1
|
Chakraborty TK, Chandra Ghosh G, Hossain MR, Islam MS, Habib A, Zaman S, Bosu H, Nice MS, Haldar M, Khan AS. Human health risk and receptor model-oriented sources of heavy metal pollution in commonly consume vegetable and fish species of high Ganges river floodplain agro-ecological area, Bangladesh. Heliyon 2022; 8:e11172. [PMID: 36325133 PMCID: PMC9618996 DOI: 10.1016/j.heliyon.2022.e11172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
This study was intended to assess heavy metal contents and sources in commonly consumed vegetables and fish collected from the Jashore district of Bangladesh and to evaluate the probable human health risks via the ingesting of those vegetables and fish species. A total of 130 vegetable and fish samples were analyzed for As, Mn, Cu, Cr, Ni, and Pb concentration by an atomic absorption spectrophotometer. Metals and metalloids like As, Pb, and Cr in vegetable species were greater than the maximum allowable concentration (MAC), while Pb and cu in fish species exceeded the MAC. Pollution evaluation index values were ranges from 0.40-10.35 and 1.53–2.78 for vegetable and fish species, respectively, indicating light to serious pollution. Lactuca sativa followed by Cucurbita moschata, Amaranthus gangeticus for vegetables and Channa punctate, Oreochromis mossambicus, followed by Dendrobranchiata for fish are the most contaminated food items. The positive matrix factorization model showed that As (81.9%), Ni (48%), Cr (49.6%), Mn (46%), Pb (44.3%), and Cu (44.4%) for vegetable species and As (86.9%), Ni (90.5%), Mn (67.6%), Pb (65.3%), Cr (57%) and Cu (46.2%) for fish species were resulting from agrochemical, atmospheric emission, irrigation, contaminated feed, and mixed sources. The self-organizing map and principle component analysis indicates three spatial patterns e.g., As–Mn–Cu, Pb–Cr, and Ni in vegetables and As–Mn–Cr, Cu–Ni, and Pb in fish samples. The THQ values for single elements were less than 1 (except As for vegetables and Pb for fish species) for all food items but the HI values for all of the vegetables (2.18E+00 to 2.04E+01) and fish (1.07E+00 to 9.39E+00) samples were exceeded the USEPA acceptable risk level (HI > 1E+00). While the cancer risks only induced by As for all vegetables and fish species, which exceeded the USEPA safe level (TCR>1E-04). Sensitivity analysis indicates that metal concentration was the most responsible factor for carcinogenic risk.
Collapse
Affiliation(s)
- Tapos Kumar Chakraborty
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh,Corresponding author.
| | - Gopal Chandra Ghosh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Ripon Hossain
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Shahnul Islam
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Ahsan Habib
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Samina Zaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Himel Bosu
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Simoon Nice
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Monisankar Haldar
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Abu Shamim Khan
- Environmental Laboratory, Asia Arsenic Network, Arsenic Center, Benapole Road, Krishnobati, Pulerhat, Jashore 7400, Bangladesh
| |
Collapse
|
2
|
Bhandari S, Larsen AK, McCourt P, Smedsrød B, Sørensen KK. The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease. Front Physiol 2021; 12:757469. [PMID: 34707514 PMCID: PMC8542980 DOI: 10.3389/fphys.2021.757469] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to give an outline of the blood clearance function of the liver sinusoidal endothelial cells (LSECs) in health and disease. Lining the hundreds of millions of hepatic sinusoids in the human liver the LSECs are perfectly located to survey the constituents of the blood. These cells are equipped with high-affinity receptors and an intracellular vesicle transport apparatus, enabling a remarkably efficient machinery for removal of large molecules and nanoparticles from the blood, thus contributing importantly to maintain blood and tissue homeostasis. We describe here central aspects of LSEC signature receptors that enable the cells to recognize and internalize blood-borne waste macromolecules at great speed and high capacity. Notably, this blood clearance system is a silent process, in the sense that it usually neither requires or elicits cell activation or immune responses. Most of our knowledge about LSECs arises from studies in animals, of which mouse and rat make up the great majority, and some species differences relevant for extrapolating from animal models to human are discussed. In the last part of the review, we discuss comparative aspects of the LSEC scavenger functions and specialized scavenger endothelial cells (SECs) in other vascular beds and in different vertebrate classes. In conclusion, the activity of LSECs and other SECs prevent exposure of a great number of waste products to the immune system, and molecules with noxious biological activities are effectively “silenced” by the rapid clearance in LSECs. An undesired consequence of this avid scavenging system is unwanted uptake of nanomedicines and biologics in the cells. As the development of this new generation of therapeutics evolves, there will be a sharp increase in the need to understand the clearance function of LSECs in health and disease. There is still a significant knowledge gap in how the LSEC clearance function is affected in liver disease.
Collapse
Affiliation(s)
- Sabin Bhandari
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Anett Kristin Larsen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Bård Smedsrød
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Karen Kristine Sørensen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Hou Y, Hu S, Li X, He W, Wu G. Amino Acid Metabolism in the Liver: Nutritional and Physiological Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:21-37. [DOI: 10.1007/978-3-030-45328-2_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Ehrlich A, Duche D, Ouedraogo G, Nahmias Y. Challenges and Opportunities in the Design of Liver-on-Chip Microdevices. Annu Rev Biomed Eng 2020; 21:219-239. [PMID: 31167098 DOI: 10.1146/annurev-bioeng-060418-052305] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic- and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell-cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.
Collapse
Affiliation(s)
- Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Duche
- L'Oréal Research and Innovation, Aulnay-sous-Bois 93600, France
| | | | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Tissue Dynamics Ltd., Jerusalem 91904, Israel
| |
Collapse
|
5
|
Liver sinusoidal endothelial cells contribute to the uptake and degradation of entero bacterial viruses. Sci Rep 2020; 10:898. [PMID: 31965000 PMCID: PMC6972739 DOI: 10.1038/s41598-020-57652-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
The liver is constantly exposed to dietary antigens, viruses, and bacterial products with inflammatory potential. For decades cellular uptake of virus has been studied in connection with infection, while the few studies designed to look into clearance mechanisms focused mainly on the role of macrophages. In recent years, attention has been directed towards the liver sinusoidal endothelial cells (LSECs), which play a central role in liver innate immunity by their ability to scavenge pathogen- and damage-associated molecular patterns. Every day our bodies are exposed to billions of gut-derived pathogens which must be efficiently removed from the circulation to prevent inflammatory and/or immune reactions in other vascular beds. Here, we have used GFP-labelled Enterobacteria phage T4 (GFP-T4-phage) as a model virus to study the viral scavenging function and metabolism in LSECs. The uptake of GFP-T4-phages was followed in real-time using deconvolution microscopy, and LSEC identity confirmed by visualization of fenestrae using structured illumination microscopy. By combining these imaging modalities with quantitative uptake and inhibition studies of radiolabelled GFP-T4-phages, we demonstrate that the bacteriophages are effectively degraded in the lysosomal compartment. Due to their high ability to take up and degrade circulating bacteriophages the LSECs may act as a primary anti-viral defence mechanism.
Collapse
|
6
|
Seth PP, Tanowitz M, Bennett CF. Selective tissue targeting of synthetic nucleic acid drugs. J Clin Invest 2019; 129:915-925. [PMID: 30688661 DOI: 10.1172/jci125228] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are chemically synthesized nucleic acid analogs designed to bind to RNA by Watson-Crick base pairing. Following binding to the targeted RNA, the ASO perturbs RNA function by promoting selective degradation of the targeted RNA, altering RNA intermediary metabolism, or disrupting function of the RNA. Most antisense drugs are chemically modified to enhance their pharmacological properties and for passive targeting of the tissues of therapeutic interest. Recent advances in selective tissue targeting have resulted in a newer generation of ASO drugs that are more potent and better tolerated than previous generations, spawning renewed interest in identifying selective ligands that enhance targeted delivery of ASOs to tissues.
