1
|
Yin Y, Ge X, Ouyang J, Na N. Tumor-activated in situ synthesis of single-atom catalysts for O 2-independent photodynamic therapy based on water-splitting. Nat Commun 2024; 15:2954. [PMID: 38582750 PMCID: PMC11258260 DOI: 10.1038/s41467-024-46987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024] Open
Abstract
Single-atom catalysts (SACs) have attracted interest in photodynamic therapy (PDT), while they are normally limited by the side effects on normal tissues and the interference from the Tumor Microenvironment (TME). Here we show a TME-activated in situ synthesis of SACs for efficient tumor-specific water-based PDT. Upon reduction by upregulated GSH in TME, C3N4-Mn SACs are obtained in TME with Mn atomically coordinated into the cavity of C3N4 nanosheets. This in situ synthesis overcomes toxicity from random distribution and catalyst release in healthy tissues. Based on the Ligand-to-Metal charge transfer (LMCT) process, C3N4-Mn SACs exhibit enhanced absorption in the red-light region. Thereby, a water-splitting process is induced by C3N4-Mn SACs under 660 nm irradiation, which initiates the O2-independent generation of highly toxic hydroxyl radical (·OH) for cancer-specific PDT. Subsequently, the ·OH-initiated lipid peroxidation process is demonstrated to devote effective cancer cell death. The in situ synthesized SACs facilitate the precise cancer-specific conversion of inert H2O to reactive ·OH, which facilitates efficient cancer therapy in female mice. This strategy achieves efficient and precise cancer therapy, not only avoiding the side effects on normal tissues but also overcoming tumor hypoxia.
Collapse
Affiliation(s)
- Yiyan Yin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiyang Ge
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jin Ouyang
- Department of Chemistry, College of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Arena A, Zimmer TS, van Scheppingen J, Korotkov A, Anink JJ, Mühlebner A, Jansen FE, van Hecke W, Spliet WG, van Rijen PC, Vezzani A, Baayen JC, Idema S, Iyer AM, Perluigi M, Mills JD, van Vliet EA, Aronica E. Oxidative stress and inflammation in a spectrum of epileptogenic cortical malformations: molecular insights into their interdependence. Brain Pathol 2018; 29:351-365. [PMID: 30303592 DOI: 10.1111/bpa.12661] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress (OS) occurs in brains of patients with epilepsy and coincides with brain inflammation, and both phenomena contribute to seizure generation in animal models. We investigated whether expression of OS and brain inflammation markers co-occurred also in resected brain tissue of patients with epileptogenic cortical malformations: hemimegalencephaly (HME), focal cortical dysplasia (FCD) and cortical tubers in tuberous sclerosis complex (TSC). Moreover, we studied molecular mechanisms linking OS and inflammation in an in vitro model of neuronal function. Untangling interdependency and underlying molecular mechanisms might pose new therapeutic strategies for treating patients with drug-resistant epilepsy of different etiologies. Immunohistochemistry was performed for specific OS markers xCT and iNOS and brain inflammation markers TLR4, COX-2 and NF-κB in cortical tissue derived from patients with HME, FCD IIa, IIb and TSC. Additionally, we studied gene expression of these markers using the human neuronal cell line SH-SY5Y in which OS was induced using H2 O2 . OS markers were higher in dysmorphic neurons and balloon/giant cells in cortex of patients with FCD IIb or TSC. Expression of OS markers was positively correlated to expression of brain inflammation markers. In vitro, 100 µM, but not 50 µM, of H2 O2 increased expression of TLR4, IL-1β and COX-2. We found that NF-κB signaling was activated only upon stimulation with 100 µM H2 O2 leading to upregulation of TLR4 signaling and IL-1β. The NF-κB inhibitor TPCA-1 completely reversed this effect. Our results show that OS positively correlates with neuroinflammation and is particularly evident in brain tissue of patients with FCD IIb and TSC. In vitro, NF-κB is involved in the switch to an inflammatory state after OS. We propose that the extent of OS can predict the neuroinflammatory state of the brain. Additionally, antioxidant treatments may prevent the switch to inflammation in neurons thus targeting multiple epileptogenic processes at once.
