1
|
Singh D, Memari E, He S, Yusefi H, Helfield B. Cardiac gene delivery using ultrasound: State of the field. Mol Ther Methods Clin Dev 2024; 32:101277. [PMID: 38983873 PMCID: PMC11231612 DOI: 10.1016/j.omtm.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Over the past two decades, there has been tremendous and exciting progress toward extending the use of medical ultrasound beyond a traditional imaging tool. Ultrasound contrast agents, typically used for improved visualization of blood flow, have been explored as novel non-viral gene delivery vectors for cardiovascular therapy. Given this adaptation to ultrasound contrast-enhancing agents, this presents as an image-guided and site-specific gene delivery technique with potential for multi-gene and repeatable delivery protocols-overcoming some of the limitations of alternative gene therapy approaches. In this review, we provide an overview of the studies to date that employ this technique toward cardiac gene therapy using cardiovascular disease animal models and summarize their key findings.
Collapse
Affiliation(s)
- Davindra Singh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Elahe Memari
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Hossein Yusefi
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Brandon Helfield
- Department of Biology, Concordia University, Montreal, QC, Canada
- Department of Physics, Concordia University, Montreal, QC, Canada
| |
Collapse
|
2
|
Ren L, Wang L, Yi X, Tan Y, Yi L, He J, Li D. Ultrasound Microbubble-Stimulated miR-145-5p Inhibits Malignant Behaviors of Breast Cancer Cells by Targeting ACTG1. Ultrasound Q 2024; 40:136-143. [PMID: 38350033 DOI: 10.1097/ruq.0000000000000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
ABSTRACT Ultrasound-targeted microbubble destruction (UTMD) technology combines ultrasound with a variety of functional microbubble vectors to enhance the transfection and expression of target genes, and has become a promising noninvasive method for localized gene transfer, which is widely used in gene therapy for cancer. This research aimed to explore the role of UTMD-mediated miR-145-5p on breast cancer (BC) tumorigenesis and the underlying mechanisms. To achieve UTMD-mediated miR-145-5p overexpression, BC cells were cotransfected with microbubbles (MBs) and miR-145-5p mimics. The BC cell malignant phenotypes were assessed through CCK-8, wound healing, and transwell assays. MiR-145-5p and actin gamma 1 (ACTG1) binding relationship was verified through luciferase reporter and RNA pull-down assays. MiR-145-5p and ACTG1 levels in BC cells and tissues were detected through RT-qPCR and Western blotting. ACTG1 was upregulated, whereas miR-145-5p was downregulated in BC cells and tissues. MiR-145-5p targeted ACTG1 and negatively regulated its level in BC cells. Overexpressing miR-145-5p restrained BC cell growth, migration, and invasion. Ultrasound-targeted microbubble destruction improved the overexpression efficiency of miR-145-5p and enhanced the suppressive influence on BC cell malignant phenotypes. In addition, ACTG1 overexpression compromises the repression of UTMD-mediated miR-145-5p on cellular behaviors in BC. Ultrasound-targeted microbubble destruction-delivered miR-145-5p hindered malignant behaviors of BC cells through downregulating ACTG1.
Collapse
Affiliation(s)
| | - Li Wang
- Yichang Yiling People's Hospital, Yichang, Hubei, China
| | - Xuelin Yi
- Yichang Yiling People's Hospital, Yichang, Hubei, China
| | - Yang Tan
- Yichang Yiling People's Hospital, Yichang, Hubei, China
| | - Lingxian Yi
- Yichang Yiling People's Hospital, Yichang, Hubei, China
| | - Jinlan He
- Yichang Yiling People's Hospital, Yichang, Hubei, China
| | | |
Collapse
|
3
|
Shnayder NA, Ashhotov AV, Trefilova VV, Novitsky MA, Medvedev GV, Petrova MM, Narodova EA, Kaskaeva DS, Chumakova GA, Garganeeva NP, Lareva NV, Al-Zamil M, Asadullin AR, Nasyrova RF. High-Tech Methods of Cytokine Imbalance Correction in Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:13333. [PMID: 37686139 PMCID: PMC10487844 DOI: 10.3390/ijms241713333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
An important mechanism for the development of intervertebral disc degeneration (IDD) is an imbalance between anti-inflammatory and pro-inflammatory cytokines. Therapeutic and non-therapeutic approaches for cytokine imbalance correction in IDD either do not give the expected result, or give a short period of time. This explains the relevance of high-tech medical care, which is part of specialized care and includes the use of new resource-intensive methods of treatment with proven effectiveness. The aim of the review is to update knowledge about new high-tech methods based on cytokine imbalance correction in IDD. It demonstrates promise of new approaches to IDD management in patients resistant to previously used therapies, including: cell therapy (stem cell implantation, implantation of autologous cultured cells, and tissue engineering); genetic technologies (gene modifications, microRNA, and molecular inducers of IDD); technologies for influencing the inflammatory cascade in intervertebral discs mediated by abnormal activation of inflammasomes; senolytics; exosomal therapy; and other factors (hypoxia-induced factors; lysyl oxidase; corticostatin; etc.).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - Maxim A. Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - German V. Medvedev
- R.R. Vreden National Medical Research Center for Traumatology and Orthopedics, 195427 Saint-Petersburg, Russia;
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Daria S. Kaskaeva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Galina A. Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia;
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Natalia V. Lareva
- Department of Therapy of Faculty of Postgraduate Education, Chita State Medical Academy, 672000 Chita, Russia;
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
4
|
Transcutaneous ultrasound mediated gene delivery into canine livers achieves therapeutic levels of FVIII expression. Blood Adv 2022; 6:3557-3568. [PMID: 35427415 PMCID: PMC9631573 DOI: 10.1182/bloodadvances.2021006016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/03/2022] [Indexed: 11/24/2022] Open
Abstract
Nonviral UMGD can achieve therapeutic levels of FVIII gene expression in a large animal model. UMGD targeting liver is safe without evidence of any lasting damage.