Collapse
|
7
|
Alidori S, Bowman RL, Yarilin D, Romin Y, Barlas A, Mulvey JJ, Fujisawa S, Xu K, Ruggiero A, Riabov V, Thorek DLJ, Ulmert HDS, Brea EJ, Behling K, Kzhyshkowska J, Manova-Todorova K, Scheinberg DA, McDevitt MR. Deconvoluting hepatic processing of carbon nanotubes. Nat Commun 2016; 7:12343. [PMID: 27468684 PMCID: PMC4974572 DOI: 10.1038/ncomms12343] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans. Application of carbon nanotubes as drug delivery carriers is stalled by uncertainties over their distribution and toxicity in vivo. Here, the authors use animal models to show that, while the bulk of nanotubes is renally cleared, a fraction can be eliminated through an alternative hepatobiliary pathway.
Collapse
Affiliation(s)
- Simone Alidori
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Robert L Bowman
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Dmitry Yarilin
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Yevgeniy Romin
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Afsar Barlas
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - J Justin Mulvey
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Sho Fujisawa
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Ke Xu
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Alessandro Ruggiero
- Department of Radiology, Papworth Hospital NHS Foundation Trust, Cambridge University Health Partners, Cambridge CB23 3RE, UK
| | - Vladimir Riabov
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim 68167, Germany.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia
| | - Daniel L J Thorek
- Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Hans David S Ulmert
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Elliott J Brea
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Katja Behling
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim 68167, Germany.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.,Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim 68167, Germany
| | - Katia Manova-Todorova
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - David A Scheinberg
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA.,Department of Pharmacology, Weill Cornell Medical College, New York 10065, USA
| | - Michael R McDevitt
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA.,Department of Medicine, Weill Cornell Medical College, New York 10065, USA
| |
Collapse
|
8
|
Ganger R, Garla R, Mohanty BP, Bansal MP, Garg ML. Protective Effects of Zinc Against Acute Arsenic Toxicity by Regulating Antioxidant Defense System and Cumulative Metallothionein Expression. Biol Trace Elem Res 2016; 169:218-29. [PMID: 26113309 DOI: 10.1007/s12011-015-0400-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/08/2015] [Indexed: 12/26/2022]
Abstract
Arsenic (As), a toxic metalloid, is one of the major global concerns. The toxicity resulting from As exposure is linked to the generation of reactive oxygen intermediates during their redox cycling and metabolic activation processes that cause lipid peroxidation (LPO). Zinc (Zn), a redox-inactive metal, helps to maintain cellular functions because of its prominent role in antioxidant network through multiple mechanisms. The present study, therefore, explores the effectiveness of administered Zn to combat against acute As toxicity by analysis of antioxidant defense status, alkaline phosphatase (ALP) activity, histological profile, MT expression, and elemental status in rat liver. To achieve this goal, four experimental groups, one control and three receiving different metal supplementations, were chosen (group 1, control; group 2, Zn supplemented; group 3, As substituted; group 4, Zn + As supplemented). The levels of reduced glutathione (GSH) and activities of glutathione reductase (GR) and ALP were lowered, whereas LPO levels and activity of superoxide dismutase (SOD) were elevated with no significant change in catalase (CAT) activity. Histopathological changes were also observed in the As substituted group in comparison to the control. Particle-induced X-ray emission (PIXE) analysis showed decrease in Fe and S concentration in rat liver after As intoxication, whereas As was below detection limit, i.e., <1 ppm. Zn administration almost restored the antioxidants, ALP activity, histopathological changes, and elemental status. A cumulative increase in MT expression was found with the combined treatment of Zn and As. Also, Zn alone caused no significant change in the antioxidant defense system. It can be concluded that restoration of antioxidant activity and increased MT expression are the two independent protective mechanisms of Zn to reduce acute As toxicity.
Collapse
Affiliation(s)
- Renuka Ganger
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Roobee Garla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | | | | | - Mohan Lal Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
9
|
Porcine Extrahepatic Vascular Endothelial Asialoglycoprotein Receptor 1 Mediates Xenogeneic Platelet Phagocytosis In Vitro and in Human-to-Pig Ex Vivo Xenoperfusion. Transplantation 2015; 99:693-701. [DOI: 10.1097/tp.0000000000000553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
James AW, Nguyen A, Said J, Genshaft S, Lassman CR, Teitell M. Splenic hamartomas in Alagille syndrome: case report and literature review. Fetal Pediatr Pathol 2014; 33:216-25. [PMID: 24865822 DOI: 10.3109/15513815.2014.913748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alagille syndrome is a rare autosomal dominant disorder with characteristic findings of paucity of intrahepatic bile ducts, congenital heart disease, and vertebral, ocular, and renal abnormalities. We present a unique autopsy case of an 18-year-old female with Alagille syndrome and splenic hamartomas. Autopsy findings included growth restriction, Tetralogy of Fallot, paucity of intrahepatic bile ducts, end-stage renal disease with mesangiolipidosis, and splenomegaly with two well-circumscribed, splenic tumors. Histologic findings of the splenic tumors revealed disorganized vascular channels lined by cells without cytologic atypia. Immunohistochemical analysis demonstrated CD8(+)CD31(+) endothelial cells, consistent with splenic hamartomas. In summary, Alagille syndrome is a rare genetic disorder characterized by JAG1 mutations and disrupted Notch signaling. Review of the literature highlights the importance of Notch signaling in vascular development and disorders. However, to our knowledge this is the first description of splenic hamartomas in Alagille syndrome.
Collapse
|
11
|
Peng Q, Yeh H, Wei L, Enjyoj K, Machaidze Z, Csizmad E, Schuetz C, Lee KM, Deng S, Robson SC, Markmann J, Buhler L. Mechanisms of xenogeneic baboon platelet aggregation and phagocytosis by porcine liver sinusoidal endothelial cells. PLoS One 2012; 7:e47273. [PMID: 23118867 PMCID: PMC3484054 DOI: 10.1371/journal.pone.0047273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/10/2012] [Indexed: 11/26/2022] Open
Abstract
Background Baboons receiving xenogeneic livers from wild type and transgenic pigs survive less than 10 days. One of the major issues is the early development of profound thrombocytopenia that results in fatal hemorrhage. Histological examination of xenotransplanted livers has shown baboon platelet activation, phagocytosis and sequestration within the sinusoids. In order to study the mechanisms of platelet consumption in liver xenotransplantation, we have developed an in vitro system to examine the interaction between pig endothelial cells with baboon platelets and to thereby identify molecular mechanisms and therapies. Methods Fresh pig hepatocytes, liver sinusoidal and aortic endothelial cells were isolated by collagenase digestion of livers and processing of aortae from GTKO and Gal+ MGH-miniature swine. These primary cell cultures were then tested for the differential ability to induce baboon or pig platelet aggregation. Phagocytosis was evaluated by direct observation of CFSE labeled-platelets, which are incubated with endothelial cells under confocal light microscopy. Aurintricarboxylic acid (GpIb antagonist blocking interactions with von Willebrand factor/vWF), eptifibatide (Gp IIb/IIIa antagonist), and anti-Mac-1 Ab (anti-αMβ2 integrin Ab) were tested for the ability to inhibit phagocytosis. Results None of the pig cells induced aggregation or phagocytosis of porcine platelets. However, pig hepatocytes, liver sinusoidal and aortic endothelial cells (GTKO and Gal+) all induced moderate aggregation of baboon platelets. Importantly, pig liver sinusoidal endothelial cells efficiently phagocytosed baboon platelets, while pig aortic endothelial cells and hepatocytes had minimal effects on platelet numbers. Anti-MAC-1 Ab, aurintricarboxylic acid or eptifibatide, significantly decreased baboon platelet phagocytosis by pig liver endothelial cells (P<0.01). Conclusions Although pig hepatocytes and aortic endothelial cells directly caused aggregation of baboon platelets, only pig liver endothelial cells efficiently phagocytosed baboon platelets. Blocking vWF and integrin adhesion pathways prevented both aggregation and phagocytosis.