Collapse
Affiliation(s)
- Andrea Arena
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Till S Zimmer
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Anatoly Korotkov
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jasper J Anink
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Angelika Mühlebner
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wim van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wim G Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter C van Rijen
- Department of Neurosurgery, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anand M Iyer
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - James D Mills
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Erwin A van Vliet
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| |
Collapse
|
3
|
Liang S, Cuellar T, Nowacki M, Nayak BK, Dong L, Li B, Sharma K, Habib SL. A new drug combination significantly reduces kidney tumor progression in kidney mouse model. Oncotarget 2018; 9:32900-32916. [PMID: 30250638 PMCID: PMC6152473 DOI: 10.18632/oncotarget.26004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/27/2018] [Indexed: 11/25/2022] Open
Abstract
Tuberous sclerosis complex (TSC) disease is associated with tumors in many organs, particularly angiomyolipoma (AML) in the kidneys. Loss or inactivation of TSC1/2 results in high levels of HIF-α activity and VEGF expression. mTOR inhibitor (rapamycin) and the AMPK activator 5-aminoimidazole-4-carboxamide (AICA)-riboside (AICAR) are currently used separately to treat cancer patients. Here, we investigated the effect of a novel combination of rapamycin and AICAR on tumor progression. Our data show that treatment of AML human cells with drug combinations resulted in 5-7-fold increase in cell apoptosis compared to each drug alone. In addition, drug combinations resulted in 4-5-fold decrease in cell proliferation compared to each drug alone. We found that drug combinations abolished Akt and HIF activity in AML cells. The drug combinations resulted in decrease in cell invasion and cell immigration by 70% and 84%, respectively in AML cells. The combined drugs also significantly decreased the VEGF expression compare to each drug alone in AML cells. Drug combinations effectively abolished binding of HIF-2α to the putative Akt site in the nuclear extracts isolated from AML cells. Treatment TSC mice with drug combinations resulted in 75% decrease in tumor number and 88% decrease in tumor volume compared to control TSC mice. This is first evidence that drug combinations are effective in reducing size and number of kidney tumors without any toxic effect on kidney. These data will provide evidence for initiating a new clinical trial for treatment of TSC patients.
Collapse
Affiliation(s)
- Sitai Liang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Tiffanie Cuellar
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Maciej Nowacki
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Bijaya K. Nayak
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Lily Dong
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Boajie Li
- Shanghai Jiao Tong University, Shanghai, China
| | - Kumar Sharma
- Department of Medicine, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Samy L. Habib
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
4
|
TSC2 Deficiency Unmasks a Novel Necrosis Pathway That Is Suppressed by the RIP1/RIP3/MLKL Signaling Cascade. Cancer Res 2016; 76:7130-7139. [DOI: 10.1158/0008-5472.can-16-1052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 11/16/2022]
|
5
|
Boddicker RL, Koltes JE, Fritz‐Waters ER, Koesterke L, Weeks N, Yin T, Mani V, Nettleton D, Reecy JM, Baumgard LH, Spencer JD, Gabler NK, Ross JW. Genome‐wide methylation profile following prenatal and postnatal dietary omega‐3 fatty acid supplementation in pigs. Anim Genet 2016; 47:658-671. [DOI: 10.1111/age.12468] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Affiliation(s)
- R. L. Boddicker
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | - J. E. Koltes
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | | | - L. Koesterke
- Texas Advanced Computing Center University of Texas Austin TX 78758‐4497 USA
| | - N. Weeks
- Department of Mathematics Iowa State University Ames IA 50011 USA
| | - T. Yin
- Department of Statistics Iowa State University Ames IA 50011 USA
| | - V. Mani
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | - D. Nettleton
- Department of Statistics Iowa State University Ames IA 50011 USA
| | - J. M. Reecy
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | - L. H. Baumgard
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | | | - N. K. Gabler
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | - J. W. Ross
- Department of Animal Science Iowa State University Ames IA 50011 USA
| |
Collapse
|
6
|
