1
|
Ivachtchenko AV, Khvat AV, Shkil DO. Development and Prospects of Furin Inhibitors for Therapeutic Applications. Int J Mol Sci 2024; 25:9199. [PMID: 39273149 PMCID: PMC11394684 DOI: 10.3390/ijms25179199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.
Collapse
|
2
|
Uner B, Dwivedi P, Ergin AD. Effects of arginine on coenzyme-Q10 micelle uptake for mitochondria-targeted nanotherapy in phenylketonuria. Drug Deliv Transl Res 2024; 14:191-207. [PMID: 37555905 DOI: 10.1007/s13346-023-01392-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
Phenylketonuria (PKU) is a rare inherited metabolic disease characterized by phenylalanine hydroxylase enzyme deficiency. In PKU patients, coenzyme Q10 (CoQ10) levels were found low. Therefore, we focused on the modification of CoQ10 to load the micelles and increase entry of micelles into the cell and mitochondria, and it is taking a part in ATP turnover. Micelles had produced by comparing two different production methods (thin-film layer and direct-dissolution), and characterization studies were performed (zeta potential, size, and encapsulation efficiency). Then, L-arginine (LARG) and poly-arginine (PARG) were incorporated with the micelles for subsequential release and PKU cell studies. The effects of these components on intracellular uptake and their use in the cellular cycle were analyzed by ELISA, Western blot, membrane potential measurement, and flow cytometry methods. In addition, both effects of LARG and PARG micelles on pharmacokinetics at the cellular level and their cell binding rate were determined. The thin-film method was found superior in micelle preparation. PARG/LARG-modified micelles showed sustained release. In the cellular and mitochondrial uptake of CoQ10, CoQ10-micelle + PARG > CoQ10-micelle + LARG > CoQ10-micelle > CoQ10 was found. This increased localization caused lowering of oxygen consumption rates, but maintaining mitochondrial membrane potential. The study results had showed that besides micelle formulation, PARG and LARG are effective in cellular and mitochondrial targeting.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA.
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA
| | - Ahmet Doğan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
- Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Verbeek SF, Awasthi N, Teiwes NK, Mey I, Hub JS, Janshoff A. How arginine derivatives alter the stability of lipid membranes: dissecting the roles of side chains, backbone and termini. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:127-142. [PMID: 33661339 PMCID: PMC8071801 DOI: 10.1007/s00249-021-01503-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
Arginine (R)-rich peptides constitute the most relevant class of cell-penetrating peptides and other membrane-active peptides that can translocate across the cell membrane or generate defects in lipid bilayers such as water-filled pores. The mode of action of R-rich peptides remains a topic of controversy, mainly because a quantitative and energetic understanding of arginine effects on membrane stability is lacking. Here, we explore the ability of several oligo-arginines R[Formula: see text] and of an arginine side chain mimic R[Formula: see text] to induce pore formation in lipid bilayers employing MD simulations, free-energy calculations, breakthrough force spectroscopy and leakage assays. Our experiments reveal that R[Formula: see text] but not R[Formula: see text] reduces the line tension of a membrane with anionic lipids. While R[Formula: see text] peptides form a layer on top of a partly negatively charged lipid bilayer, R[Formula: see text] leads to its disintegration. Complementary, our simulations show R[Formula: see text] causes membrane thinning and area per lipid increase beside lowering the pore nucleation free energy. Model polyarginine R[Formula: see text] similarly promoted pore formation in simulations, but without overall bilayer destabilization. We conclude that while the guanidine moiety is intrinsically membrane-disruptive, poly-arginines favor pore formation in negatively charged membranes via a different mechanism. Pore formation by R-rich peptides seems to be counteracted by lipids with PC headgroups. We found that long R[Formula: see text] and R[Formula: see text] but not short R[Formula: see text] reduce the free energy of nucleating a pore. In short R[Formula: see text], the substantial effect of the charged termini prevent their membrane activity, rationalizing why only longer [Formula: see text] are membrane-active.
