1
|
Turnham DJ, Smith H, Clarkson RWE. Suppression of Bcl3 Disrupts Viability of Breast Cancer Cells through Both p53-Dependent and p53-Independent Mechanisms via Loss of NF-κB Signalling. Biomedicines 2024; 12:143. [PMID: 38255248 PMCID: PMC10813424 DOI: 10.3390/biomedicines12010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The NF-κB co-factor Bcl3 is a proto-oncogene that promotes breast cancer proliferation, metastasis and therapeutic resistance, yet its role in breast cancer cell survival is unclear. Here, we sought to determine the effect of Bcl3 suppression alone on breast cancer cell viability, with a view to informing future studies that aim to target Bcl3 therapeutically. Bcl3 was suppressed by siRNA in breast cancer cell lines before changes in viability, proliferation, apoptosis and senescence were examined. Bcl3 suppression significantly reduced viability and was shown to induce apoptosis in all cell lines tested, while an additional p53-dependent senescence and senescence-associated secretory phenotype was also observed in those cells with functional p53. The role of the Bcl3/NF-κB axis in this senescence response was confirmed via siRNA of the non-canonical NF-κB subunit NFKB2/p52, which resulted in increased cellular senescence and the canonical subunit NFKB1/p50, which induced the senescence-associated secretory phenotype. An analysis of clinical data showed a correlation between reduced relapse-free survival in patients that expressed high levels of Bcl3 and carried a p53 mutation. Together, these data demonstrate a dual role for Bcl3/NF-κB in the maintenance of breast cancer cell viability and suggests that targeting Bcl3 may be more beneficial to patients with tumours that lack functional p53.
Collapse
Affiliation(s)
| | | | - Richard W. E. Clarkson
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
2
|
Seaton G, Smith H, Brancale A, Westwell AD, Clarkson R. Multifaceted roles for BCL3 in cancer: a proto-oncogene comes of age. Mol Cancer 2024; 23:7. [PMID: 38195591 PMCID: PMC10775530 DOI: 10.1186/s12943-023-01922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
In the early 1990's a group of unrelated genes were identified from the sites of recurring translocations in B-cell lymphomas. Despite sharing the nomenclature 'Bcl', and an association with blood-borne cancer, these genes have unrelated functions. Of these genes, BCL2 is best known as a key cancer target involved in the regulation of caspases and other cell viability mechanisms. BCL3 on the other hand was originally identified as a non-canonical regulator of NF-kB transcription factor pathways - a signaling mechanism associated with important cell outcomes including many of the hallmarks of cancer. Most of the early investigations into BCL3 function have since focused on its role in NF-kB mediated cell proliferation, inflammation/immunity and cancer. However, recent evidence is coming to light that this protein directly interacts with and modulates a number of other signaling pathways including DNA damage repair, WNT/β-catenin, AKT, TGFβ/SMAD3 and STAT3 - all of which have key roles in cancer development, metastatic progression and treatment of solid tumours. Here we review the direct evidence demonstrating BCL3's central role in a transcriptional network of signaling pathways that modulate cancer biology and treatment response in a range of solid tumour types and propose common mechanisms of action of BCL3 which may be exploited in the future to target its oncogenic effects for patient benefit.
Collapse
Affiliation(s)
- Gillian Seaton
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Hannah Smith
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrea Brancale
- UCT Prague, Technická 5, 166 28, 6 - Dejvice, IČO: 60461337, Prague, Czech Republic
| | - Andrew D Westwell
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Richard Clarkson
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
3
|
Huo J, Chen X, Zhang H, Hu Y, Jiang Y, Liu S, Zhang X. Bcl-3 promotes proliferation and chemosensitivity in BL1 subtype of TNBC cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1141-1149. [PMID: 30289427 DOI: 10.1093/abbs/gmy117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
Bcl-3 is an established oncogene in diverse malignant tumors. In this study, we investigated a dual role of Bcl-3 in BL1-subtype triple-negative breast cancer (TNBC). The BL1-subtype TNBC is featured by increasing cell cycle gene expression and the highest sensitivity to chemotherapy among all subtypes. Bcl-3 is associated with a better prognosis in BL1 patients. Bcl-3 knockdown in BL1 cell MDA-MB-468 induces the inhibition of cell proliferation and the G1/S transition arrest by promoting p27 and reducing the expressions of c-Myc and skp2 at mRNA and protein levels. Meanwhile, Bcl-3 enhances the sensitivity of MDA-MB-468 to chemotherapeutics ABX and PTX. Furthermore, the regulation mechanisms are restricted to BL1 cell and do not occur in SUM159PT, a typical MSL subtype of TNBC cell. These data suggest that Bcl-3 may be a potential clinical biomarker for diagnosis, treatment, and prognosis of patients with BL1-subtype TNBC.