Habib SL, Abboud HE. Tuberin regulates reactive oxygen species in renal proximal cells, kidney from rodents, and kidney from patients with tuberous sclerosis complex. Cancer Sci 2016; 107:1092-100. [PMID: 27278252 PMCID: PMC4982584 DOI: 10.1111/cas.12984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/30/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) are an important endogenous source of DNA damage and oxidative stress in all cell types. Deficiency in tuberin resulted in increased oxidative DNA damage in renal cells. In this study, the role of tuberin in the regulating of ROS and NADPH oxidases was investigated. Formation of ROS and activity of NADPH oxidases were significantly higher in mouse embryonic fibroblasts and in primary culture of rat renal proximal tubular epithelial tuberin‐deficient cells compared to wild‐type cells. In addition, expression of NADPH oxidase (Nox)1, Nox2, and Nox4 (Nox isoforms) was higher in mouse embryonic fibroblasts and renal proximal tubular epithelial tuberin‐deficient cells compared to wild‐type cells. Furthermore, activity levels of NADPH oxidases and protein expression of all Nox isoforms were higher in the renal cortex of rat deficient in tuberin. However, treatment of tuberin‐deficient cells with rapamycin showed significant decrease in protein expression of all Nox. Significant increase in protein kinase C βII expression was detected in tuberin‐deficient cells, whereas inhibition of protein kinase C βII by bisindolylmaleimide I resulted in decreased protein expression of all Nox isoforms. In addition, treatment of mice deficient in tuberin with rapamycin resulted in significant decrease in all Nox protein expression. Moreover, protein and mRNA expression of all Nox were highly expressed in tumor kidney tissue of patients with tuberous sclerosis complex compared to control kidney tissue of normal subjects. These data provide the first evidence that tuberin plays a novel role in regulating ROS generation, NADPH oxidase activity, and Nox expression that may potentially be involved in development of kidney tumor in patients with tuberous sclerosis complex.
Collapse
Affiliation(s)
- Samy L Habib
- Geriatric Research, Education and Clinical Department, South Texas Veterans Health Care System, San Antonio, Texas, USA.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hanna E Abboud
- Geriatric Research, Education and Clinical Department, South Texas Veterans Health Care System, San Antonio, Texas, USA.,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
7
|
Knaack SA, Siahpirani AF, Roy S. A pan-cancer modular regulatory network analysis to identify common and cancer-specific network components. Cancer Inform 2014; 13:69-84. [PMID: 25374456 PMCID: PMC4213198 DOI: 10.4137/cin.s14058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/19/2022] Open
Abstract
Many human diseases including cancer are the result of perturbations to transcriptional regulatory networks that control context-specific expression of genes. A comparative approach across multiple cancer types is a powerful approach to illuminate the common and specific network features of this family of diseases. Recent efforts from The Cancer Genome Atlas (TCGA) have generated large collections of functional genomic data sets for multiple types of cancers. An emerging challenge is to devise computational approaches that systematically compare these genomic data sets across different cancer types that identify common and cancer-specific network components. We present a module- and network-based characterization of transcriptional patterns in six different cancers being studied in TCGA: breast, colon, rectal, kidney, ovarian, and endometrial. Our approach uses a recently developed regulatory network reconstruction algorithm, modular regulatory network learning with per gene information (MERLIN), within a stability selection framework to predict regulators for individual genes and gene modules. Our module-based analysis identifies a common theme of immune system processes in each cancer study, with modules statistically enriched for immune response processes as well as targets of key immune response regulators from the interferon regulatory factor (IRF) and signal transducer and activator of transcription (STAT) families. Comparison of the inferred regulatory networks from each cancer type identified a core regulatory network that included genes involved in chromatin remodeling, cell cycle, and immune response. Regulatory network hubs included genes with known roles in specific cancer types as well as genes with potentially novel roles in different cancer types. Overall, our integrated module and network analysis recapitulated known themes in cancer biology and additionally revealed novel regulatory hubs that suggest a complex interplay of immune response, cell cycle, and chromatin remodeling across multiple cancers.
