSCs on the F-BCS coating surface, which induced the transcription of downstream osteogenic differentiation marker genes. F-BCS coating allowed specific boron ion release, which favored angiogenesis as evidenced by the enhanced migration and tube formation of human umbilical vein endothelial cells in the coating extract. Boron-incorporated coatings significantly suppressed the expression of toll-like receptor adaptor genes in RAW264.7 macrophages and subsequently the degradation of nuclear factor-κB inhibitor α, accompanied by the inactivation of the downstream pro-inflammatory genes. In vivo experiments confirmed that F-BCS-coated Ti implant possessed enhanced osseointegration compared with L-BCS- and C-CS-coated implants. These data highlighted the synergistic effect of specific nanotopography and boron release from orthopedic implant coating on improvement of osseointegration.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiang Lu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shiwei Liu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaodong Wu
- Department of Orthopedic, Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China.
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
21
|
Anti-Cancer Effects of Cyclic Peptide ALOS4 in a Human Melanoma Mouse Model. Int J Mol Sci 2021; 22:ijms22179579. [PMID: 34502483 PMCID: PMC8430629 DOI: 10.3390/ijms22179579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
We examined the effects of ALOS4, a cyclic peptide discovered previously by phage library selection against integrin αvβ3, on a human melanoma (A375) xenograft model to determine its abilities as a potential anti-cancer agent. We found that ALOS4 promoted healthy weight gain in A375-engrafted nude mice and reduced melanoma tumor mass and volume. Despite these positive changes, examination of the tumor tissue did not indicate any significant effects on proliferation, mitotic index, tissue vascularization, or reduction of αSMA or Ki-67 tumor markers. Modulation in overall expression of critical downstream αvβ3 integrin factors, such as FAK and Src, as well as reductions in gene expression of c-Fos and c-Jun transcription factors, indirectly confirmed our suspicions that ALOS4 is likely acting through an integrin-mediated pathway. Further, we found no overt formulation issues with ALOS4 regarding interaction with standard inert laboratory materials (polypropylene, borosilicate glass) or with pH and temperature stability under prolonged storage. Collectively, ALOS4 appears to be safe, chemically stable, and produces anti-cancer effects in a human xenograft model of melanoma. We believe these results suggest a role for ALOS4 in an integrin-mediated pathway in exerting its anti-cancer effects possibly through immune response modulation.
Collapse
|
22
|
Kisling SG, Natarajan G, Pothuraju R, Shah A, Batra SK, Kaur S. Implications of prognosis-associated genes in pancreatic tumor metastasis: lessons from global studies in bioinformatics. Cancer Metastasis Rev 2021; 40:721-738. [PMID: 34591244 PMCID: PMC8556170 DOI: 10.1007/s10555-021-09991-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of 10%. The occurrence of metastasis, among other hallmarks, is the main contributor to its poor prognosis. Consequently, the elucidation of metastatic genes involved in the aggressive nature of the disease and its poor prognosis will result in the development of new treatment modalities for improved management of PC. There is a deep interest in understanding underlying disease pathology, identifying key prognostic genes, and genes associated with metastasis. Computational approaches, which have become increasingly relevant over the last decade, are commonly used to explore such interests. This review aims to address global studies that have employed global approaches to identify prognostic and metastatic genes, while highlighting their methods and limitations. A panel of 48 prognostic genes were identified across these studies, but only five, including ANLN, ARNTL2, PLAU, TOP2A, and VCAN, were validated in multiple studies and associated with metastasis. Their association with metastasis has been further explored here, and the implications of these genes in the metastatic cascade have been interpreted.
Collapse
Affiliation(s)
- Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
23
|
Abstract
FAK, a nonreceptor tyrosine kinase, has been recognized as a novel target class for the development of targeted anticancer agents. Overexpression of FAK is a common occurrence in several solid tumors, in which the kinase has been implicated in promoting metastases. Consequently, designing and developing potent FAK inhibitors is becoming an attractive goal, and FAK inhibitors are being recognized as a promising tool in our armamentarium for treating diverse cancers. This review comprehensively summarizes the different classes of synthetically derived compounds that have been reported as potent FAK inhibitors in the last three decades. Finally, the future of FAK-targeting smart drugs that are designed to slow down the emergence of drug resistance is discussed.
Collapse
|
24
|
CEP55 Positively Affects Tumorigenesis of Esophageal Squamous Cell Carcinoma and Is Correlated with Poor Prognosis. JOURNAL OF ONCOLOGY 2021; 2021:8890715. [PMID: 34104194 PMCID: PMC8159646 DOI: 10.1155/2021/8890715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/16/2021] [Accepted: 03/27/2021] [Indexed: 01/19/2023]
Abstract
Centrosomal protein 55 (CEP55) is a centrosome- and midbody-associated protein that is overexpressed in several cancers. However, the underlying molecular mechanism of CEP55-mediated progression and metastasis of esophageal squamous cell carcinoma (ESCC) is not clear. In the current study, we detected CEP55 mRNA by qRT-PCR while protein expression was detected by western blot analysis and immunohistochemistry (IHC). In addition, we knocked down CEP55 and investigated the ability of CEP55 to affect colony formation and migration. Here, we report that CEP55 mRNA and protein expression was significantly increased in ESCC. IHC staining showed that CEP55 expression correlated with TNM stage (p=0.046) and lymph node metastases (p=0.024). According to overall survival (OS) and disease-free survival (DFS), patients whose tumors expressed a higher level of CEP55 had a poorer prognosis than those with low expression level of CEP55. A multivariate analysis revealed that CEP55 expression was an independent prognostic indicator for patients with ESCC. Knockdown of CEP55 decreased the colony formation ability and migration of ESCC cells and also reduced the phosphorylation of Src, FAK, and ERK. Therefore, our study implied that CEP55 may be a valuable biomarker and a potential target in the treatment of patients with ESCC.
Collapse
|
25
|
Zhuang H, Chen X, Dong F, Zhang Z, Zhou Z, Ma Z, Huang S, Chen B, Zhang C, Hou B. Prognostic values and immune suppression of the S100A family in pancreatic cancer. J Cell Mol Med 2021; 25:3006-3018. [PMID: 33580614 PMCID: PMC7957204 DOI: 10.1111/jcmm.16343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
S100 calcium‐binding protein A (S100A) family members regulate multiple biological functions related to pancreatic cancer (PC) progression and metastasis. However, the prognostic and oncologic values of S100A family have not been systematically investigated in PC. In the present study, the mRNA expression and potential functions of S100A family were investigated by bioinformatic analysis. Our results demonstrated that overexpression of S100A2, S100A6, S100A10, S100A11, S100A14 and S100A16 was significantly associated with higher T stage, advanced histologic grade and worse prognosis in PC. Besides, one CpG of S100A2, three CpG of S100A6, four CpG of S100A10, four CpG of S100A11, two CpG of S100A14 and five CpG of S100A16 were negatively associated with corresponding S100A family members expression and positively associated with overall survival (OS). The signature based on four CpGs showed good prediction ability of OS. Besides, S100A2 overexpression took part in the regulation of mitotic cell cycle, ECM‐receptor interaction and HIF‐1α transcription factor network. Overexpression of S100A6, S100A10, S100A11, S100A14 and S100A16 may impair the infiltration and cytolytic activity of CD8+ T cells through focal adhesion‐Ras‐stimulating signalling pathway in PC. Overall, this study explores the multiple prognostic values and oncologic functions of the S100A family in PC.