A safe, effective, and inclusive gene therapy will significantly benefit a large population of patients with hemophilia. We used a minimally invasive transcutaneous ultrasound-mediated gene delivery (UMGD) strategy combined with microbubbles (MBs) to enhance gene transfer into 4 canine livers. A mixture of high-expressing, liver-specific human factor VIII (hFVIII) plasmid and MBs was injected into the hepatic vein via balloon catheter under fluoroscopy guidance with simultaneous transcutaneous UMGD treatment targeting a specific liver lobe. Therapeutic levels of hFVIII expression were achieved in all 4 dogs, and hFVIII levels were maintained at a detectable level in 3 dogs throughout the 60-day experimental period. Plasmid copy numbers correlated with hFVIII antigen levels, and plasmid-derived messenger RNA (mRNA) was detected in treated livers. Liver transaminase levels and histology analysis indicated minimal liver damage and a rapid recovery after treatment. These results indicate that liver-targeted transcutaneous UMGD is promising as a clinically feasible therapy for hemophilia A and other diseases.
Collapse
|
5
|
Ultrasound-targeted microbubble destruction (UTMD)-mediated miR-150-5p attenuates oxygen and glucose deprivation-induced cardiomyocyte injury by inhibiting TTC5 expression. Mol Biol Rep 2022; 49:6041-6052. [PMID: 35357625 DOI: 10.1007/s11033-022-07392-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cardiomyocyte injury is a typical feature in cardiovascular diseases. Changes in cardiomyocytes strongly affect the progression of cardiovascular diseases. This work aimed to investigate the biological function and potential mechanism of action of miR-150-5p in cardiomyocytes. METHODS AND RESULTS A myocardial ischemia (MI) injury rat model was constructed to detect miR-150-5p and tetratricopeptide repeat domain 5 (TTC5) expression during heart ischemia injury. Primary cardiomyocytes were isolated for in vitro study. CCK-8 assays were used to detect cardiomyocyte viability. Western blots were used to detect TTC5 and P53 expression. qPCR was utilized to measure RNA expression of miR-150-5p and TTC5. The TUNEL assay was used to determine cell apoptosis. ELISA was used to determine cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels in heart tissues and cell culture supernatants. A dual-luciferase reporter assay was carried out to verify the binding ability between miR-150-5p and TTC5. Oxygen-glucose deprivation (OGD) treatment significantly inhibited cell viability. Ultrasound-targeted microbubble destruction (UTMD)-mediated uptake of miR-150-5p inverted these results. Additionally, UTMD-mediated uptake of miR-150-5p retarded the effects of OGD treatment on cell apoptosis. Besides, UTMD-mediated uptake of miR-150-5p counteracted the effects of OGD treatment on the inflammatory response by regulating cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels. For the mechanism of the protective effect on the heart, we predicted and confirmed that miR-150-5p bound to TTC5 and inhibited TTC5 expression. CONCLUSIONS UTMD-mediated uptake of miR-150-5p attenuated OGD-induced primary cardiomyocyte injury by inhibiting TTC5 expression. This discovery contributes toward further understanding the progression of primary cardiomyocyte injury.