Collapse
Affiliation(s)
- Sara A Knaack
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Alireza Fotuhi Siahpirani
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA. ; Department of Computer Sciences, University of Wisconsin, Madison, WI, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA. ; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
8
|
Mahjabeen I, Ali K, Zhou X, Kayani MA. Deregulation of base excision repair gene expression and enhanced proliferation in head and neck squamous cell carcinoma. Tumour Biol 2014; 35:5971-83. [PMID: 24622884 DOI: 10.1007/s13277-014-1792-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/24/2014] [Indexed: 12/21/2022] Open
Abstract
Defects in the DNA damage repair pathway contribute to cancer. The major pathway for oxidative DNA damage repair is base excision repair (BER). Although BER pathway genes (OGG1, APEX1 and XRCC1) have been investigated in a number of cancers, our knowledge on the prognostic significance of these genes and their role in head and neck squamous cell carcinoma is limited. Protein levels of OGG1, APEX1 and XRCC1 and a proliferation marker, Ki-67, were examined by immunohistochemical analysis, in a cohort of 50 HNSCC patients. Significant downregulation of OGG1 (p<0.04) and XRCC1 (p<0.05) was observed in poorly differentiated HNSCC compared to mod-well-differentiated cases. Significant upregulation of APEX1 (p<0.05) and Ki-67 (p<0.05) was observed in poorly differentiated HNSCC compared to mod-well-differentiated cases. Significant correlation was observed between XRCC1 and OGG1 (r=0.33, p<0.02). Inverse correlations were observed between OGG1 and Ki-67 (r=-0.377, p<0.005), between APEX1 and XRCC1 (r=-0.435, p<0.002) and between OGG1 and APEX1 (r=-0.34, p<0.02) in HNSCC. To confirm our observations, we examined BER pathway genes and a proliferation marker, Ki-67, expression at the mRNA level on 50 head and neck squamous cell carcinoma (HNSCC) and 50 normal control samples by quantitative real-time polymerase chain reaction. Significant downregulation was observed in case of OGG1 (p<0.04) and XRCC1 (p<0.02), while significant upregulation was observed in case of APEX1 (p<0.01) and Ki-67 (p<0.03) in HNSCC tissue samples compared to controls. Our data suggested that deregulation of base excision repair pathway genes, such as OGG1, APEX1 and XRCC1, combined with overexpression of Ki-67, a marker for excessive proliferation, may contribute to progression of HNSCC in Pakistani population.