Collapse
Affiliation(s)
- Hongkai Zhuang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Xinming Chen
- Department of Hepatobiliary Surgery, Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Fengying Dong
- Forth Department of Geriatrics, General Hospital of Southern Theater Command, Pla, Guangzhou, China
| | - Zedan Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
26
|
Beta 1 integrin signaling mediates pancreatic ductal adenocarcinoma resistance to MEK inhibition. Sci Rep 2020; 10:11133. [PMID: 32636409 PMCID: PMC7340786 DOI: 10.1038/s41598-020-67814-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer, one of the deadliest human malignancies, has a dismal 5-year survival rate of 9%. KRAS is the most commonly mutated gene in pancreatic cancer, but clinical agents that directly target mutant KRAS are not available. Several effector pathways are activated downstream of oncogenic Kras, including MAPK signaling. MAPK signaling can be inhibited by targeting MEK1/2; unfortunately, this approach has been largely ineffective in pancreatic cancer. Here, we set out to identify mechanisms of MEK inhibitor resistance in pancreatic cancer. We optimized the culture of pancreatic tumor 3D clusters that utilized Matrigel as a basement membrane mimetic. Pancreatic tumor 3D clusters recapitulated mutant KRAS dependency and recalcitrance to MEK inhibition. Treatment of the clusters with trametinib, a MEK inhibitor, had only a modest effect on these cultures. We observed that cells adjacent to the basement membrane mimetic Matrigel survived MEK inhibition, while the cells in the interior layers underwent apoptosis. Our findings suggested that basement membrane attachment provided survival signals. We thus targeted integrin β1, a mediator of extracellular matrix contact, and found that combined MEK and integrin β1 inhibition bypassed trametinib resistance. Our data support exploring integrin signaling inhibition as a component of combination therapy in pancreatic cancer.
Collapse
|
27
|
Rocha-Brito KJP, Fonseca EMB, Oliveira BGDF, Fátima ÂD, Ferreira-Halder CV. Calix[6]arene diminishes receptor tyrosine kinase lifespan in pancreatic cancer cells and inhibits their migration and invasion efficiency. Bioorg Chem 2020; 100:103881. [PMID: 32388429 DOI: 10.1016/j.bioorg.2020.103881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is a challenging malignancy, mainly due to aggressive regional involvement, early systemic dissemination, high recurrence rate, and subsequent low patient survival. Scientific advances have contributed in particular by identification of molecular targets as well as the definition of the mechanism of action of the drug candidate in the cellular microenvironment. Previously, we have reported the identification of the molecular mechanisms by which calix[6]arene (CLX6) reduces the viability and proliferation of pancreatic cancer cells. Now, we show the biochemical mechanisms by which CLX6 decreases the aggressiveness of Panc-1 cells, focusing specifically on receptor tyrosine kinases (RTK). The results show that clathrin-mediated endocytosis is involved in CLX6-induced AXL receptor tyrosine kinase degradation in Panc-1 cells. This response may be related to the interaction of CLX6 with the tyrosine kinase receptor binding site (such as AXL). As a result, RTK is internalized and degraded by endocytosis, a condition that negatively impacts events dependent on its signaling. Additionally, CLX6 inhibits migration and invasion of Panc-1 cells by downregulating FAK (downstream mediator of AXL) activity and reducing expression levels of MMP2 and MMP9, directly related to the metastatic profile of these cells. It is noteworthy that according to the mechanism proposed here, CLX6 appears as a candidate to be used in therapeutic protocols of patients that display high expression of AXL and consequently, poor diagnosis.
Collapse
Affiliation(s)
- Karin Juliane Pelizzaro Rocha-Brito
- Department of Biochemistry and Tissue Biology, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil; Department of Medicine, Health Sciences Center, University Center of Maringá, Maringá, Paraná, Brazil
| | - Emanuella Maria Barreto Fonseca
- Department of Biochemistry and Tissue Biology, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil; Federal Institute of Education, Science and Technology of São Paulo, São Roque, São Paulo, Brazil
| | | | - Ângelo de Fátima
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
28
|
Qin X, Song Y. Bioinformatics Analysis Identifies the Estrogen Receptor 1 (ESR1) Gene and hsa-miR-26a-5p as Potential Prognostic Biomarkers in Patients with Intrahepatic Cholangiocarcinoma. Med Sci Monit 2020; 26:e921815. [PMID: 32435051 PMCID: PMC7257878 DOI: 10.12659/msm.921815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma arises from the epithelial cells of the bile ducts and is associated with poor prognosis. This study aimed to use bioinformatics analysis to identify molecular biomarkers of intrahepatic cholangiocarcinoma and their potential mechanisms. Material/Methods MicroRNA (miRNA) and mRNA microarrays from GSE53870 and GSE32879 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEMs) associated with prognosis were identified using limma software and Kaplan-Meier survival analysis. Predictive target genes of the DEMs were identified using miRWalk, miRTarBase, miRDB, and TargetScan databases of miRNA-binding sites and targets. Target genes underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Hub genes were analyzed by constructing the protein-protein interaction (PPI) network using Cytoscape. DEMs validated the hub genes, followed by construction of the miRNA-gene regulatory network. Results Twenty-five DEMs were identified. Fifteen DEMs were upregulated, and ten were down-regulated. Kaplan-Meier survival analysis identified seven upregulated DEMs and nine down-regulated DEMs that were associated with the overall survival (OS), and 130 target genes were selected. GO analysis showed that target genes were mainly enriched for metabolism and development processes. KEGG analysis showed that target genes were mainly enriched for cancer processes and some signaling pathways. Fourteen hub genes identified from the PPI network were associated with the regulation of cell proliferation. The overlap between hub genes and DEMs identified the estrogen receptor 1 (ESR1) gene and hsa-miR-26a-5p. Conclusions Bioinformatics analysis identified ESR1 and hsa-miR-26a-5p as potential prognostic biomarkers for intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Xianzheng Qin
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yuning Song
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
29
|