Collapse
Affiliation(s)
- Sarah F. Verbeek
- Department of Chemistry, Institute of Physical Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Neha Awasthi
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Nikolas K. Teiwes
- Department of Chemistry, Institute of Physical Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Ingo Mey
- Department of Chemistry, Institute of Physical Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Jochen S. Hub
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Theoretical Physics and Center for Biophyics, Saarland University, 66123 Saarbrücken, Germany
| | - Andreas Janshoff
- Department of Chemistry, Institute of Physical Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Chakraborty P, Chattopadhyay D, Roy S. N-protein-RNA interaction is a drug target in a negative strand RNA virus. Virus Res 2021; 295:198298. [PMID: 33508356 PMCID: PMC7839429 DOI: 10.1016/j.virusres.2021.198298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/02/2022]
Abstract
The negative strand RNA virus family contains many human pathogens. Finding new antiviral drug targets against this class of human pathogens is one of the significant healthcare needs. Nucleocapsid proteins of negative strand RNA viruses wrap the viral genomic RNA and play essential roles in gene transcription and genome replication. Chandipura virus, a member of the Rhabdoviridae family, has a negative strand RNA genome. In addition to wrapping the genomic RNA, its nucleocapsid protein interacts with the positive strand leader RNA and plays a vital role in the virus life-cycle. We have designed a peptide, based on prior knowledge and demonstrated that the peptide is capable of binding specifically to the positive strand leader RNA. When the peptide was transported inside the cell, it inhibited viral growth with IC50 values in the low micromolar range. Given the widespread occurrence of leader RNAs in negative strand RNA viruses and its interaction with the nucleocapsid protein, it is likely that this interaction could be a valid drug target for other negative strand RNA viruses.
Collapse
Affiliation(s)
- Prasenjit Chakraborty
- CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Dhrubajyoti Chattopadhyay
- Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, Department of Biochemistry, University College of Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
5
|
Balhorn R, Balhorn MC. Therapeutic applications of the selective high affinity ligand drug SH7139 extend beyond non-Hodgkin's lymphoma to many other types of solid cancers. Oncotarget 2020; 11:3315-3349. [PMID: 32934776 PMCID: PMC7476732 DOI: 10.18632/oncotarget.27709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023] Open
Abstract
SH7139, the first of a series of selective high affinity ligand (SHAL) oncology drug candidates designed to target and bind to the HLA-DR proteins overexpressed by B-cell lymphomas, has demonstrated exceptional efficacy in the treatment of Burkitt lymphoma xenografts in mice and a safety profile that may prove to be unprecedented for an oncology drug. The aim of this study was to determine how frequently the HLA-DRs targeted by SH7139 are expressed by different subtypes of non-Hodgkin’s lymphoma and by other solid cancers that have been reported to express HLA-DR. Binding studies conducted with SH7129, a biotinylated analog of SH7139, reveal that more than half of the biopsy sections obtained from patients with different types of non-Hodgkin’s lymphoma express the HLA-DRs targeted by SH7139. Similar analyses of tumor biopsy tissue obtained from patients diagnosed with eighteen other solid cancers show the majority of these tumors also express the HLA-DRs targeted by SH7139. Cervical, ovarian, colorectal and prostate cancers expressed the most HLA-DR. Only a few esophageal and head and neck tumors bound the diagnostic. Within an individual’s tumor, cell to cell differences in HLA-DR target expression varied by only 2 to 3-fold while the expression levels in tumors obtained from different patients varied as much as 10 to 100-fold. The high frequency with which SH7129 was observed to bind to these cancers suggests that many patients diagnosed with B-cell lymphomas, myelomas, and other non-hematological cancers should be considered potential candidates for new therapies such as SH7139 that target HLA-DR-expressing tumors.
Collapse
Affiliation(s)
- Rod Balhorn
- SHAL Technologies Inc., Livermore, CA 94550, USA
| | | |
Collapse
|
6
|
Balhorn R, Balhorn MC, Balakrishnan K, Rebhun RB. The small molecule antibody mimic SH7139 targets a family of HLA-DRs expressed by B-cell lymphomas and other solid cancers. J Drug Target 2020; 28:1124-1136. [PMID: 32588667 DOI: 10.1080/1061186x.2020.1787418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selective high-affinity ligands (SHALs) belong to a novel class of small-molecule cancer therapeutics that function as targeted prodrugs. SH7139, the most advanced of the SHAL drugs designed to bind to a unique β-subunit structural epitope located on HLA-DR10, has exhibited exceptional preclinical efficacy and safety profiles. A comparison of SH7139 and SH7129, a biotin derivative of the drug developed for use as a diagnostic, showed the incorporation of a biotin tag did not alter the SHALs ability to target or kill HLA-DR10 expressing Raji cells. The use of SH7129 in an immuno-histochemical type assay to stain peripheral blood mononuclear cells (PBMCs) obtained from individuals expressing specific HLA-DRB1 alleles has also revealed that in addition to HLA-DR10, seven other more commonly expressed HLA-DRs are targeted by the drug. Computational dockings of the SHAL's recognition ligands to a number of HLA-DR structures explain, in part, why the targeting domains of SH7129 and SH7139 bind to some HLA-DRs but not others. The results also substantiate the selectivity of SH7129 and suggest it may prove useful as a companion diagnostic for pre-screening biopsy samples to identify those patients whose tumours should respond to SH7139 therapy.