Collapse
Affiliation(s)
- Ishrat Mahjabeen
- Cancer Genetics Lab, Department of Biosciences, COMSATS Institute of Information and Technology, Park Road Chakshazad, Islamabad, Pakistan
| | | | | | | |
Collapse
|
9
|
Shyu HY, Shieh JC, Ji-Ho L, Wang HW, Cheng CW. Polymorphisms of DNA repair pathway genes and cigarette smoking in relation to susceptibility to large artery atherosclerotic stroke among ethnic Chinese in Taiwan. J Atheroscler Thromb 2012; 19:316-25. [PMID: 22277767 DOI: 10.5551/jat.10967] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Cigarette-smoking induced oxidative DNA damage to endothelial cells has been reported to play an etiological role in atherosclerosis development. Individual vulnerability to oxidative stress through smoking exposure and the ability to repair DNA damage, which plays a critical role in modifying the risk susceptibility of large artery atherosclerotic (LAA) stroke, is hypothesized. Thus, we examined the effect of genetic polymorphisms of DNA repair pathway genes and cigarette smoking in relation to risk susceptibility of LAA stroke. METHODS We enrolled 116 LAA stroke patients and 315 healthy controls from the Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan. Genotyping of polymorphisms of the OGG1 (Ser326Cys), XRCC1 (Arg399Gln), ERCC2 (Lys751Gln), and ERCC5 (Asp1104His) genes was performed and used to evaluate LAA stroke susceptibility. RESULTS Of those non-synonymous polymorphisms, the ERCC2 Lys751Gln variant was found to be associated with LAA stroke risk (OR: 1.69, 95%CI: 1.02-2.86), and this association was more pronounced in smokers, manifesting a 2.73-fold increased risk of LAA stroke (p=0.027). A joint effect on risk elevation of LAA stroke was seen in those patients with OGG1 and ERCC2 polymorphisms (OR: 2.75, 95%CI: 1.26-6.00). Moreover, among smokers carrying the OGG1 Ser326Cys polymorphism, there was a tendency toward an increased risk of LAA stroke in those patients who had a greater number of high-risk genotypes of XRCC1, ERCC2, and ERCC5 polymorphisms (p(trend)=0.010). CONCLUSION The susceptible polymorphisms of DNA repair pathway genes may have a modifying effect on the elevated risk of LAA stroke in smokers among ethnic Chinese in Taiwan.
Collapse
Affiliation(s)
- Hann-Yeh Shyu
- Section of Neurology, Department of Internal Medicine, Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Reduced expression of DNA repair genes (XRCC1, XPD, and OGG1) in squamous cell carcinoma of head and neck in North India. Tumour Biol 2011; 33:111-9. [PMID: 22081374 DOI: 10.1007/s13277-011-0253-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 10/18/2011] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of head and neck (SCCHN) is the sixth most common cancer globally, and in India, it accounts for 30% of all cancer cases. Epidemiological studies have shown a positive association between defective DNA repair capacity and SCCHN. The underlying mechanism of their involvement is not well understood. In the present study, we have analyzed the relationship between SCCHN and the expression of DNA repair genes namely X-ray repair cross-complementing group 1 (XRCC1), xeroderma pigmentosum group D (XPD), and 8-oxoguanine DNA glycosylase (OGG1) in 75 SCCHN cases and equal number of matched healthy controls. Additionally, levels of DNA adduct [8-hydroxyguanine (8-OHdG)] in 45 SCCHN cases and 45 healthy controls were also determined, to ascertain a link between mRNA expression of these three genes and DNA adducts. The relative expression of XRCC1, XPD, and OGG1 in head and neck cancer patients was found to be significantly low as compared to controls. The percent difference of mean relative expression between cases and controls demonstrated maximum lowering in OGG1 (47.3%) > XPD (30.7%) > XRCC1 (25.2%). A negative Spearmen correlation between XRCC1 vs. 8-OHdG in cases was observed. In multivariate logistic regression analysis (adjusting for age, gender, smoking status, and alcohol use), low expression of XRCC1, XPD, and OGG1 was associated with a statistically significant increased risk of SCCHN [crude odds ratios (ORs) (95%CI) OR 2.10; (1.06-4.17), OR 2.76; (1.39-5.49), and 5.24 (2.38-11.52), respectively]. In conclusion, our study demonstrated that reduced expression of XRCC1, XPD, and OGG1 is associated with more than twofold increased risk in SCCHN.