Collapse
Affiliation(s)
- Qiang Peng
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lingling Wei
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Keiichi Enjyoj
- Department of Gastroenterology, Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zurab Machaidze
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eva Csizmad
- Department of Gastroenterology, Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christian Schuetz
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kang Mi Lee
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shaoping Deng
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Simon C. Robson
- Department of Gastroenterology, Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leo Buhler
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Surgical Research Unit, Department of Surgery, University Hospital Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Dill MT, Rothweiler S, Djonov V, Hlushchuk R, Tornillo L, Terracciano L, Meili-Butz S, Radtke F, Heim MH, Semela D. Disruption of Notch1 induces vascular remodeling, intussusceptive angiogenesis, and angiosarcomas in livers of mice. Gastroenterology 2012; 142:967-977.e2. [PMID: 22245843 DOI: 10.1053/j.gastro.2011.12.052] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 12/07/2011] [Accepted: 12/29/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Notch signaling mediates embryonic vascular development and normal vascular remodeling; Notch1 knockout mice develop nodular regenerative hyperplasia (NRH). The pathogenesis of NRH is unclear, but has been associated with vascular injury in the liver sinusoids in clinical studies. We investigated the role of Notch1 signaling in liver sinusoidal endothelial cells (LSECs). METHODS We studied MxCre Notch1(lox/lox) mice (conditional knockout mice without tissue-specific disruption of Notch1); mice with hepatocyte-specific knockout were created by crossing Notch1(lox/lox) with AlbCre(+/-) mice. Portal vein pressure was measured; morphology of the hepatic vasculature was assessed by histologic and scanning electron microscopy analyses. We performed functional and expression analyses of isolated liver cells. RESULTS MxCre-induced knockout of Notch1 led to NRH, in the absence of fibrosis, with a persistent increase in proliferation of LSECs. Notch1 deletion led to de-differentiation, vascular remodeling of the hepatic sinusoidal microvasculature, intussusceptive angiogenesis, and dysregulation of ephrinB2/EphB4 and endothelial tyrosine kinase. Time-course experiments revealed that vascular changes preceded node transformation. MxCre Notch1(lox/lox) mice had reduced endothelial fenestrae and developed portal hypertension and hepatic angiosarcoma over time. In contrast, mice with hepatocyte-specific disruption of Notch1 had a normal phenotype. CONCLUSIONS Notch1 signaling is required for vascular homeostasis of hepatic sinusoids; it maintains quiescence and differentiation of LSECs in adult mice. Disruption of Notch1 signaling in LSECs leads to spontaneous formation of angiosarcoma, indicating its role as a tumor suppressor in the liver endothelium.
Collapse
Affiliation(s)
- Michael T Dill
- Department of Biomedicine, University Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Prado PS, Souza CC, Bazzoli N, Rizzo E. Reproductive disruption in lambari Astyanax fasciatus from a Southeastern Brazilian reservoir. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1879-1887. [PMID: 21831433 DOI: 10.1016/j.ecoenv.2011.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 06/03/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to assess the health indicators and reproductive endpoints in a wild population of lambari Astyanax fasciatus, a small characid fish widely distributed in South America. A range of biomarkers, from the molecular to population levels, was evaluated in adult fish sampled from five sites from the Furnas Reservoir, Grande River. At the sites that receive untreated agriculture and industrial residues, fish showed reduced body size and delayed gonadal maturation. Fish from the sites located immediately downstream from the municipal wastewater discharges exhibited feminisation, intersex and evidence of contamination by xenoestrogens. Elevated levels of zona radiata proteins were found by Western blot in the livers of male fish from three contaminated sites. Overall, this study provides the first evidence of endocrine disruption in a wild fish population inhabiting the Furnas Reservoir, and suggests water contamination by oestrogenic compounds and agricultural residues with a possible risk to human health and wildlife.
Collapse
Affiliation(s)
- Paula S Prado
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970 Minas Gerais, Brazil
| | | | | | | |
Collapse
|
14
|
Paris LL, Chihara RK, Reyes LM, Sidner RA, Estrada JL, Downey SM, Milgrom DA, Tector AJ, Burlak C. ASGR1 expressed by porcine enriched liver sinusoidal endothelial cells mediates human platelet phagocytosis in vitro. Xenotransplantation 2011; 18:245-51. [DOI: 10.1111/j.1399-3089.2011.00639.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Yuan ZX, Li JJ, Zhu D, Sun X, Gong T, Zhang ZR. Enhanced accumulation of low-molecular-weight chitosan in kidneys: a study on the influence of N-acetylation of chitosan on the renal targeting. J Drug Target 2011; 19:540-51. [DOI: 10.3109/1061186x.2010.521158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Ekser B, Gridelli B, Veroux M, Cooper DK. Clinical pig liver xenotransplantation: how far do we have to go? Xenotransplantation 2011; 18:158-67. [DOI: 10.1111/j.1399-3089.2011.00642.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Abstract
Abstract
Aged or damaged RBCs are effectively removed from the blood circulation by Kupffer cells in the liver, but little is known regarding the mechanism of the clearance process. Here we show that stabilin-1 and stabilin-2 in hepatic sinusoidal endothelial cells (HSECs) are critical in effectively clearing damaged RBCs in mouse liver. Damaged RBCs and phosphatidylserine (PS)–coated beads were effectively sequestered in the hepatic sinusoid regardless of the presence of Kupffer cells, suggesting a role for HSECs in PS-dependent sequestration of PS-exposed RBCs in the liver. HSECs mediate tethering of damaged RBCs in a PS-dependent manner via stabilin-1 and stabilin-2. In a sinusoid-mimicked coculture system consisting of macrophages layered over HSECs, there was significant enhancement of the phagocytic capacity of macrophages, and this was mediated by stabilin-1 and stabilin-2 in HSECs. Liver-specific knockdown of stabilin-1 and stabilin-2 inhibited the sequestration of damaged RBCs in the hepatic sinusoid and delayed the elimination of damaged cells in an in vivo animal model. Thus, the roles of stabilin-1 and stabilin-2 in hepatic sequestration of PS-exposed RBCs may represent a potential mechanism for the clearance of damaged RBCs by Kupffer cells and for the control of some pathologic conditions such as hemolytic anemia.
Collapse
|
18
|
Burlak C, Paris LL, Chihara RK, Sidner RA, Reyes LM, Downey SM, Tector AJ. The fate of human platelets perfused through the pig liver: implications for xenotransplantation. Xenotransplantation 2011; 17:350-61. [PMID: 20955292 DOI: 10.1111/j.1399-3089.2010.00605.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Pig liver xenotransplantation could offset the shortage of livers available for orthotopic liver transplantation. Studies in pig and baboon liver xenografts revealed the main obstacle to be a lethal thrombocytopenia that occurred within minutes to hours of transplantation. METHODS We have created a model of xenotransplantation-induced thrombocytopenia using ex vivo pig liver perfusion with human platelets. Thrombocytopenia was examined using fluorescently labeled platelets during the ex vivo perfusion and coculture with primary liver sinusoidal endothelial cells (LSEC). RESULTS Ex vivo liver perfusion revealed that 93% of human platelets were removed from circulation after 15 min. Endothelial cells and platelets were not activated based on tissue factor release into the perfusate. Biopsies from the ex vivo perfusion at 15 and 30 min and in vitro analysis indicated that human platelets are phagocytosed by pig LSEC and degraded in phagosomes. Sixty to 120 min after the addition of platelets to the ex vivo perfusion system, we observed platelet fragments and degraded platelets in hepatocytes. Platelet phagocytosis was not mediated by opsonization as Fc blocking had no effect on platelet phagocytosis. In vitro uptake of human platelets by primary LSEC cultures peaked at 15 min followed by a greater than 55% decrease in platelet fluorescence after 3 h. Primary pig LSEC phagosomes containing human platelets were colocalized with lysosomes positive for lysosome-associated membrane protein-1 (LAMP1), indicating the formation of mature phagosomes within pig LSEC. CONCLUSIONS Our observation of pig LSEC phagocytosis of human platelets describes a novel mechanism of large-particle uptake in the liver. The creation of a model system to study xenotransplantation-induced thrombocytopenia makes possible the investigation into mechanisms that mediate platelet loss.