Collapse
Affiliation(s)
| | | | - Karuppiah Balakrishnan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Robert B Rebhun
- The Comparative Cancer Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
7
|
Au KM, Balhorn R, Balhorn MC, Park SI, Wang AZ. High-Performance Concurrent Chemo-Immuno-Radiotherapy for the Treatment of Hematologic Cancer through Selective High-Affinity Ligand Antibody Mimic-Functionalized Doxorubicin-Encapsulated Nanoparticles. ACS CENTRAL SCIENCE 2019; 5:122-144. [PMID: 30693332 PMCID: PMC6346391 DOI: 10.1021/acscentsci.8b00746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 05/03/2023]
Abstract
Non-Hodgkin lymphoma is one of the most common types of cancer. Relapsed and refractory diseases are still common and remain significant challenges as the majority of these patients eventually succumb to the disease. Herein, we report a translatable concurrent chemo-immuno-radiotherapy (CIRT) strategy that utilizes fully synthetic antibody mimic Selective High-Affinity Ligand (SHAL)-functionalized doxorubicin-encapsulated nanoparticles (Dox NPs) for the treatment of human leukocyte antigen-D related (HLA-DR) antigen-overexpressed tumors. We demonstrated that our tailor-made antibody mimic-functionalized NPs bound selectively to different HLA-DR-overexpressed human lymphoma cells, cross-linked the cell surface HLA-DR, and triggered the internalization of NPs. In addition to the direct cytotoxic effect by Dox, the internalized NPs then released the encapsulated Dox and upregulated the HLA-DR expression of the surviving cells, which further augmented immunogenic cell death (ICD). The released Dox not only promotes ICD but also sensitizes the cancer cells to irradiation by inducing cell cycle arrest and preventing the repair of DNA damage. In vivo biodistribution and toxicity studies confirm that the targeted NPs enhanced tumor uptake and reduced systemic toxicities of Dox. Our comprehensive in vivo anticancer efficacy studies using lymphoma xenograft tumor models show that the antibody-mimic functional NPs effectively inhibit tumor growth and sensitize the cancer cells for concurrent CIRT treatment without incurring significant side effects. With an appropriate treatment schedule, the SHAL-functionalized Dox NPs enhanced the cell killing efficiency of radiotherapy by more than 100% and eradicated more than 80% of the lymphoma tumors.
Collapse
Affiliation(s)
- Kin Man Au
- Laboratory of Nano- and Translational Medicine, Carolina
Center for
Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, and Department of
Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rod Balhorn
- SHAL
Technologies, Inc., 15986
Mines Road, Livermore, California 94550, United States
| | - Monique C. Balhorn
- SHAL
Technologies, Inc., 15986
Mines Road, Livermore, California 94550, United States
| | - Steven I. Park
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Levine
Cancer Institute, Atrium Health, Division
of Hematology and Oncology, 100 Medical Park Drive, Suite 110, Concord, North Carolina 28025, United States
| | - Andrew Z. Wang
- Laboratory of Nano- and Translational Medicine, Carolina
Center for
Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, and Department of
Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Roy A, Chakraborty P, Polley S, Chattopadhyay D, Roy S. A peptide targeted against phosphoprotein and leader RNA interaction inhibits growth of Chandipura virus -- an emerging rhabdovirus. Antiviral Res 2013; 100:346-55. [PMID: 24036128 DOI: 10.1016/j.antiviral.2013.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/24/2013] [Accepted: 09/03/2013] [Indexed: 11/16/2022]
Abstract
The fatal illness caused by Chandipura virus (CHPV), an emerging pathogen, presently lacks any therapeutic option. Previous research suggested that interaction between the virally encoded phosphoprotein (P) and the positive sense leader RNA (le-RNA) may play an important role in the viral lifecycle. In this report, we have identified a β-sheet/loop motif in the C-terminal domain of the CHPV P protein as essential for this interaction. A synthetic peptide encompassing this motif and spanning a continuous stretch of 36 amino acids (Pep208-243) was found to bind the le-RNA in vitro and inhibit CHPV growth in infected cells. Furthermore, a stretch of three amino acid residues at position 217-219 was identified as essential for this interaction, both in vitro and in infected cells. siRNA knockdown-rescue experiments demonstrated that these three amino acid residues are crucial for the leader RNA binding function of P protein in the CHPV life cycle. Mutations of these three amino acid residues render the peptide completely ineffective against CHPV. Effect of inhibition of phosphoprotein-leader RNA interaction on viral replication was assayed. Peptide Pep208-243 tagged with a cell penetrating peptide was found to inhibit CHPV replication as ascertained by real time RT-PCR. The specific inhibition of viral growth observed using this peptide suggests a new possibility for designing of anti-viral agents against Mononegavirale group of human viruses.
Collapse
Affiliation(s)
- Arunava Roy
- Department of Biotechnology, Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, India
| | | | | | | | | |
Collapse
|