Collapse
|
11
|
Habib SL, Yadav A, Mahimainathan L, Valente AJ. Regulation of PI 3-K, PTEN, p53, and mTOR in Malignant and Benign Tumors Deficient in Tuberin. Genes Cancer 2011; 2:1051-60. [PMID: 22737271 PMCID: PMC3379569 DOI: 10.1177/1947601912445376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/17/2012] [Indexed: 01/05/2023] Open
Abstract
The tuberous sclerosis complex (TSC) is caused by mutation in either of 2 tumor suppressor genes, TSC-1 (encodes hamartin) and TSC-2 (encodes tuberin). In humans, deficiency in TSC1/2 is associated with benign tumors in many organs, including renal angiomyolipoma (AML) but rarely renal cell carcinoma (RCC). In contrast, deficiency of TSC function in the Eker rat is associated with RCC. Here, we have investigated the activity of PI 3-K and the expression of PTEN, p53, tuberin, p-mTOR, and p-p70S6K in both Eker rat RCC and human renal AML. Compared to normal tissue, increased PI 3-K activity was detected in RCC of Eker rats but not in human AML tissue. In contrast, PTEN was highly expressed in AML but significantly reduced in the renal tumors of Eker rats. Phosphorylation on Ser(2448) of mTOR and Thr(389) of p70S6K were significantly increased in both RCC and AML compared to matching control tissue. Total tuberin was significantly decreased in AML while completely lost in RCC of Eker rats. Our data also show that while p53 protein expression is lost in rat RCC, it was highly elevated in AML. These novel data provide evidence that loss of TSC-2, PTEN, and p53 as well as activation of PI 3-K and mTOR is associated with kidney cancer in the Eker rat, while sustained expression of TSC-2, PTEN, and p53 may prevent progression of kidney cancer in TSC patients.
Collapse
Affiliation(s)
- Samy L. Habib
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Anamika Yadav
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Lenin Mahimainathan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Anthony J. Valente
- Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| |
Collapse
|
12
|
Habib SL, Bhandari BK, Sadek N, Abboud-Werner SL, Abboud HE. Novel mechanism of regulation of the DNA repair enzyme OGG1 in tuberin-deficient cells. Carcinogenesis 2010; 31:2022-30. [PMID: 20837600 DOI: 10.1093/carcin/bgq189] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tuberin (protein encodes by tuberous sclerosis complex 2, Tsc2) deficiency is associated with the decrease in the DNA repair enzyme 8-oxoG-DNA glycosylase (OGG1) in tumour kidney of tuberous sclerosis complex (TSC) patients. The purpose of this study was to elucidate the mechanisms by which tuberin regulates OGG1. The partial deficiency in tuberin expression that occurs in the renal proximal tubular cells and kidney cortex of the Eker rat is associated with decreased activator protein 4 (AP4) and OGG1 expression. A complete deficiency in tuberin is associated with loss of AP4 and OGG1 expression in kidney tumour from Eker rats and the accumulation of significant levels of 8-oxo-deoxyguanosine. Knockdown of tuberin expression in human renal epithelial cells (HEK293) with small interfering RNA (siRNA) also resulted in a marked decrease in the expression of AP4 and OGG1. In contrast, overexpression of tuberin in HEK293 cells increased the expression of AP4 and OGG1 proteins. Downregulation of AP4 expression using siRNA resulted in a significant decrease in the protein expression of OGG1. Immunoprecipitation studies show that AP4 is associated with tuberin in cells. Gel shift analysis and chromatin immunoprecipitation identified the transcription factor AP4 as a positive regulator of the OGG1 promoter. AP4 DNA-binding activity is significantly reduced in Tsc2(-/-) as compared with Tsc2(+/+) cells. Transcriptional activity of the OGG1 promoter is also decreased in tuberin-null cells compared with wild-type cells. These data indicate a novel role for tuberin in the regulation of OGG1 through the transcription factor AP4. This regulation may be important in the pathogenesis of kidney tumours in patients with TSC disease.