Collapse
Affiliation(s)
- Christopher Burlak
- Department of Surgery, Clarian Transplant Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
MnHSP90 cDNA characterization and its expression during the ovary development in oriental river prawn, Macrobrachium nipponense. Mol Biol Rep 2010; 38:1399-406. [PMID: 20680464 DOI: 10.1007/s11033-010-0243-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
Heat shock protein 90 (HSP90) is not only involved in environmental stress but also plays roles in the ovary development in some vertebrates. To understand its role in crustacean, we examined the HSP90 cDNA for the first time in the ovary and hepatopancreas of the oriental river prawn, Macrobrachium nipponense and designated this protein as MnHSP90 in this study. The MnHSP90 was cloned by the methods of degenerated oligonucleotide primers and rapid amplification of the cDNA ends (RACE). Bioinformatics analysis showed that the MnHSP90 cDNA was 2,684 bp in length, containing a 126 bp 5' untranslated region (UTR), a 359 bp 3' UTR, and an open reading frame (ORF) of 2,199 bp encoding a 732-amino acid polypeptide with predicted molecular mass of 84.3 KDa. Sequence alignment showed that the MnHSP90 shared 72-79% identity with other animals. Real-time quantitative PCR (qPCR) analysis demonstrated that the MnHSP90 mRNA was ubiquitously detected in all tested tissues, with the highest expression in the thoracic ganglia, the mediate in heart, muscle and intestine, and the lowest in haemocytes and gills. The MnHSP90 mRNA levels in the hepatopancreas and ovary of M. nipponense reached a maximum at the stage III (early vitellogenic stage) and stage IV (later vitellogenic stage) ovaries, respectively, and then decreased significantly in both tissues as the ovarian development proceeded. The level of MnHSP90 expression in the hepatopancreas was higher than that in the ovary when compared with in the same ovarian developmental stage. Our results indicate that MnHSP90 is involved in ovarian development in oriental river prawn and may play a regulatory role in ovary maturation.
Collapse
|
20
|
Crisponi G, Nurchi VM, Fanni D, Gerosa C, Nemolato S, Faa G. Copper-related diseases: From chemistry to molecular pathology. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2009.12.018] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Nedredal GI, Elvevold K, Ytrebø LM, Fuskevåg OM, Pettersen I, McCourt PAG, Bertheussen K, Smedsrød B, Revhaug A. Porcine liver sinusoidal endothelial cells contribute significantly to intrahepatic ammonia metabolism. Hepatology 2009; 50:900-8. [PMID: 19585612 DOI: 10.1002/hep.23076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Ammonia metabolism in the liver has been largely credited to hepatocytes (HCs). We have shown that liver nonparenchymal cells that include liver sinusoidal endothelial cells (LSECs) produce ammonia. To address the limited knowledge regarding a role for LSECs in ammonia metabolism, we investigated the ammonia metabolism of isolated LSECs and HCs under three different conditions: (1) bioreactors containing LSECs (LSEC-bioreactors), (2) bioreactors containing HCs (HC-bioreactors), and (3) separate bioreactors containing LSECs and HCs connected in sequence (Seq-bioreactors). Our results showed that LSEC-bioreactors released six-fold more ammonia (22.2 nM/hour/10(6) cells) into the growth media than HC-bioreactors (3.3 nM/hour/10(6) cells) and Seq-bioreactors (3.8 nM/hour/10(6) cells). The glutamate released by LSEC-bioreactors (32.0 nM/hour/10(6) cells) was over four-fold larger than that released by HC-bioreactors and Seq-bioreactors (<7 nM/hour/10(6) cells). LSEC-bioreactors and HC-bioreactors consumed large amounts of glutamine (>25 nM/hour/10(6) cells). Glutaminase is known for catalyzing glutamine into glutamate and ammonia. To determine if this mechanism may be responsible for the large levels of glutamate and ammonia found in LSEC-bioreactors, immunolabeling of glutaminase and messenger RNA expression were tested. Our results demonstrated that glutaminase was present with colocalization of an LSEC-specific functional probe in lysosomes of LSECs. Furthermore, using a nucleotide sequence specific for kidney-type glutaminase, reverse-transcription polymerase chain reaction revealed that this isoform of glutaminase was expressed in porcine LSECs. CONCLUSION LSECs released large amounts of ammonia, perhaps due to the presence of glutaminase in lysosomes. The ammonia and glutamate released by LSECs in Seq-bioreactors were used by hepatocytes, suggesting an intrahepatic collaboration between these two cell types.
Collapse
Affiliation(s)
- Geir I Nedredal
- Department of Digestive Surgery, University Hospital Northern Norway and Institute of Clinical Medicine, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nishimura J, Dewa Y, Okamura T, Jin M, Saegusa Y, Kawai M, Umemura T, Shibutani M, Mitsumori K. Role of Nrf2 and oxidative stress on fenofibrate-induced hepatocarcinogenesis in rats. Toxicol Sci 2008; 106:339-49. [PMID: 18775883 DOI: 10.1093/toxsci/kfn174] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Regional specific relationships between oxidative stress and the development of glutathione S-transferase placental form (GST-P)-positive or GST-P-negative lesions in rats, induced by fenofibrate (FF), a peroxisome proliferator, were examined using a two-stage hepatocarcinogenesis model in F344 rats. Animals were initiated with a single ip injection of 200 mg/kg N-diethylnitrosamine (DEN) and from 2 weeks later were fed a diet containing 3000 or 0 ppm FF for 28 weeks. Animals were subjected to a two-third partial hepatectomy at week 3 and sacrificed at week 28. The development of hepatocellular proliferative lesions, which were mainly attributed to GST-P-negative lesions, was significantly increased in the FF-treated groups. Immunohistochemically, GST-P-positive lesions were devoid of intracytoplasmic nuclear factor-erythroid 2-related factor 2 (Nrf2) expression, whereas GST-P-negative lesions expressed higher levels of cytoplasmic Nrf2. On the other hand, nuclear accumulation of Nrf2 was observed in some cells of GST-P-positive lesions that were negative for Nrf2 in the cytoplasm and in GST-P-negative lesions of the DEN-FF group that were positive for Nrf2 in the cytoplasm. The mRNA expression levels of Gpx2 or Gsta2, Nrf2-inducible enzymes, were increased in GST-P-positive tumors or GST-P-positive lesions, respectively. These results suggest that the activation of Nrf2, due to nuclear translocation, occurs in the GST-P-positive lesions. In addition, the development of continuous oxidative stress was identified by mRNA expression analyses as well as by measurements of GST activity and 8-hydroxydeoxyguanosine. These results suggest that the relative inhibition of nuclear translocation of Nrf2 in GST-P-negative lesions aggravated the condition of oxidative stress in the liver of rats given FF, resulting in enhanced tumor promotion in FF-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jihei Nishimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Villeneuve DL, Blake LS, Brodin JD, Cavallin JE, Durhan EJ, Jensen KM, Kahl MD, Makynen EA, Martinović D, Mueller ND, Ankley GT. Effects of a 3β-Hydroxysteroid Dehydrogenase Inhibitor, Trilostane, on the Fathead Minnow Reproductive Axis. Toxicol Sci 2008; 104:113-23. [DOI: 10.1093/toxsci/kfn073] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Elvevold K, Smedsrød B, Martinez I. The liver sinusoidal endothelial cell: a cell type of controversial and confusing identity. Am J Physiol Gastrointest Liver Physiol 2008; 294:G391-400. [PMID: 18063708 DOI: 10.1152/ajpgi.00167.2007] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A look through the literature on liver sinusoidal endothelial cells (LSECs) reveals that there are several conflicts among different authors of what this cell type is and does. Major controversies that will be highlighted in this review include aspects of the physiological role, the characterization, and the protocols of isolation and cultivation of these cells. Many of these conflicts may be ascribed to the fact that the cell was only recently established as a distinct cell type and that researchers from different disciplines tend to define their structure and function differently. This field is in need of a common platform to obtain a sound communication and a unified understanding of how to interpret novel research results. The aim of this review is to encourage scientists not to ignore the fact that there are, indeed, different opinions in the literature on LSECs. We also hope that this review will point out to the reader that some issues that may seem well established regarding our knowledge about the LSECs, in reality, are still unresolved and, indeed, controversial.