Gao Y, Zhang S, Zhang Y, Qian J. Identification of MicroRNA-Target Gene-Transcription Factor Regulatory Networks in Colorectal Adenoma Using Microarray Expression Data. Front Genet 2020; 11:463. [PMID: 32508878 PMCID: PMC7248367 DOI: 10.3389/fgene.2020.00463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Objective The aim of the study was to find the key genes, microRNAs (miRNAs) and transcription factors (TFs) and construct miRNA-target gene-TF regulatory networks to investigate the underlying molecular mechanism in colorectal adenoma (CRA). Methods Four mRNA expression datasets and one miRNA expression dataset were downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) were identified between CRA and normal samples. Moreover, functional enrichment analysis for DEGs was carried out utilizing the Cytoscape-plugin, known as ClueGO. These DEGs were mapped to STRING database to construct a protein-protein interaction (PPI) network. Then, a miRNA-target gene regulatory network was established to screen key DEMs. In addition, similar workflow of the analyses were also performed comparing the CRC samples with CRA ones to screen key DEMs. Finally, miRNA-target gene-TF regulatory networks were constructed for these key DEMs using iRegulon plug-in in Cytoscape. Results We identified 514 DEGs and 167 DEMs in CRA samples compared to healthy samples. Functional enrichment analysis revealed that these DEGs were significantly enriched in several terms and pathways, such as regulation of cell migration and bile secretion pathway. A PPI network was constructed including 325 nodes as well as 890 edges. A total of 59 DEGs and 65 DEMs were identified in CRC samples compared to CRA ones. In addition, Two key DEMs in CRA samples compared to healthy samples were identified, such as hsa-miR-34a and hsa-miR-96. One key DEM, hsa-miR-29c, which was identified when we compared the differentially expressed molecules found in the comparison CRA versus normal samples to the ones obtained in the comparison CRC versus CRA, was also identified in CRC samples compared to CRA ones. The miRNA-target gene-TF regulatory networks for these key miRNAs included two TFs, one TF and five TFs, respectively. Conclusion These identified key genes, miRNA, TFs and miRNA-target gene-TF regulatory networks associated with CRA, to a certain degree, may provide some hints to enable us to better understand the underlying pathogenesis of CRA.
Collapse
Affiliation(s)
- Yadong Gao
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Shenglai Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Yan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Junbo Qian
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| |
Collapse
|
30
|
Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane. Commun Biol 2020; 3:117. [PMID: 32170110 PMCID: PMC7070051 DOI: 10.1038/s42003-020-0843-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 02/21/2020] [Indexed: 01/14/2023] Open
Abstract
Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated endocytosis of integrin-β3. Integrin-β3 and RGD ligand are endocytosed from the podosome and sorted into the endosomal compartment. Inhibitions of podosome formation and knockdowns of Dab2 and clathrin reduce RGD endocytosis. F-actin assembly at the podosome core exhibits protrusive contact towards the substrate and results in plasma membrane invaginations at the podosome ring. BIN1 specifically associates with the region of invaginated membrane and recruits DNM2. During the podosome formation, BIN1 and DNM2 synchronously enrich at the podosome ring and trigger clathrin dissociation and RGD endocytosis. Knockdowns of BIN1 and DNM2 suppress RGD endocytosis. Thus, plasma membrane invagination caused by F-actin polymerization promotes BIN1-dependent DNM2 recruitment and facilitate integrin-β3 endocytosis at the podosome.
Collapse
|
31
|
Jing Y, Liang W, Liu J, Zhang L, Wei J, Zhu Y, Yang J, Ji K, Zhang Y, Huang Z. Stress-induced phosphoprotein 1 promotes pancreatic cancer progression through activation of the FAK/AKT/MMP signaling axis. Pathol Res Pract 2019; 215:152564. [PMID: 31547977 DOI: 10.1016/j.prp.2019.152564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dependent on the extent of adenosine triphosphate (ATP) hydrolysis and/or ATP/ADP exchange, the stress-induced phosphoprotein 1 (STIP1) mediates molecular interaction and complex formation between the molecular chaperones heat shock protein (Hsp)70 and Hsp90. The overexpression of STIP1 is increasingly being documented in various human malignancies, including ovarian, cholangiocellular, renal and gastric cancers. However, the role of STIP1 in pancreatic cancer (PANC) and probable molecular mechanism remains largely unexplored. METHODS & RESULTS In the present study, using clinical samples (n = 88) and human PANC cell lines PANC-1, Capan-2, SW1990, and BxPC-3, we demonstrated that STIP1 is aberrantly expressed in human PANC tissues or cell lines compared to adjacent non-tumor pancreas samples or human pancreatic duct epithelial cells (HPDEC), respectively. Clinicopathological correlation studies revealed significant positive correlation between high STIP1 expression and lymph node involvement (p = 0.001), cancer metastasis (p = 0.002), microvascular invasion (p = 0.002), advance TNM stage (p = 0.024), perineural invasion (PNI; p = 0.013), and cancer-related death (p = 0.002) among patients with PANC. Univariate and multivariate analyses indicate that STIP1overexpression is an independent prognostic factor of PANC. Furthermore, STIP1 knockdown significantly inhibit the migration and invasive ability of PANC-1 and SW1990 cells, while downregulating N-cadherin and Vimentin, but upregulating E-cadherin mRNA expression levels, concurrently. We also demonstrated that STIP1 knockdown suppressed p-FAK, p-AKT, MMP2, MMP9, and Slug protein and mRNA expression levels, thus, indicating, at least in part, a role for STIP1 in the activation of FAK/AKT/MMP signaling. CONCLUSION Taken together, our results demonstrate a critical role for STIP1 in cancer metastasis, disease progression and poor prognosis, as well as, provide evidence suggestive of the therapeutic efficacy of STIP1-mediated targeting of the FAK/AKT/MMP signaling axis in patients with PANC.
Collapse
Affiliation(s)
- Yuanming Jing
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Wenqing Liang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Jian Liu
- Department of Hepatobiliary Surgery, Shanghai Oriental Hepatobiliary Hospital, Shanghai 200438, PR China
| | - Lin Zhang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Jianguo Wei
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Yafang Zhu
- Department of Endoscopy Center, Affiliated Hospital of Shaoxing College of Arts and Sciences (Shaoxing Municipal Hospital), Shaoxing 312000, Zhejiang Province, PR China
| | - Jianhui Yang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Kewei Ji
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Zongliang Huang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China.