Collapse
Affiliation(s)
- Junhaohui Huo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xi Chen
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Haohao Zhang
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yiming Hu
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yuhang Jiang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sanhong Liu
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiaoren Zhang
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
4
|
Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Mahamadu A, Dortbudak MB. Therapeutic efficacy of zingerone against vancomycin-induced oxidative stress, inflammation, apoptosis and aquaporin 1 permeability in rat kidney. Biomed Pharmacother 2018; 105:981-991. [DOI: 10.1016/j.biopha.2018.06.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023] Open
|
5
|
Zou Y, Uddin MM, Padmanabhan S, Zhu Y, Bu P, Vancura A, Vancurova I. The proto-oncogene Bcl3 induces immune checkpoint PD-L1 expression, mediating proliferation of ovarian cancer cells. J Biol Chem 2018; 293:15483-15496. [PMID: 30135206 DOI: 10.1074/jbc.ra118.004084] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
The proto-oncogene Bcl3 induces survival and proliferation in cancer cells; however, its function and regulation in ovarian cancer (OC) remain unknown. Here, we show that Bcl3 expression is increased in human OC tissues. Surprisingly, however, we found that in addition to promoting survival, proliferation, and migration of OC cells, Bcl3 promotes both constitutive and interferon-γ (IFN)-induced expression of the immune checkpoint molecule PD-L1. The Bcl3 expression in OC cells is further increased by IFN, resulting in increased PD-L1 transcription. The mechanism consists of an IFN-induced, Bcl3- and p300-dependent PD-L1 promoter occupancy by Lys-314/315 acetylated p65 NF-κB. Blocking PD-L1 by neutralizing antibody reduces proliferation of OC cells overexpressing Bcl3, suggesting that the pro-proliferative effect of Bcl3 in OC cells is partly mediated by PD-L1. Together, this work identifies PD-L1 as a novel target of Bcl3, and links Bcl3 to IFNγ signaling and PD-L1-mediated immune escape.
Collapse
Affiliation(s)
- Yue Zou
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Mohammad M Uddin
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Sveta Padmanabhan
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Yan Zhu
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Pengli Bu
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Ales Vancura
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Ivana Vancurova
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| |
Collapse
|
6
|
Chen X, Cao X, Sun X, Lei R, Chen P, Zhao Y, Jiang Y, Yin J, Chen R, Ye D, Wang Q, Liu Z, Liu S, Cheng C, Mao J, Hou Y, Wang M, Siebenlist U, Eugene Chin Y, Wang Y, Cao L, Hu G, Zhang X. Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis 2016; 7:e2508. [PMID: 27906182 PMCID: PMC5261001 DOI: 10.1038/cddis.2016.405] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Abstract
Transforming growth factor beta (TGFβ) signaling in breast cancer is selectively associated with pulmonary metastasis. However, the underlying mechanisms remain unclear. Here we show that Bcl-3, a member of the IκB family, serves as a critical regulator in TGFβ signaling to modulate breast cancer pulmonary metastasis. Bcl-3 expression was significantly associated with metastasis-free survival in breast cancer patients. Bcl-3 deletion inhibited the migration and invasion of breast cancer cells in vitro, as well as breast cancer lung metastasis in vivo. Bcl-3 was required for the expression of downstream TGFβ signaling genes that are involved in breast cancer lung metastasis. Bcl-3 knockdown enhanced the degradation of Smad3 but not Smad2 following TGFβ treatment. Bcl-3 could bind to Smad3 and prevent the ubiquitination and degradation of Smad3 protein. These results indicate that Bcl-3 serves as a promising target to prevent breast tumor lung metastasis.