Collapse
Affiliation(s)
- Kjetil Elvevold
- Department of Cell Biology and Histology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | | | | |
Collapse
|
25
|
In vivo fate and distribution of poly-gamma-D-glutamic acid, the capsular antigen from Bacillus anthracis. Infect Immun 2008; 76:899-906. [PMID: 18195035 DOI: 10.1128/iai.01176-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis is surrounded by an antiphagocytic capsule composed of poly-gamma-d-glutamic acid (gammaDPGA). Bacterial and fungal capsular polysaccharides are shed into body fluids in large amounts during infection. The goal of our study was to examine the in vivo fate and distribution of the gammaDPGA capsular polypeptide. Mice were injected via the intravenous route with various amounts of purified gammaDPGA. Blood, urine, and various organs were harvested at different times after treatment. Sites of gammaDPGA accumulation were determined by immunoassay using monoclonal antibodies specific for gammaDPGA. The results showed that the liver and spleen were the primary sites for the accumulation of gammaDPGA. As found in previous studies of capsular polysaccharides, the Kupffer cells of the liver and splenic macrophages were sites for the cellular accumulation of gammaDPGA. Unlike capsular polysaccharides, the hepatic sinusoidal endothelial cells were also sites for gammaDPGA accumulation. gammaDPGA was rapidly cleared from serum and was excreted into the urine. gammaDPGA in the urine showed a reduced molecular size relative to native gammaDPGA. The results indicate that in vivo clearance of the polypeptide capsular antigen of B. anthracis shares several features with the clearance of capsular polysaccharides. Key differences between the in vivo behaviors of gammaDPGA and capsular polysaccharides include the accumulation of gammaDPGA in hepatic sinusoidal endothelial cells and a gammaDPGA clearance rate that was more rapid than the clearance reported for capsular polysaccharides.
Collapse
|
26
|
Hilmer SN, Cogger VC, Le Couteur DG. Basal activity of Kupffer cells increases with old age. J Gerontol A Biol Sci Med Sci 2007; 62:973-8. [PMID: 17895435 DOI: 10.1093/gerona/62.9.973] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Age-related changes in Kupffer cell numbers and function may have important implications for systemic immune responses and hepatic function. We compared numbers of Kupffer cells in the hepatic sinusoids and phagocytic function of Kupffer cells in isolated perfused livers of young, middle-aged, and old rats. On light microscopy, the number of Kupffer cells per 29,500 mum(2) field increased with increasing age (young 2.0 +/- 0.2, n = 8; middle aged 3.3 +/- 0.3, n = 7; old 5.5 +/- 0.6, n = 7). After a single pass through the liver, the ratio of the fractional recovery of 500 nm polystyrene microspheres to that of sucrose decreased significantly with increasing age: young rats, 89 +/- 35% (n = 7); middle-aged rats, 58 +/- 18% (n = 9); and old rats, 49 +/- 24% (n = 10), suggesting increased Kupffer cell phagocytic activity. In old age, increased Kupffer cell numbers and activity were observed in the basal state.
Collapse
Affiliation(s)
- Sarah N Hilmer
- Centre for Education and Research on Ageing and ANZAC Research Institute, University of Sydney and Concord Hospital, Concord, New South Wales, Australia.
| | | | | |
Collapse
|
27
|
Nahmias Y, Odde DJ. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nat Protoc 2007; 1:2288-96. [PMID: 17406470 DOI: 10.1038/nprot.2006.386] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we describe a simple protocol for the design and construction of a laser-guided direct writing (LGDW) system able to micropattern the self-assembly of liver sinusoid-like structures with micrometer resolution in vitro. To the best of our knowledge, LGDW is the only technique able to pattern cells "on the fly" with micrometer precision on arbitrary matrices, including soft gels such as Matrigel. By micropatterning endothelial cells on Matrigel, one can control the self-assembly of vascular structures and associated liver tissue. LGDW is therefore uniquely suited for studying the role of tissue architecture and mechanical properties at the single-cell resolution, and for studying the effects of heterotypic cell-cell interactions underlying processes such as liver morphogenesis, differentiation and angiogenesis. The total time required to carry out this protocol is typically 7 h.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, 51 Blossom Street, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
28
|
Frossard JL, Schiffer E, Cikirikcioglu B, Bourquin J, Morel DR, Pastor CM. Opposite regulation of endothelial NO synthase by HSP90 and caveolin in liver and lungs of rats with hepatopulmonary syndrome. Am J Physiol Gastrointest Liver Physiol 2007; 293:G864-70. [PMID: 17921448 DOI: 10.1152/ajpgi.00136.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hepatopulmonary syndrome is a complication of cirrhosis that associates an overproduction of nitric oxide (NO) in lungs and a NO defect in the liver. Because endothelial NO synthase (eNOS) is regulated by caveolin that decreases and heat shock protein 90 (HSP90) that increases NO production, we hypothesized that an opposite regulation of eNOS by caveolin and HSP90 might explain the opposite NO production in both organs. Cirrhosis was induced by a chronic bile duct ligation (CBDL) performed 15, 30, and 60 days before sample collection and pharmacological tests. eNOS, caveolin, and HSP90 expression were measured in hepatic and lung tissues. Pharmacological tests to assess NO released by shear stress and by acetylcholine were performed in livers (n = 28) and lungs (n = 28) isolated from normal and CBDL rats. In lungs from CBDL rats, indirect evidence of high NO production induced by shear stress was associated with a high binding of HSP90 and a low binding of caveolin to eNOS. Opposite results were observed in livers from CBDL rats. Our study shows an opposite posttranslational regulation of eNOS by HSP90 and caveolin in lungs and liver from rats with CBDL. Such opposite posttranslational regulation of eNOS by regulatory proteins may explain in part the pulmonary overproduction of NO and the hepatic NO defect in rats with hepatopulmonary syndrome.
Collapse
Affiliation(s)
- Jean-Louis Frossard
- Laboratoire de Physiopathologie Hépatique et Imagerie Moléculaire, Hôpitaux Universitaires de Genève, Rue Micheli-du-Crest, 24, 1205 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Nedredal GI, Elvevold K, Ytrebø LM, Fuskevåg OM, Pettersen I, Bertheussen K, Langbakk B, Smedsrød B, Revhaug A. Significant contribution of liver nonparenchymal cells to metabolism of ammonia and lactate and cocultivation augments the functions of a bioartificial liver. Am J Physiol Gastrointest Liver Physiol 2007; 293:G75-83. [PMID: 17363468 DOI: 10.1152/ajpgi.00245.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A bioartificial liver (BAL) will bridge patients with acute liver failure (ALF) to either spontaneous regeneration or liver transplantation. The nitrogen metabolism is important in ALF, and the metabolism of nonparenchymal liver cells (NPCs) is poorly understood. The scope of this study was to investigate whether cocultivation of hepatocytes with NPCs would augment the functions of a BAL (HN-BAL) compared with a BAL equipped with only hepatocytes (H-BAL). In addition, NPCs were similarly cultivated alone. The cells were cultivated for 8 days in simulated microgravity with serum-free growth medium. With NPCs, initial ammonia and lactate production were fivefold and over twofold higher compared with later time periods despite sufficient oxygen supply. Initial lactate production and glutamine consumption were threefold higher in HN-BAL than in H-BAL. With NPCs, initial glutamine consumption was two- to threefold higher compared with later time periods, whereas initial ornithine production and arginine consumption were over four- and eightfold higher compared with later time periods. In NPCs, the conversion of glutamine to glutamate and ammonia can be explained by the presence of glutaminase, as revealed by PCR analysis. Drug metabolism and clearance of aggregated gamma globulin, probes administered to test functions of hepatocytes and NPCs, respectively, were higher in HN-BAL than in H-BAL. In conclusion, NPCs produce ammonia by hydrolysis of amino acids and may contribute to the pathogenesis of ALF. High amounts of lactate are produced by NPCs under nonhypoxic conditions. Cocultivation augments differentiated functions such as drug metabolism and clearance of aggregated gamma-globulin.