| |
Collapse
|
32
|
Yeo MS, Subhash VV, Suda K, Balcıoğlu HE, Zhou S, Thuya WL, Loh XY, Jammula S, Peethala PC, Tan SH, Xie C, Wong FY, Ladoux B, Ito Y, Yang H, Goh BC, Wang L, Yong WP. FBXW5 Promotes Tumorigenesis and Metastasis in Gastric Cancer via Activation of the FAK-Src Signaling Pathway. Cancers (Basel) 2019; 11:cancers11060836. [PMID: 31213005 PMCID: PMC6627937 DOI: 10.3390/cancers11060836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
F-box/WD repeat-containing protein 5 (FBXW5) is a member of the FBXW subclass of F-box proteins. Despite its known function as a component of the Skp1-Cullin-F-box (SCF) ubiquitin ligase complex, the role of FBXW5 in gastric cancer tumorigenesis and metastasis has not been investigated. The present study investigates the role of FBXW5 in tumorigenesis and metastasis, as well as the regulation of key signaling pathways in gastric cancer; using in-vitro FBXW5 knockdown/overexpression cell line and in-vivo models. In-vitro knockdown of FBXW5 results in a decrease in cell proliferation and cell cycle progression, with a concomitant increase in cell apoptosis and caspase-3 activity. Furthermore, knockdown of FBXW5 also leads to a down regulation in cell migration and adhesion, characterized by a reduction in actin polymerization, focal adhesion turnover and traction forces. This study also delineates the mechanistic role of FBXW5 in oncogenic signaling as its inhibition down regulates RhoA-ROCK 1 (Rho-associated protein kinase 1) and focal adhesion kinase (FAK) signaling cascades. Overexpression of FBXW5 promotes in-vivo tumor growth, whereas its inhibition down regulates in-vivo tumor metastasis. When considered together, our study identifies the novel oncogenic role of FBXW5 in gastric cancer and draws further interest regarding its clinical utility as a potential therapeutic target.
Collapse
Affiliation(s)
- Mei Shi Yeo
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
| | - Vinod Vijay Subhash
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Lowy Cancer Research Centre, University of New South Wales, Sydney 20152, Australia.
| | - Kazuto Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Hayri Emrah Balcıoğlu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Siqin Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Xin Yi Loh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Sriganesh Jammula
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, UK.
| | - Praveen C Peethala
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Shi Hui Tan
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
| | - Chen Xie
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
| | - Foong Ying Wong
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, CEDEX 13, 75205 Paris, France.
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
33
|
Cheng YH, Chen YC, Lin E, Brien R, Jung S, Chen YT, Lee W, Hao Z, Sahoo S, Min Kang H, Cong J, Burness M, Nagrath S, S Wicha M, Yoon E. Hydro-Seq enables contamination-free high-throughput single-cell RNA-sequencing for circulating tumor cells. Nat Commun 2019; 10:2163. [PMID: 31092822 PMCID: PMC6520360 DOI: 10.1038/s41467-019-10122-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/16/2019] [Indexed: 01/06/2023] Open
Abstract
Molecular analysis of circulating tumor cells (CTCs) at single-cell resolution offers great promise for cancer diagnostics and therapeutics from simple liquid biopsy. Recent development of massively parallel single-cell RNA-sequencing (scRNA-seq) provides a powerful method to resolve the cellular heterogeneity from gene expression and pathway regulation analysis. However, the scarcity of CTCs and the massive contamination of blood cells limit the utility of currently available technologies. Here, we present Hydro-Seq, a scalable hydrodynamic scRNA-seq barcoding technique, for high-throughput CTC analysis. High cell-capture efficiency and contamination removal capability of Hydro-Seq enables successful scRNA-seq of 666 CTCs from 21 breast cancer patient samples at high throughput. We identify breast cancer drug targets for hormone and targeted therapies and tracked individual cells that express markers of cancer stem cells (CSCs) as well as of epithelial/mesenchymal cell state transitions. Transcriptome analysis of these cells provides insights into monitoring target therapeutics and processes underlying tumor metastasis.
Collapse
Affiliation(s)
- Yu-Heng Cheng
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA.,Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Eric Lin
- Department of Chemical Engineering, University of Michigan, 2300 Hayward St, Ann Arbor, MI, 48109, USA
| | - Riley Brien
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
| | - Seungwon Jung
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA.,Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Yu-Ting Chen
- Computer Science Department UCLA, Boelter Hall, Los Angeles, CA, 90095-1596, USA
| | - Woncheol Lee
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
| | - Zhijian Hao
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
| | - Saswat Sahoo
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA
| | - Hyun Min Kang
- School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
| | - Jason Cong
- Computer Science Department UCLA, Boelter Hall, Los Angeles, CA, 90095-1596, USA
| | - Monika Burness
- Rogel Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, 2300 Hayward St, Ann Arbor, MI, 48109, USA
| | - Max S Wicha
- Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA. .,Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA.
| |
Collapse
|
34
|
Li BQ, Liang ZY, Seery S, Liu QF, You L, Zhang TP, Guo JC, Zhao YP. WT1 associated protein promotes metastasis and chemo-resistance to gemcitabine by stabilizing Fak mRNA in pancreatic cancer. Cancer Lett 2019; 451:48-57. [PMID: 30851419 DOI: 10.1016/j.canlet.2019.02.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
WT1 associated protein (WTAP), playing an important role in several malignancies owing to its complex function in transcriptional and post-transcriptional regulation, is an independent prognostic indicator for pancreatic cancer (PC). However, its specific role and underlying mechanism in PC remain unclear. In the present study, we found that WTAP could promote migration/invasion and suppress chemo-sensitivity to gemcitabine in PC. Further mechanical investigation revealed that WTAP could bind to and stabilize Fak mRNA which in turn activated the Fak-PI3K-AKT and Fak-Src-GRB2-Erk1/2 signaling pathways. In addition, GSK2256098, a specific Fak inhibitor, could reverse WTAP-mediated chemo-resistance to gemcitabine and metastasis in PC. Taken together, Fak inhibitor might be a promising therapeutic option for PC patients with WTAP overexpression.