Collapse
Affiliation(s)
- Xi Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Xinwei Cao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Xiaohua Sun
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Rong Lei
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Pengfei Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yongxu Zhao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yuhang Jiang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Jie Yin
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Ran Chen
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Deji Ye
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Qi Wang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Zhanjie Liu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Sanhong Liu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Chunyan Cheng
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Jie Mao
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan
Hospital, Fudan University School of Medicine, Shanghai
200032, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin
Hospital, Shanghai Jiao-Tong University School of Medicine,
Shanghai
200025, China
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology,
National Institute of Allergy and Infectious Diseases, National Institutes
of Health, Bethesda, MD
20892, USA
| | - Y Eugene Chin
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| | - Ying Wang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
| | - Liu Cao
- Liaoning Province Collaborative
Innovation Center of Aging Related Disease Diagnosis and Treatment and
Prevention, Shenyang
110001, China
- Key laboratory of Medical Cell
Biology, China Medical University, Shenyang
110001, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| | - Xiaoren Zhang
- The Key Laboratory of Stem Cell
Biology, Institute of Health Sciences, Shanghai Jiao Tong University School
of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences
(SIBS), Chinese Academy of Sciences (CAS), Shanghai
200025, China
- Collaborative Innovation Center of
System Biomedicine, Shanghai Jiao Tong University School of Medicine,
Shanghai
200240, China
| |
Collapse
|
7
|
Abstract
The NF-κB (nuclear factor κB) transcription factor family is a pleiotropic regulator of many cellular pathways, providing a mechanism for the cell to respond to a wide variety of stimuli and environmental challenges. It is not surprising therefore that an important component of NF-κB's function includes regulation of the cell cycle. However, this aspect of its behaviour is often overlooked and receives less attention than its ability to induce inflammatory gene expression. In the present article, we provide an updated review of the current state of our knowledge about integration of NF-κB activity with cell cycle regulation, including newly characterized direct and indirect target genes in addition to the mechanisms through which NF-κB itself can be regulated by the cell cycle.
Collapse
|
8
|
García I, Cosío G, Lizárraga F, Martínez-Ruiz G, Meléndez-Zajgla J, Ceballos G, Espinosa M, Pacheco R, Maldonado V. Bcl-3 regulates UVB-induced apoptosis. Hum Cell 2013; 26:47-55. [DOI: 10.1007/s13577-012-0056-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/03/2012] [Indexed: 01/07/2023]
|
9
|
Maldonado V, Melendez-Zajgla J. Role of Bcl-3 in solid tumors. Mol Cancer 2011; 10:152. [PMID: 22195643 PMCID: PMC3258214 DOI: 10.1186/1476-4598-10-152] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/23/2011] [Indexed: 12/19/2022] Open
Abstract
Bcl-3 is an established oncogene in hematologic malignancies, such as B-cell chronic lymphocytic leukemias. Nevertheless, recent research has shown that it also participates in progression of diverse solid tumors. The present review summarizes the current knowledge of Bcl3 role in solid tumors progression, including some new insights in its possible molecular mechanisms of action.
Collapse
|
10
|
Vitale I, Galluzzi L, Senovilla L, Criollo A, Jemaà M, Castedo M, Kroemer G. Illicit survival of cancer cells during polyploidization and depolyploidization. Cell Death Differ 2010; 18:1403-13. [PMID: 21072053 DOI: 10.1038/cdd.2010.145] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tetraploidy and the depolyploidization of tetraploid cells may contribute to oncogenesis. Several mechanisms have evolved to avoid the generation, survival, proliferation and depolyploidization of tetraploids. Cells that illicitly survive these checkpoints are prone to chromosomal instability and aneuploidization. Along with their replication, tetraploids constantly undergo chromosomal rearrangements that eventually lead to pseudodiploidy by two non-exclusive mechanisms: (i) multipolar divisions and (ii) illicit bipolar divisions in the presence of improper microtubule-kinetochore attachments. Here, we describe the regulation and the molecular mechanisms that underlie such a 'polyploidization-depolyploidization' cascade, while focusing on the role of oncogenes and tumor suppressor genes in tetraploidy-driven tumorigenesis. We speculate that the identification of signaling/metabolic cascades that are required for the survival of tetraploid or aneuploid (but not diploid) cancer cells may pave the way for the development of novel broad-spectrum anticancer agents.
Collapse
|