Collapse
Affiliation(s)
- Geir I Nedredal
- Department of Digestive Surgery, University Hospital of Northern Norway, 9038 Tromsø, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Malovic I, Sørensen KK, Elvevold KH, Nedredal GI, Paulsen S, Erofeev AV, Smedsrød BH, McCourt PAG. The mannose receptor on murine liver sinusoidal endothelial cells is the main denatured collagen clearance receptor. Hepatology 2007; 45:1454-61. [PMID: 17518370 DOI: 10.1002/hep.21639] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED The purpose of this study was to identify the receptor responsible for endocytosis of denatured collagen from blood. The major site of clearance of this material (at least 0.5 g/day in humans) is a receptor on liver sinusoidal endothelial cells (LSECs). We have now identified an 180-kDa endocytic receptor on LSECs, peptide mass fingerprinting of which revealed it to be the mannose receptor. Challenge of mannose-receptor knockout mice and their cultured LSECs revealed significantly reduced blood clearance and a complete absence of LSEC endocytosis of denatured collagen. Organ analysis of wild-type versus knockout mice after injection of denatured collagen revealed significantly reduced liver uptake in the knockout mice. Clearance/endocytosis of ligands for other receptors in these animals was as that for wild-type mice, and denatured collagen uptake in wild-type mice was not affected by other ligands of the mannose receptor, namely mannose and mannan. Furthermore, unlike that of mannose and mannan, endocytosis of denatured collagen by the mannose receptor is calcium independent. This suggests that the binding site for denatured collagen is distinct from that for mannose/mannan. Mannose receptors on LSECs appear to have less affinity for circulating triple helical type I collagen. CONCLUSION The mannose receptor is the main candidate for being the endocytic denatured collagen receptor on LSECs.
Collapse
Affiliation(s)
- Ivana Malovic
- Department of Cell Biology and Histology, University of Tromsø, NO-9037 Tromsø, Norway
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nahmias Y, Berthiaume F, Yarmush ML. Integration of technologies for hepatic tissue engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 103:309-29. [PMID: 17195468 DOI: 10.1007/10_029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver is the largest internal organ in the body, responsible for over 500 metabolic, regulatory, and immune functions. Loss of liver function leads to liver failure which causes over 25,000 deaths/year in the United States. Efforts in the field of hepatic tissue engineering include the design of bioartificial liver systems to prolong patient's lives during liver failure, for drug toxicity screening and for the study of liver regeneration, ischemia/reperfusion injury, fibrosis, viral infection, and inflammation. This chapter will overview the current state-of-the-art in hepatology including isolated perfused liver, culture of liver slices and tissue explants, hepatocyte culture on collagen "sandwich" and spheroids, coculture of hepatocytes with non-parenchymal cells, and the integration of these culture techniques with microfluidics and reactor design. This work will discuss the role of oxygen and medium composition in hepatocyte culture and present promising new technologies for hepatocyte proliferation and function. We will also discuss liver development, architecture, and function as they relate to these culture techniques. Finally, we will review current opportunities and major challenges in integrating cell culture, bioreactor design, and microtechnology to develop new systems for novel applications.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, USA
| | | | | |
Collapse
|
32
|
Ping C, Xiaoling D, Jin Z, Jiahong D, Jiming D, Lin Z. Hepatic Sinusoidal Endothelial Cells Promote Hepatocyte Proliferation Early after Partial Hepatectomy in Rats. Arch Med Res 2006; 37:576-83. [PMID: 16740426 DOI: 10.1016/j.arcmed.2005.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/15/2005] [Indexed: 01/11/2023]
Abstract
BACKGROUND We undertook this study in rats to investigate the role of hepatic sinusoidal endothelial cells (SECs) in hepatocyte proliferation early after partial hepatectomy and the regulatory mechanisms involved. METHODS The animal model of 70% hepatectomy was made. Hepatic SECs and hepatocytes were isolated and cultured according to the method of Braet et al. with some modifications. Levels of nitric oxide (NO), interleukin-6 (IL-6), and hepatic growth factor (HGF) in the supernatants of hepatic SEC cultures were measured, and the expression of HGF mRNA by hepatic SECs was analyzed. The relationship between the supernatants of hepatic SEC cultures and hepatocyte proliferation was probed. (3)H-thymidine incorporation and the proliferating cell nuclear antigen (PCNA) labeling index of hepatocytes were used as signs of hepatocyte proliferation. RESULTS Levels of NO, IL-6, and HGF in the supernatants of hepatic SECs cultures were increased markedly 6 and 24 h after hepatectomy and then were decreased gradually. The expression of HGF mRNA by cultured SECs was increased markedly 6 and 24 h after hepatectomy, with a peak 6 h after hepatectomy. The PCNA labeling index and (3)H-thymidine incorporation of hepatocytes started to increase 6 h after hepatectomy, with a peak at 24 h. Hepatic SECs were isolated from rats 24 h after partial hepatectomy and cultured for 24 h, and the culture supernatants were obtained. The supernatants not only significantly enhanced the PCNA labeling index and (3)H-thymidine incorporation of proliferating hepatocytes isolated from rats after partial hepatectomy but also obviously increased the DNA synthesis of quiescent hepatocytes from the control rats. The extent of hepatocyte proliferation was closely related to the amount of the SEC culture supernatants added in both rats after partial hepatectomy and control rats. CONCLUSIONS These results suggest that cytokines (such as IL-6, HGF and NO) secreted by SECs play important roles in liver regeneration early after partial hepatectomy. We speculate that activated hepatic SECs secrete some substances that induce or trigger liver regeneration after partial hepatectomy.
Collapse
Affiliation(s)
- Chen Ping
- Institute of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| | | | | | | | | | | |
Collapse
|
33
|
Ping C, Lin Z, Jiming D, Jin Z, Ying L, Shigang D, Hongtao Y, Yongwei H, Jiahong D. The phosphoinositide 3-kinase/Akt-signal pathway mediates proliferation and secretory function of hepatic sinusoidal endothelial cells in rats after partial hepatectomy. Biochem Biophys Res Commun 2006; 342:887-93. [PMID: 16596723 DOI: 10.1016/j.bbrc.2006.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the role of AKT signaling pathway in hepatic sinusoidal endothelial cells (SECs) early after partial hepatectomy in rats and the regulatory mechanisms involved. METHODS The animal model of 70% hepatectomy was made. Hepatic SECs were isolated and cultured according to Braet et al.'s method with some modifications. The cultured hepatic SECs were divided into two groups: 70% partial hepatectomy groups and LY294002 group (LY). We observed the expressions of AKT and NF-kappaB in cultured hepatic SECs by Western blot, measured the levels of NO, NOs, IL-6, and HGF in the supernatants of hepatic SEC cultures and [3H]thymidine incorporation, and analyzed cell cycle of cultured hepatic SECs by flow cytometer. The relationship of the Akt pathway with secretions and proliferation of hepatic SECs after partial hepatectomy was probed. RESULTS The levels of Akt protein expression increased significantly after partial hepatectomy in OG group and with a peak at 24 h post operation. Meanwhile, there was a markedly increase in phosphorylated Akt protein during 2-72 h after operation. But the expression and activity of Akt protein did not change significantly after partial hepatectomy in the LY group. So, partial hepatectomy can marked induce Akt expression and result in rapid and marked phosphorylation of Akt from 2 to 72 h thereafter. The changes of NF-kappaB expression in cultured hepatic SECs were similar to those of Akt expression after operation. The concentrations of HGF and IL-6 in the supernatants of cultured hepatic SECs were relatively low in the LY group, and were markedly increased after partial hepatectomy, with a peak at 24 h in the OG group. There were significant differences between the OG and LY groups at 6 and 24 h (P < 0.05). Both NO and NOS secretion was increased in the OG group compared to the LY group within 24 h after partial hepatectomy. But the secretion of NO and NOS was increased more markedly in the LY group than that in the OG beyond 24 h. These findings suggest that the secretion of the cytokines by hepatic SECs is mediated by Akt signaling. Akt signaling pathway in relationship with proliferation of hepatic SECs and suppression of apoptosis. In OG group, the hepatic SECs in S and G2/M obviously increased. The proliferative index of hepatic SECs in OG group had significant differences with that in LY group at 6, 24, and 72 h, P < 0.05. Meanwhile, the cells of apoptosis in OG group were very low, and the cells in LY group gradually increased. CONCLUSIONS These results suggest that AKT signaling pathway plays a crucial role in mediating proliferating and secreted signals in hepatic SECs. AKT has been suggested to play a pivotal role in early liver regeneration involved in the induction of secreted cytokines and proliferation of hepatic SECs.