Collapse
Affiliation(s)
- Bing-Qi Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Samuel Seery
- School of Humanities and Social Sciences, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Qiao-Fei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Tai-Ping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Jun-Chao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Yu-Pei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| |
Collapse
|
35
|
Hlavac N, VandeVord PJ. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol 2019; 10:99. [PMID: 30853931 PMCID: PMC6395392 DOI: 10.3389/fneur.2019.00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Primary blast neurotrauma represents a unique injury paradigm characterized by high-rate overpressure effects on brain tissue. One major hallmark of blast neurotrauma is glial reactivity, notably prolonged astrocyte activation. This cellular response has been mainly defined in primary blast neurotrauma by increased intermediate filament expression. Because the intermediate filament networks physically interface with transmembrane proteins for junctional support, it was hypothesized that cell junction regulation is altered in the reactive phenotype as well. This would have implications for downstream transcriptional regulation via signal transduction pathways like nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Therefore, a custom high-rate overpressure simulator was built for in vitro testing using mechanical conditions based on intracranial pressure measurements in a rat model of blast neurotrauma. Primary rat astrocytes were exposed to isolated high-rate mechanical stimulation to study cell junction dynamics in relation to their mechano-activation. First, a time course for "classical" features of reactivity was devised by evaluation of glial fibrillary acidic protein (GFAP) and proliferating cell nuclear antigen (PCNA) expression. This was followed by gene and protein expression for both gap junction (connexins) and anchoring junction proteins (integrins and cadherins). Signal transduction analysis was carried out by nuclear localization of two molecules, NF-κB p65 and mitogen-activated protein kinase (MAPK) p38. Results indicated significant increases in connexin-43 expression and PCNA first at 24 h post-overpressure (p < 0.05), followed by structural reactivity (via increased GFAP, p < 0.05) corresponding to increased anchoring junction dynamics at 48 h post-overpressure (p < 0.05). Moreover, increased phosphorylation of focal adhesion kinase (FAK) was observed in addition to increased nuclear localization of both p65 and p38 (p < 0.05) during the period of structural reactivity. To evaluate the transcriptional activity of p65 in the nucleus, electrophoretic mobility shift assay was conducted for a binding site on the promoter region for intracellular adhesion molecule-1 (ICAM-1), an antagonist of tight junctions. A significant increase in the interaction of nuclear proteins with the NF-κB site on the ICAM-1 corresponded to increased gene and protein expression of ICAM-1 (p < 0.05). Altogether, these results indicate multiple targets and corresponding signaling pathways which involve cell junction dynamics in the mechano-activation of astrocytes following high-rate overpressure.
Collapse
Affiliation(s)
- Nora Hlavac
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, VA, United States
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, VA, United States.,Department of Research, Salem Veterans Affairs Medical Center, Salem, VA, United States
| |
Collapse
|
36
|
Long L, Li Y, Yu S, Li X, Hu Y, Long T, Wang L, Li W, Ye X, Ke Z, Xiao H. Scutellarin Prevents Angiogenesis in Diabetic Retinopathy by Downregulating VEGF/ERK/FAK/Src Pathway Signaling. J Diabetes Res 2019; 2019:4875421. [PMID: 31976335 PMCID: PMC6949683 DOI: 10.1155/2019/4875421] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a serious microvascular complication of diabetes. This study demonstrates the antiangiogenic effects of scutellarin (SCU) on high glucose- and hypoxia-stimulated human retinal endothelial cells (HRECs) and on a diabetic rat model by oral administration. The antiangiogenic mechanisms of SCU in vitro and in vivo were investigated. METHOD HRECs were cultured in high glucose- (30 mM D-glucose) and hypoxia (cobalt chloride-treated)-stimulated diabetic condition to evaluate the antiangiogenic effects of SCU by CCK-8 test, cell migration experiment (wound healing and transwell), and tube formation experiment. A streptozotocin-induced type II diabetic rat model was established to measure the effects of oral administration of SCU on protecting retinal microvascular dysfunction by Doppler waveforms and HE staining. We further used western blot, luciferase reporter assay, and immunofluorescence staining to study the antiangiogenic mechanism of SCU. The protein levels of phospho-ERK, phospho-FAK, phospho-Src, VEGF, and PEDF were examined in HRECs and retina of diabetic rats. RESULT Our results indicated that SCU attenuated diabetes-induced HREC proliferation, migration, and tube formation and decreased neovascularization and resistive index in the retina of diabetic rats by oral administration. SCU suppressed the crosstalk of phospho-ERK, phospho-FAK, phospho-Src, and VEGF in vivo and in vitro. CONCLUSIONS These results suggested that SCU can be an oral drug to alleviate microvascular dysfunction of DR and exerts its antiangiogenic effects by inhibiting the expression of the crosstalk of VEGF, p-ERK, p-FAK, and p-Src.
Collapse
Affiliation(s)
- Lingli Long
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yubin Li
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Hu
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tengfei Long
- Department of Gynaecology and Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Liqin Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenwen Li
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxin Ye
- University of New South Wales, Sydney, High St. Kensington, NSW, Australia
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
37
|
Lai YC, Huang KH, Chen MH, Chao Y, Lo SS, Li AFY, Wu CW, Shyr YM, Fang WL. The Clinical Implication of PTEN and FAK Expression in Gastric Cancer Patients. Int Surg 2019; 104:48-57. [DOI: 10.9738/intsurg-d-19-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Objective:
The tumor suppressor gene phosphatase and tensin homolog (PTEN) was reported to inhibit the growth and invasion of gastric cancer (GC) via the downregulation of focal adhesion kinase (FAK). To date, the clinical implication of PTEN and FAK expression in GC has not been well addressed.
Methods:
A total of 200 GC patients receiving curative surgery were enrolled. The clinicopathologic features according to the expression of PTEN and FAK protein using immunohistochemical staining were compared among patients.
Results:
Patients with high PTEN expression were more likely to have smaller tumor size, more well- and moderately differentiated tumors, a more superficial gross appearance, less scirrhous stromal reactions, more likely to have high FAK expression, and have less advanced pathologic tumor (T) category, node (N) category, and tumor, node, metastasis (TNM) stage and more distant metastases than patients with low PTEN expression. Multivariate analysis showed that PTEN/FAK expression status is an independent prognostic factor affecting overall survival (OS) and disease-free survival (DFS). Patients with PTEN(high)/FAK(low) had better OS and DFS, followed by those with PTEN(high)/FAK(high), those with PTEN(low)/FAK(low), and those with PTEN(low)/FAK(high) (OS: 83.3% versus 58.0% versus 46.2% versus 26.5%, respectively, P < 0.001; DFS: 83.3% versus 55.8% versus 30.8% versus 24.4%, respectively, P < 0.001).
Conclusions:
GC patients with high PTEN expression were more likely to have fewer tumor recurrences and a better prognosis than those with low PTEN expression. PTEN and FAK may have opposing effects on GC patient survival. Our results may have clinical impact on treatment of GC patients.