Collapse
Affiliation(s)
- Samy L Habib
- Department of Geriatrics, Geriatric Research, Education, and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
13
|
Habib SL, Kasinath BS, Arya RR, Vexler S, Velagapudi C. Novel mechanism of reducing tumourigenesis: upregulation of the DNA repair enzyme OGG1 by rapamycin-mediated AMPK activation and mTOR inhibition. Eur J Cancer 2010; 46:2806-20. [PMID: 20656472 DOI: 10.1016/j.ejca.2010.06.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/11/2010] [Accepted: 06/18/2010] [Indexed: 01/06/2023]
Abstract
Inhibition of mTOR by rapamycin is an important approach in cancer therapy. In early clinical trials, tuberous sclerosis complex (TSC)-related kidney tumours were found to regress following rapamycin treatment. Since loss of function of the DNA repair OGG1 enzyme has a major role in multistep carcinogenesis of the kidney and other organs, we investigated the effect of rapamycin on OGG1 regulation. Treatment of HK2 cells, mouse Tsc-deficient cells and human VHL-deficient cells (786-O) with rapamycin resulted in decrease in p70S6K phosphorylation at Thr(389), and increase in the expression of NF-YA and OGG1 proteins. In addition, rapamycin increased OGG1 promoter activity in cells transfected with OGG1 promoter construct. Furthermore, rapamycin increased the phosphorylation at Thr(172) of the energy sensor AMPK. Downregulation of AMPK phosphorylation by high glucose (HG) increases the phosphorylation of p70S6K and decreases the protein expression of NF-YA and OGG1. Pretreatment of the cells with rapamycin before exposure to HG reversed the effects of HG. However, downregulation of AMPK by dominant negative (DN)-AMPK in Tsc2(+/-) cells abolished AMPK and decreased OGG1 expression. In contrast, transfection of Tsc2(+/-) cells with DN-S6K abolished p70S6K phosphorylation and increased OGG1 expression, a response enhanced by rapamycin. Treatment of Tsc2(+/-) mice with rapamycin resulted in activation of AMPK, downregulation of phospho-p70S6K and enhanced OGG1 expression. Our data show that inhibition of mTOR can activate AMPK and lead to upregulation of DNA repair enzyme OGG1. These data comprise the first report to provide one mechanism whereby rapamycin might prevent or inhibit the formation and progression of certain cancers.
Collapse
Affiliation(s)
- Samy L Habib
- Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, TX, USA.
| | | | | | | | | |
Collapse
|
14
|
Habib SL. Tuberous Sclerosis Complex and DNA Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 685:84-94. [DOI: 10.1007/978-1-4419-6448-9_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Habib SL. Molecular mechanism of regulation of OGG1: tuberin deficiency results in cytoplasmic redistribution of transcriptional factor NF-YA. J Mol Signal 2009; 4:8. [PMID: 20040097 PMCID: PMC2807420 DOI: 10.1186/1750-2187-4-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 12/29/2009] [Indexed: 11/29/2022] Open
Abstract
The tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors, both angiomyolipomas and renal cell carcinomas. On the other hand, mice-deficient in the DNA repair enzyme OGG1 spontaneously develop adenoma and carcinoma. Downregulation of tuberin results in a marked decrease of OGG1 and accumulation of oxidative DNA damage, (8-oxodG) in cultured cells. In addition, tuberin haploinsufficiency is associated with the loss of OGG1 and accumulation of 8-oxodG in rat kidney tumor. Deficiency in tuberin results in decreased OGG1 and NF-YA protein expression and increased 8-oxodG in kidney tumor from TSC patients. In the current study, molecular mechanisms by which tuberin regulates OGG1 were explored. The deficiency of tuberin was associated with a significant decrease in NF-YA and loss of OGG1 in kidney tumors of Eker rat. Downregulation of tuberin by siRNA resulted in a marked decrease in NF-YA and OGG1 protein expression in human renal epithelial cells. Localization of NF-YA in wild type and tuberin-deficient cells was examined by western blot and immunostaining assays. In wild type cells, NF-YA was detected in the nucleus while in tuberin deficient cells in the cyotoplasm. Introducing adenovirus-expressing tuberin (Ad-TSC2) into tuberin-deficient cells restored the nuclear localization of NF-YA. These data define a novel mechanism of regulation of OGG1 through tuberin. This mechanism may be important in the pathogenesis of kidney tumors in patients with TSC disease.
Collapse
Affiliation(s)
- Samy L Habib
- South Texas Veterans Healthcare System, Geriatric Research, Education and Clinical Center, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| |
Collapse
|