Collapse
Affiliation(s)
- Chen Ping
- Institute of hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bilezikçi B, Demirhan B, Sar A, Arat Z, Karakayali H, Haberal M. Hepatic Stellate Cells in Biopsies From Liver Allografts With Acute Rejection. Transplant Proc 2006; 38:589-93. [PMID: 16549182 DOI: 10.1016/j.transproceed.2005.12.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND [corrected] Hepatic stellate cells (HSCs) are nonparenchymal elements that play a major role in fibrogenesis due to various pathologies. HSCs are easily activated by certain injuries, which produce contraction and relaxation of HSCs, resulting in hepatic microcirculatory disturbances. The present study sought to analyze the expression of alpha-smooth muscle actin (alpha-SMA) positive HSCs in liver allografts during acute rejection episodes (ARE), determining whether it was related to the pathogenesis of this immune response. MATERIALS AND METHODS Using immunohistochemistry and a semiquantitative scoring system, the expression of alpha-SMA in HSCs was analyzed in liver allografts with ARE (group 1, n = 64) or without ARE (group 2, n = 20). Normal liver tissue from transplant donors (group 3, n = 53) served as the control materials. RESULTS Significantly more alpha-SMA positive HSCs were found in group 2 than in the other two groups (P < .05). The minimal difference observed between groups 1 and 3 was not statistically significant. As well, no statistical association was found between expression of alpha-SMA and the clinical parameters of age, gender, etiology of liver failure, donor type (partial or whole), posttransplantation period, and liver function tests. CONCLUSIONS While these results represent preliminary findings, it may be possible that HSC expression is a protective mechanism during ARE in hepatic allograft patients. If this is true, enhanced expression of this protein may mitigate ARE in liver allograft patients.
Collapse
Affiliation(s)
- B Bilezikçi
- Department of Pathology, Başkent University, Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
35
|
Elvevold K, Nedredal GI, Revhaug A, Bertheussen K, Smedsrød B. Long-term preservation of high endocytic activity in primary cultures of pig liver sinusoidal endothelial cells. Eur J Cell Biol 2005; 84:749-64. [PMID: 16218189 DOI: 10.1016/j.ejcb.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Together with Kupffer cells, liver sinusoidal endothelial cells (LSECs) constitute the most powerful scavenger system in the body. However, studies on LSEC function are hampered by the fact that the cells lose their scavenger ability and start deteriorating after a few days in culture. The purpose of the present study was to improve the conditions of cultivation to prolong the survival of pig LSECs in vitro. We used the high capacity receptor-mediated endocytosis of soluble waste molecules as a marker for functionally intact cells in the cultures. Compared with two commercially-, and two other media specifically designed for use with either SECs or hepatocytes from rat, our newly developed serum-free medium, DM 110/SS, devoid of any components of animal origin, was superior in maintaining the endocytic activity. Of six growth factors studied for their effect on endocytosis, basic fibroblast, and recombinant epidermal, but not vascular endothelial growth factor, were found to be most beneficial. After 8 days in DM 110/SS, LSECs maintained endocytosis via the scavenger receptor, mannose receptor, collagen alpha-chain receptor and the Fc-gamma receptor. All endocytosed ligands, except for aggregated IgG were degraded in 8-day-old cultures. Using the new medium, the cells endocytosed ligands for up to 20 days, and survived for at least an additional 10 days, albeit without the high endocytic activity typical of intact LSECs. Importantly, DNA synthesis in prolonged cultures of LSECs was observed only when maintained in DM 110/SS medium. In conclusion, we describe a protocol for the maintenance of LSECs in culture for the longest period yet reported.
Collapse
Affiliation(s)
- Kjetil Elvevold
- Department of Experimental Pathology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | |
Collapse
|
36
|
Pietzsch J, Bergmann R, Wuest F, Pawelke B, Hultsch C, van den Hoff J. Catabolism of native and oxidized low density lipoproteins: in vivo insights from small animal positron emission tomography studies. Amino Acids 2005; 29:389-404. [PMID: 16012780 DOI: 10.1007/s00726-005-0203-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 02/07/2005] [Indexed: 12/20/2022]
Abstract
The human organism is exposed to numerous processes that generate reactive oxygen species (ROS). ROS may directly or indirectly cause oxidative modification and damage of proteins. Protein oxidation is regarded as a crucial event in the pathogenesis of various diseases ranging from rheumatoid arthritis to Alzheimer's disease and atherosclerosis. As a representative example, oxidation of low density lipoprotein (LDL) is regarded as a crucial event in atherogenesis. Data concerning the role of circulating oxidized LDL (oxLDL) in the development and outcome of diseases are scarce. One reason for this is the shortage of methods for direct assessment of the metabolic fate of circulating oxLDL in vivo. We present an improved methodology based on the radiolabelling of apoB-100 of native LDL (nLDL) and oxLDL, respectively, with the positron emitter fluorine-18 ((18)F) by conjugation with N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). Radiolabelling of both nLDL and oxLDL using [(18)F]SFB causes neither additional oxidative structural modifications of LDL lipids and proteins nor alteration of their biological activity and functionality, respectively, in vitro. The method was further evaluated with respect to the radiopharmacological properties of both [(18)F]fluorobenzoylated nLDL and oxLDL by biodistribution studies in male Wistar rats. The metabolic fate of [(18)F]fluorobenzoylated nLDL and oxLDL in rats in vivo was further delineated by dynamic positron emission tomography (PET) using a dedicated small animal tomograph (spatial resolution of 2 mm). From this study we conclude that the use of [(18)F]FB-labelled LDL particles is an attractive alternative to, e.g., LDL iodination methods, and is of value to characterize and to discriminate the kinetics and the metabolic fate of nLDL and oxLDL in small animals in vivo.
Collapse
Affiliation(s)
- J Pietzsch
- Positron Emission Tomography Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Sawaguchi S, Koya Y, Yoshizaki N, Ohkubo N, Andoh T, Hiramatsu N, Sullivan CV, Hara A, Matsubara T. Multiple vitellogenins (Vgs) in mosquitofish (Gambusia affinis): identification and characterization of three functional Vg genes and their circulating and yolk protein products. Biol Reprod 2004; 72:1045-60. [PMID: 15616220 DOI: 10.1095/biolreprod.104.037895] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objectives of this study were to characterize multiple forms of vitellogenin (Vg) in mosquitofish (Gambusia affinis) and to discover the fate of each Vg during its processing into product yolk proteins. Two Vg preparations, with apparent masses of 600 kDa (600 Vg) and 400 kDa (400 Vg), were isolated from the plasma of fish treated with estradiol-17beta (E(2)) by various chromatographic procedures. Immunological analyses verified the presence of two different Vg proteins (600 VgA and 600 VgB) in the 600 Vg preparation and of a single protein in the 400 Vg preparation. Three major yolk proteins (Yps) with apparent masses of 560, 400, and 28 kDa were observed in extracts of ovarian follicles from vitellogenic females. Immunological analyses demonstrated that the 400 Vg underwent no change in native mass after being incorporated into oocytes. The 600 Vgs gave rise to a 28 kDa beta'-component and a native 560 kDa Yp, which was heterodimeric in structure, consisting of two types of complexes between phosvitin (Pv) and lipovitellin (Lv) heavy- and light-chains. Full-length cDNAs encoding the 600 VgA, 600 VgB, and 400 Vg were isolated from a liver cDNA library of E(2) treated fish. Similar to the zebrafish vg3 gene, the 400 Vg cDNA lacked a Pv domain and was classified as an incomplete or phosvitinless (C-type) Vg. The deduced primary structures of 600 VgA and 600 VgB were complete, and these were categorized as type A and type B Vgs, respectively, according to our recent classification scheme. This is the first report on the characterization of three functional Vg genes and their circulating and yolk protein products in any vertebrate species.
Collapse
Affiliation(s)
- Sayumi Sawaguchi
- Department of Animal Resource Production, the United Graduate School of Agricultural Science, Gifu University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dong XL, Chen P, Zhu J, Xiong Y. Effects of liver sinusoidal endothelial cells on proliferation of hepatocytes after partial hepatectomy in rats. Shijie Huaren Xiaohua Zazhi 2004; 12:1861-1864. [DOI: 10.11569/wcjd.v12.i8.1861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effects of liver sinusoidal endothelial cells on the proliferation of the regenerative hepatocytes after partial hepatectomy in normal rats.