Collapse
Affiliation(s)
- Yi-Chen Lai
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Hung Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Huang Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Su-Shun Lo
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- National Yang-Ming University Hospital, Yilan, Taiwan
| | - Anna Fen-Yau Li
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chew-Wun Wu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ming Shyr
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Liang Fang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
38
|
Mechanisms of Matrix-Induced Chemoresistance of Breast Cancer Cells-Deciphering Novel Potential Targets for a Cell Sensitization. Cancers (Basel) 2018; 10:cancers10120495. [PMID: 30563275 PMCID: PMC6315379 DOI: 10.3390/cancers10120495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor cell binding to microenvironment components such as collagen type 1 (COL1) attenuates the sensitivity to cytotoxic drugs like cisplatin (CDDP) or mitoxantrone (MX), referred to as cell adhesion mediated drug resistance (CAM-DR). CAM-DR is considered as the onset for resistance mutations, but underlying mechanisms remain elusive. To evaluate CAM-DR as target for sensitization strategies, we analyzed signaling pathways in human estrogen-positive MCF-7 and triple-negative MDA-MB-231 breast cancer cells by western blot, proteome profiler array and TOP-flash assay in presence of COL1. β1-Integrins, known to bind COL1, appear as key for mediating COL1-related resistance in both cell lines that primarily follows FAK/PI3K/AKT pathway in MCF-7, and MAPK pathway in MDA-MB-231 cells. Notably, pCREB is highly elevated in both cell lines. Consequently, blocking these pathways sensitizes the cells evidently to CDDP and MX treatment. Wnt signaling is not relevant in this context. A β1-integrin knockdown of MCF-7 cells (MCF-7-β1-kd) reveals a signaling shift from FAK/PI3K/AKT to MAPK pathway, thus CREB emerges as a promising primary target for sensitization in MDA-MB-231, and secondary target in MCF-7 cells. Concluding, we provide evidence for importance of CAM-DR in breast cancer cells and identify intracellular signaling pathways as targets to sensitize cells for cytotoxicity treatment regimes.
Collapse
|
39
|
Basu A, Upadhyay P, Ghosh A, Chattopadhyay D, Adhikary A. Folic-Acid-Adorned PEGylated Graphene Oxide Interferes with the Cell Migration of Triple Negative Breast Cancer Cell Line, MDAMB-231 by Targeting miR-21/PTEN Axis through NFκB. ACS Biomater Sci Eng 2018; 5:373-389. [DOI: 10.1021/acsbiomaterials.8b01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arijita Basu
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Priyanka Upadhyay
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Avijit Ghosh
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
40
|
Live-Cell FRET Imaging Reveals a Role of Extracellular Signal-Regulated Kinase Activity Dynamics in Thymocyte Motility. iScience 2018; 10:98-113. [PMID: 30508722 PMCID: PMC6277225 DOI: 10.1016/j.isci.2018.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) plays critical roles in T cell development in the thymus. Nevertheless, the dynamics of ERK activity and the role of ERK in regulating thymocyte motility remain largely unknown due to technical limitations. To visualize ERK activity in thymocytes, we here developed knockin reporter mice expressing a Förster/fluorescence resonance energy transfer (FRET)-based biosensor for ERK from the ROSA26 locus. Live imaging of thymocytes isolated from the reporter mice revealed that ERK regulates thymocyte motility in a subtype-specific manner. Negative correlation between ERK activity and motility was observed in CD4/CD8 double-positive thymocytes and CD8 single-positive thymocytes, but not in CD4 single-positive thymocytes. Interestingly, however, the temporal deviations of ERK activity from the average correlate with the motility of CD4 single-positive thymocytes. Thus, live-cell FRET imaging will open a window to understanding the dynamic nature and the diverse functions of ERK signaling in T cell biology. Mice expressing EKAREV from ROSA26 locus enable ERK activity monitoring in T cells ERK activity negatively regulates the motility of thymocytes in the thymus Temporal dynamics of ERK activity regulates cell motility of CD4-SP in the medulla TCR signal from intercellular association induces ERK activity dynamics in CD4-SP
Collapse
|
41
|
Becerra-Bayona SM, Guiza-Arguello VR, Russell B, Höök M, Hahn MS. Influence of collagen-based integrin α 1 and α 2 mediated signaling on human mesenchymal stem cell osteogenesis in three dimensional contexts. J Biomed Mater Res A 2018; 106:2594-2604. [PMID: 29761640 PMCID: PMC7147932 DOI: 10.1002/jbm.a.36451] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 01/04/2023]
Abstract
Collagen I interactions with integrins α1 and α2 are known to support human mesenchymal stem cell (hMSC) osteogenesis. Nonetheless, elucidating the relative impact of specific integrin interactions has proven challenging, in part due to the complexity of native collagen. In the present work, we employed two collagen-mimetic proteins-Scl2-2 and Scl2-3- to compare the osteogenic effects of integrin α1 versus α2 signaling. Scl2-2 and Scl2-3 were both derived from Scl2-1, a triple helical protein lacking known cell adhesion, cytokine binding, and matrix metalloproteinase sites. However, Scl2-2 and Scl2-3 were each engineered to display distinct collagen-based cell adhesion motifs: GFPGER (binding integrins α1 and α2 ) or GFPGEN (binding only integrin α1 ), respectively. hMSCs were cultured within poly(ethylene glycol) (PEG) hydrogels containing either Scl2-2 or Scl2-3 for 2 weeks. PEG-Scl2-2 gels were associated with increased hMSC osterix expression, osteopontin production, and calcium deposition relative to PEG-Scl2-3 gels. These data indicate that integrin α2 signaling may have an increased osteogenic effect relative to integrin α1 . Since p38 is activated by integrin α2 but not by integrin α1 , hMSCs were further cultured in PEG-Scl2-2 hydrogels in the presence of a p38 inhibitor. Results suggest that p38 activity may play a key role in collagen-supported hMSC osteogenesis. This knowledge can be used toward the rational design of scaffolds which intrinsically promote hMSC osteogenesis. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2594-2604, 2018.
Collapse
Affiliation(s)
- Silvia M Becerra-Bayona
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Viviana R Guiza-Arguello
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Brooke Russell
- Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas, 77030-3303
| | - Magnus Höök
- Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas, 77030-3303
| | - Mariah S Hahn
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180
| |
Collapse
|
42
|
Zhang H, Zeng J, Tan Y, Lu L, Sun C, Liang Y, Zou H, Yang X, Tan Y. Subgroup analysis reveals molecular heterogeneity and provides potential precise treatment for pancreatic cancers. Onco Targets Ther 2018; 11:5811-5819. [PMID: 30254473 PMCID: PMC6140745 DOI: 10.2147/ott.s163139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background The relationship between molecular heterogeneity and clinical features of pancreatic cancer remains unclear. In this study, pancreatic cancer was divided into different subgroups to explore its specific molecular characteristics and potential therapeutic targets. Patients and methods Expression profiling data were downloaded from The Cancer Genome Atlas database and standardized. Bioinformatics techniques such as unsupervised hierarchical clustering was used to explore the optimal molecular subgroups in pancreatic cancer. Clinical pathological features and pathways in each subgroup were also analyzed to find out the potential clinical applications and initial promotive mechanisms of pancreatic cancer. Results Pancreatic cancer was divided into three subgroups based on different gene expression features. Patients included in each subgroup had specific biological features and responded significantly different to chemotherapy. Conclusion Three distinct subgroups of pancreatic cancer were identified, which means that patients in each subgroup might benefit from targeted individual management.