METHODS: A method to separate and culture hepatocytes and liver sinusoidal endothelial cells (LSEC) was established and the hepacytes and sinusoidal endothelial cells of regenerative liver were separated and cultured at different time points after partial hepaectomy in normal rats. The experiment was divided into two groups: operation group (OP) and sham operation group (SO). The cultivation of hepatocytes was divided into two groups: group A (hepatocytes) and group B (hepatocytes + supernatant of LSEC). The expression index of PCNA in hepatocytes was assayed by immunohistochemistry, and the level of synthesis of DNA in regenerative hepatocytes was assayed by radio-immunity.
RESULTS: The expression index of PCNA in hepatocytes cultured in group B increased more significantly than that in group A after partial hepatectomy in 6h and 24 h (5.9±0.1 vs 8.9±0.1 P < 0.05; 38.6±2.6 vs 58.0±3.9 P < 0.01),and so did the level of synthesis of DNA in regenerating hepatocytes cultured in group B than that in group A after partial hepatectomy in 6 h and 24 h (226±18 vs 8.9±0.1 P < 0.05; 38.6±2.6 vs 58.0±3.9 P < 0.01).
CONCLUSION: The proliferating ability and the synthesis of DNA in hepatocytes after partial hepatectomy are enhanced by the supernatant from LSEC in vitro.
Collapse
|
39
|
Elvevold KH, Nedredal GI, Revhaug A, Smedsrød B. Scavenger properties of cultivated pig liver endothelial cells. COMPARATIVE HEPATOLOGY 2004; 3:4. [PMID: 15306034 PMCID: PMC514717 DOI: 10.1186/1476-5926-3-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 08/12/2004] [Indexed: 01/11/2023]
Abstract
Background The liver sinusoidal endothelial cells (LSEC) and Kupffer cells constitute the most powerful scavenger system in the body. Various waste macromolecules, continuously released from tissues in large quantities as a consequence of normal catabolic processes are cleared by the LSEC. In spite of the fact that pig livers are used in a wide range of experimental settings, the scavenger properties of pig LSEC has not been investigated until now. Therefore, we studied the endocytosis and intracellular transport of ligands for the five categories of endocytic receptors in LSEC. Results Endocytosis of five 125I-labelled molecules: collagen α-chains, FITC-biotin-hyaluronan, mannan, formaldehyde-treated serum albumin (FSA), and aggregated gamma globulin (AGG) was substantial in cultured LSEC. The endocytosis was mediated via the collagen-, hyaluronan-, mannose-, scavenger-, or IgG Fc-receptors, respectively, as judged by the ability of unlabelled ligands to compete with labelled ligands for uptake. Intracellular transport was studied employing a morphological pulse-chase technique. Ninety minutes following administration of red TRITC-FSA via the jugular vein of pigs to tag LSEC lysosomes, cultures of the cells were established, and pulsed with green FITC-labelled collagen, -mannan, and -FSA. By 10 min, the FITC-ligands was located in small vesicles scattered throughout the cytoplasm, with no co-localization with the red lysosomes. By 2 h, the FITC-ligands co-localized with red lysosomes. When LSEC were pulsed with FITC-AGG and TRITC-FSA together, co-localization of the two ligands was observed following a 10 min chase. By 2 h, only partial co-localization was observed; TRITC-FSA was transported to lysosomes, whereas FITC-AGG only slowly left the endosomes. Enzyme assays showed that LSEC and Kupffer cells contained equal specific activities of hexosaminidase, aryl sulphates, acid phosphatase and acid lipase, whereas the specific activities of α-mannosidase, and glucuronidase were higher in LSEC. All enzymes measured showed considerably higher specific activities in LSEC compared to parenchymal cells. Conclusion Pig LSEC express the five following categories of high capacity endocytic receptors: scavenger-, mannose-, hyaluronan-, collagen-, and IgG Fc-receptors. In the liver, soluble ligands for these five receptors are endocytosed exclusively by LSEC. Furthermore, LSEC contains high specific activity of lysosomal enzymes needed for degradation of endocytosed material. Our observations suggest that pig LSEC have the same clearance activity as earlier described in rat LSEC.
Collapse
Affiliation(s)
- Kjetil H Elvevold
- Department of Experimental Pathology, Institute of Medical Biology, University of Tromsø, 9038 Tromsø, Norway
| | - Geir I Nedredal
- Department of Digestive Surgery, University Hospital of Tromsø, 9038 Tromsø, Norway
| | - Arthur Revhaug
- Department of Digestive Surgery, University Hospital of Tromsø, 9038 Tromsø, Norway
| | - Bård Smedsrød
- Department of Experimental Pathology, Institute of Medical Biology, University of Tromsø, 9038 Tromsø, Norway
| |
Collapse
|
40
|
Schulpis KH, Karakonstantakis T, Gavrili S, Costalos C, Roma E, Papassotiriou I. Serum Copper Is Decreased in Premature Newborns and Increased in Newborns with Hemolytic Jaundice. Clin Chem 2004; 50:1253-6. [PMID: 15229159 DOI: 10.1373/clinchem.2004.031773] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Rocha E, Hinton DE, Wisse E. Comparative Hepatology: A journal for all hepatologists with immediate Open Access to quality peer-reviewed research. COMPARATIVE HEPATOLOGY 2004; 3:1. [PMID: 14962350 PMCID: PMC375541 DOI: 10.1186/1476-5926-3-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 02/12/2004] [Indexed: 04/28/2023]
Affiliation(s)
- Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar – ICBAS, University of Porto, Lg. Prof. Abel Salazar n° 2, 4099-003 Porto, Portugal
| | - David E Hinton
- Duke University, Nicholas School of the Environment and Earth Sciences, Division of Environmental Sciences and Policy, A-333 LSRC, Science Drive, Box 90328 Durham, North Carolina 27708-0328, United States
| | | |
Collapse
|
42
|
Knight TR, Jaeschke H. Peroxynitrite formation and sinusoidal endothelial cell injury during acetaminophen-induced hepatotoxicity in mice. COMPARATIVE HEPATOLOGY 2004; 3 Suppl 1:S46. [PMID: 14960198 PMCID: PMC2410261 DOI: 10.1186/1476-5926-2-s1-s46] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION: Vascular injury and accumulation of red blood cells in the space of Disse (hemorrhage) is a characteristic feature of acetaminophen hepatotoxicity. However, the mechanism of nonparenchymal cell injury is unclear. Therefore, the objective was to investigate if either Kupffer cells or intracellular events in endothelial cells are responsible for the cell damage. RESULTS: Acetaminophen treatment (300 mg/kg) caused vascular nitrotyrosine staining within 1 h. Vascular injury (hemorrhage) occurred between 2 and 4 h. This paralleled the time course of parenchymal cell injury as shown by the increase in plasma alanine aminotransferase activities. Inactivation of Kupffer cells by gadolinium chloride (10 mg/kg) had no significant effect on vascular nitrotyrosine staining, hemorrhage or parenchymal cell injury. In contrast, treatment with allopurinol (100 mg/kg), which prevented mitochondrial injury in hepatocytes, strongly attenuated vascular nitrotyrosine staining and injury. CONCLUSIONS: Our data do not support the hypothesis that acetaminophen-induced superoxide release leading to vascular peroxynitrite formation and endothelial cell injury is caused by activated Kupffer cells. In contrast, the protective effect of allopurinol treatment suggests that, similar to the mechanism in parenchymal cells, mitochondrial oxidant stress and peroxynitrite formation in sinusoidal endothelial cells may be critical for vascular injury after acetaminophen overdose.
Collapse
Affiliation(s)
- Tamara R Knight
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Liver Research Institute, University of Arizona College of Medicine, Room 6309, 1501 N. Campbell Avenue, Arizona 85724, USA
| | - Hartmut Jaeschke
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Liver Research Institute, University of Arizona College of Medicine, Room 6309, 1501 N. Campbell Avenue, Arizona 85724, USA
| |
Collapse
|