Collapse
Affiliation(s)
- Heying Zhang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Juan Zeng
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | | | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Cheng Sun
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Yusi Liang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yonggang Tan
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| |
Collapse
|
43
|
Liu M, Yang J, Zhang Y, Zhou Z, Cui X, Zhang L, Fung KM, Zheng W, Allard FD, Yee EU, Ding K, Wu H, Liang Z, Zheng L, Fernandez-Zapico ME, Li YP, Bronze MS, Morris KT, Postier RG, Houchen CW, Yang J, Li M. ZIP4 Promotes Pancreatic Cancer Progression by Repressing ZO-1 and Claudin-1 through a ZEB1-Dependent Transcriptional Mechanism. Clin Cancer Res 2018; 24:3186-3196. [PMID: 29615456 PMCID: PMC7006048 DOI: 10.1158/1078-0432.ccr-18-0263] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
Purpose: ZIP4 is overexpressed in human pancreatic cancer and promotes tumor growth. However, little is known about the role of ZIP4 in advanced stages of this dismal neoplasm. Our goal is to study the underlying mechanism and define a novel signaling pathway controlled by ZIP4-modulating pancreatic tumor metastasis.Experimental Design: The expression of ZIP4, ZO-1, claudin-1, and ZEB1 in human pancreatic cancer tissues, genetically engineered mouse model, xenograft tumor model, and pancreatic cancer cell lines were examined, and the correlations between ZIP4 and those markers were also analyzed. Functional analysis of ZO-1, claudin-1, and ZEB1 was investigated in pancreatic cancer cell lines and orthotopic xenografts.Results: Genetic inactivation of ZIP4 inhibited migration and invasion in pancreatic cancer and increased the expression of ZO-1 and claudin-1. Conversely, overexpression of ZIP4 promoted migration and invasion and increased the expression of ZEB1 and downregulation of the aforementioned epithelial genes. ZIP4 downregulation of ZO-1 and claudin-1 requires the transcriptional repressor ZEB1. Further analysis demonstrated that ZIP4-mediated repression of ZO-1 and claudin-1 leads to upregulation of their targets FAK and Paxillin. Silencing of ZIP4 caused reduced phosphorylation of FAK and Paxillin, which was rescued by simultaneous blocking of ZO-1 or claudin-1. Clinically, we demonstrated that ZIP4 positively correlates with the levels of ZEB1 and inversely associates with the expression of ZO-1 and claudin-1.Conclusions: These findings suggest a novel pathway activated by ZIP4-controlling pancreatic cancer invasiveness and metastasis, which could serve as a new therapeutic target for this devastating disease. Clin Cancer Res; 24(13); 3186-96. ©2018 AACR.
Collapse
Affiliation(s)
- Mingyang Liu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuqing Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xiaobo Cui
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Liyang Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wei Zheng
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Felicia D Allard
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Eric U Yee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Huanwen Wu
- Department of Pathology, Peking Union Hospital, Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Hospital, Peking Union Medical College, Beijing, China
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin E Fernandez-Zapico
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, the University of Texas Medical School at Houston, Houston, Texas
| | - Michael S Bronze
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Katherine T Morris
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Russell G Postier
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Courtney W Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jing Yang
- Department of Pharmacology and Pediatrics, University of California at San Diego, La Jolla, California
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
44
|
The Tenascin-C-Derived Peptide VSWRAPTA Promotes Neuronal Branching Via Transcellular Activation of the Focal Adhesion Kinase (FAK) and the ERK1/2 Signaling Pathway In Vitro. Mol Neurobiol 2018; 56:632-647. [DOI: 10.1007/s12035-018-1108-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
|
45
|
The EBV-Encoded Oncoprotein, LMP1, Induces an Epithelial-to-Mesenchymal Transition (EMT) via Its CTAR1 Domain through Integrin-Mediated ERK-MAPK Signalling. Cancers (Basel) 2018; 10:cancers10050130. [PMID: 29723998 PMCID: PMC5977103 DOI: 10.3390/cancers10050130] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
The Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) oncogene can induce profound effects on epithelial growth and differentiation including many of the features of the epithelial-to-mesenchymal transition (EMT). To better characterise these effects, we used the well-defined Madin Darby Canine Kidney (MDCK) epithelial cell model and found that LMP1 expression in these cells induces EMT as defined by characteristic morphological changes accompanied by loss of E-cadherin, desmosomal cadherin and tight junction protein expression. The induction of the EMT phenotype required a functional CTAR1 domain of LMP1 and studies using pharmacological inhibitors revealed contributions from signalling pathways commonly induced by integrin–ligand interactions: extracellular signal-regulated kinases/mitogen-activated protein kinases (ERK-MAPK), PI3-Kinase and tyrosine kinases, but not transforming growth factor beta (TGFβ). More detailed analysis implicated the CTAR1-mediated induction of Slug and Twist in LMP1-induced EMT. A key role for β1 integrin signalling in LMP1-mediated ERK-MAPK and focal adhesion kianse (FAK) phosphorylation was observed, and β1 integrin activation was found to enhance LMP1-induced cell viability and survival. These findings support an important role for LMP1 in disease pathogenesis through transcriptional reprogramming that enhances tumour cell survival and leads to a more invasive, metastatic phenotype.
Collapse
|
46
|
Kanteti R, Mirzapoiazova T, Riehm JJ, Dhanasingh I, Mambetsariev B, Wang J, Kulkarni P, Kaushik G, Seshacharyulu P, Ponnusamy MP, Kindler HL, Nasser MW, Batra SK, Salgia R. Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma. Cancer Biol Ther 2018; 19:316-327. [PMID: 29303405 PMCID: PMC5902231 DOI: 10.1080/15384047.2017.1416937] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The non-receptor cytoplasmic tyrosine kinase, Focal Adhesion Kinase (FAK) is known to play a key role in a variety of normal and cancer cellular functions such as survival, proliferation, migration and invasion. It is highly active and overexpressed in various cancers including Pancreatic Ductal Adenocarcinoma (PDAC) and Malignant Pleural Mesothelioma (MPM). Here, initially, we demonstrate that FAK is overexpressed in both PDAC and MPM cell lines. Then we analyze effects of two small molecule inhibitors PF-573228, and PF-431396, which are dual specificity inhibitors of FAK and proline rich tyrosine kinase 2 (PYK2), as well as VS-6063, another small molecule inhibitor that specifically inhibits FAK but not PYK2 for cell growth, motility and invasion of PDAC and MPM cell lines. Treatment with PF-573228, PF-431396 and VS-6063 cells resulted in a dose-dependent inhibition of growth and anchorage-independent colony formation in both cancer cell lines. Furthermore, these compounds suppressed the phosphorylation of FAK at its active site, Y397, and functionally induced significant apoptosis and cell cycle arrest in both cell lines. Using the ECIS (Electric cell-substrate impedance sensing) system, we found that treatment of both PF compounds suppressed adherence and migration of PDAC cells on fibronectin. Interestingly, 3D-tumor organoids derived from autochthonous KC (Kras;PdxCre) mice treated with PF-573228 revealed a significant decrease in tumor organoid size and increase in organoid cell death. Taken together, our results show that FAK is an important target for mesothelioma and pancreatic cancer therapy that merit further translational studies.
Collapse
Affiliation(s)
- Rajani Kanteti
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Tamara Mirzapoiazova
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| | - Jacob J Riehm
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Immanuel Dhanasingh
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Bolot Mambetsariev
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| | - Jiale Wang
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA.,d Oncology Center, Zhujiang Hospital, Southern Medical University , Guangzhou, Guangdong Province , China
| | - Prakash Kulkarni
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| | - Garima Kaushik
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Parthasarathy Seshacharyulu
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Moorthy P Ponnusamy
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Hedy L Kindler
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Mohd W Nasser
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Surinder K Batra
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Ravi Salgia
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA.,b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| |
Collapse
|
47
|
Zhang Q, Wang H, Wei H, Zhang D. Focal adhesion kinase (FAK) is associated with poor prognosis in urinary bladder carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:831-838. [PMID: 31938172 PMCID: PMC6958047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/13/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Overexpression of the enhancer of focal adhesion kinase (FAK) protein, an intracellular tyrosine kinase protein, has been reported to be associated with biological malignancy of gastric cancer and several other tumors. The purpose of this study was to examine the expression of FAK and analyze its correlation with the clinicopathological features of human urinary bladder carcinoma. METHODS 315 archived cases of urinary bladder carcinoma were reviewed and TMAs were developed as per established procedures. Immunohistochemical staining for FAK was performed to assess the correlation between the expression profiles and the clinicopathological parameters and clinical outcome. RESULTS Protein level of FAK was up-regulated in urinary bladder carcinoma compared with adjacent non-tumor tissues. Overexpression of FAK was significantly associated with high histologic grade, angiolymphatic invasion, lymph node metastasis, myometrial invasion and cervical involvement (P < 0.05). Further multivariate analysis suggested that expression of FAK was independent prognostic indicator for urinary bladder carcinoma. These alterations in expression were also associated with greater risk of disease progression and decreased chance of carcinoma-specific survival. Kaplan-Meier analysis demonstrates that overexpression of FAK was significantly associated with decreased overall survival. CONCLUSION Overexpression of FAK corelates with well established pathologic risk factors and may predict more aggressive biologic behavior in urinary bladder carcinoma. The expression patterns of FAK correlated well with the pathologic stage, disease progression, and carcinoma-specific survival. This finding may aid in identifying more biologically aggressive carcinomas and thus patients who could benefit from more intensive adjuvant therapy.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Urology, Zhejiang Provincial People’s HospitalHangzhou, China
- People’s Hospital of Hangzhou Medical CollegeHangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceHangzhou, China
| | - Huiju Wang
- People’s Hospital of Hangzhou Medical CollegeHangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceHangzhou, China
| | - Haibing Wei
- Department of Urology, Zhejiang Provincial People’s HospitalHangzhou, China
- People’s Hospital of Hangzhou Medical CollegeHangzhou, China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People’s HospitalHangzhou, China
- People’s Hospital of Hangzhou Medical CollegeHangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceHangzhou, China
| |
Collapse
|
48
|
Genistein: Its role in metabolic diseases and cancer. Crit Rev Oncol Hematol 2017; 119:13-22. [PMID: 29065980 DOI: 10.1016/j.critrevonc.2017.09.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Genistein is an isoflavone present in soy and is known to have multiple molecular effects, such as the inhibition of inflammation, promotion of apoptosis, and modulation of steroidal hormone receptors and metabolic pathways. Since these molecular effects impact carcinogenesis, cancer propagation, obesity, osteoporosis, and metabolic syndromes, genistein plays an important role in preventing and treating common disorders. The role of genistein has not been adequately evaluated in all these clinical settings. This review summarizes some of the known molecular effects of genistein and its potential role in health maintenance and treatment.
Collapse
|
49
|
Joint L1/2-Norm Constraint and Graph-Laplacian PCA Method for Feature Extraction. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5073427. [PMID: 28470011 PMCID: PMC5392409 DOI: 10.1155/2017/5073427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/12/2017] [Accepted: 03/01/2017] [Indexed: 01/05/2023]
Abstract
Principal Component Analysis (PCA) as a tool for dimensionality reduction is widely used in many areas. In the area of bioinformatics, each involved variable corresponds to a specific gene. In order to improve the robustness of PCA-based method, this paper proposes a novel graph-Laplacian PCA algorithm by adopting L1/2 constraint (L1/2 gLPCA) on error function for feature (gene) extraction. The error function based on L1/2-norm helps to reduce the influence of outliers and noise. Augmented Lagrange Multipliers (ALM) method is applied to solve the subproblem. This method gets better results in feature extraction than other state-of-the-art PCA-based methods. Extensive experimental results on simulation data and gene expression data sets demonstrate that our method can get higher identification accuracies than others.
Collapse
|
50
|
Sun H, Zhao L, Pan K, Zhang Z, Zhou M, Cao G. Integrated analysis of mRNA and miRNA expression profiles in pancreatic ductal adenocarcinoma. Oncol Rep 2017; 37:2779-2786. [PMID: 28339085 DOI: 10.3892/or.2017.5526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/01/2016] [Indexed: 11/06/2022] Open
Abstract
In the present study, to investigate the potential molecular mechanism of pancreatic ductal adenocarcinoma (PDAC), mRNA and miRNA expression profiles were integrated for systematic analysis. Results showed that a total of 76 common differentially expressed genes (DEGs) were identified from 2 mRNA expression profiles that contained 39 tumor and 15 normal samples. Notably, the tumor and normal samples were able to be clearly classified into 4 groups based on the DEGs. mRNA‑miRNA regulation network analysis indicated that 22 out of the 76 DEGs including MUC4, RRM2 and CCL2 are regulated by 5 reported miRNAs. Survival analysis using SurvExpress database demonstrated that the common DEGs were able to significantly differentiate low- and high-risk PDAC groups in 4 datasets. In summary, various biological processes are probably involved in the development and progression of PDAC. Firstly, activation of MUC4 induces nuclear translocation of β-catenin and promotes the process of angiogenesis that provides necessary nutrition or oxygen for cancer cells. Then, RRM2 induces the invasiveness of PDAC via NF-κB. Finally, the formation of an immunosuppressive tumor microenvironment by recruiting regulatory T cells with high expression of CCL2 further promotes cancer cell proliferation and vascularization. Identification of valuable biological processes and genes can be helpful for the understanding of the molecular mechanism of PDAC.
Collapse
Affiliation(s)
- Hongwei Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Liang Zhao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Kehua Pan
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhao Zhang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Mengtao Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Guoquan Cao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|