Collapse
|
6
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Huang S, Xiang X, Qiu L, Wang L, Zhu B, Guo R, Tang X. Transfection of TGF-β shRNA by Using Ultrasound-targeted Microbubble Destruction to Inhibit the Early Adhesion Repair of Rats Wounded Achilles Tendon In vitro and In vivo. Curr Gene Ther 2021; 20:71-81. [PMID: 32416687 DOI: 10.2174/1566523220666200516165828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Tendon injury is a major orthopedic disorder. Ultrasound-targeted microbubble destruction (UTMD) provides a promising method for gene transfection, which can be used for the treatment of injured tendons. OBJECTIVE The purpose of this study was to investigate the optimal transforming growth factor beta (TGF-β) short hairpin RNA (shRNA) sequence and transfection conditions using UTMD in vitro and to identify its ability for inhibiting the early adhesion repair of rats wounded achilles tendons in vivo. METHODS The optimal sequence was selected analyzing under a fluorescence microscope and quantitative real-time reverse transcription polymerase chain reaction in vitro. In vivo, 40 rats with wounded Achilles tendons were divided into five groups: (1) control group, (2) plasmid group (3) plasmid + ultrasound group, (4) plasmid + microbubble group, (5) plasmid + microbubble + ultrasound group, and were euthanized at 14 days post treatment. TGF-β expression was evaluated using adhesion scores and pathological examinations. RESULTS The optimal condition for UTMD delivery in vitro was 1W/cm2 of output intensity and a 30% duty cycle with 60 s irradiation time (P < 0.05). The transfection efficiency of the plasmid in group 5 was higher than that in other groups (P < 0.05). Moreover, the lowest adhesion index score and the least expression of TGF-β were shown in group 5 (P < 0.05). When compared with the other groups, group 5 had a milder inflammatory reaction. CONCLUSION The results suggested that UTMD delivery of TGF-β shRNA offers a promising treatment approach for a tendon injury in vivo.
Collapse
Affiliation(s)
- Songya Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, China
| | - Xi Xiang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, China
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, China
| | - Liyun Wang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, China
| | - Bihui Zhu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, China
| | - Ruiqian Guo
- Department of Medical Ultrasound, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, China
| | - Xinyi Tang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
8
|
Anderson CD, Walton CB, Shohet RV. A Comparison of Focused and Unfocused Ultrasound for Microbubble-Mediated Gene Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1785-1800. [PMID: 33812691 PMCID: PMC8169610 DOI: 10.1016/j.ultrasmedbio.2021.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/23/2020] [Accepted: 02/19/2021] [Indexed: 05/05/2023]
Abstract
We compared focused and unfocused ultrasound-targeted microbubble destruction (UTMD) for delivery of reporter plasmids to the liver and heart in mice. Optimal hepatic expression was seen with double-depth targeting at 5 and 13 mm in vivo, incorporating a low pulse repetition frequency and short pulse duration. Reporter expression was similar, but the transfection patterns were distinct, with intense foci of transfection using focused UTMD (F-UTMD). We then compared both approaches for cardiac delivery and found 10-fold stronger levels of reporter expression for F-UTMD and observed small areas of intense luciferase expression in the left ventricle. Non-linear contrast imaging of the liver before and after insonation also showed a substantially greater change in signal intensity for F-UTMD, suggesting distinct cavitation mechanisms for both approaches. Overall, similar levels of hepatic transgene expression were observed, but cardiac-directed F-UTMD was substantially more effective. Focused ultrasound presents a new frontier in UTMD-directed gene therapy.
Collapse
Affiliation(s)
- Cynthia D Anderson
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii, USA
| | - Chad B Walton
- University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Ralph V Shohet
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii, USA.
| |
Collapse
|
9
|
Roh EJ, Darai A, Kyung JW, Choi H, Kwon SY, Bhujel B, Kim KT, Han I. Genetic Therapy for Intervertebral Disc Degeneration. Int J Mol Sci 2021; 22:ijms22041579. [PMID: 33557287 PMCID: PMC7914740 DOI: 10.3390/ijms22041579] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration can cause chronic lower back pain (LBP), leading to disability. Despite significant advances in the treatment of discogenic LBP, the limitations of current treatments have sparked interest in biological approaches, including growth factor and stem cell injection, as new treatment options for patients with chronic LBP due to IVD degeneration (IVDD). Gene therapy represents exciting new possibilities for IVDD treatment, but treatment is still in its infancy. Literature searches were conducted using PubMed and Google Scholar to provide an overview of the principles and current state of gene therapy for IVDD. Gene transfer to degenerated disc cells in vitro and in animal models is reviewed. In addition, this review describes the use of gene silencing by RNA interference (RNAi) and gene editing by the clustered regularly interspaced short palindromic repeats (CRISPR) system, as well as the mammalian target of rapamycin (mTOR) signaling in vitro and in animal models. Significant technological advances in recent years have opened the door to a new generation of intradiscal gene therapy for the treatment of chronic discogenic LBP.
Collapse
Affiliation(s)
- Eun Ji Roh
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea
| | - Anjani Darai
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea
| | - Jae Won Kyung
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
| | - Hyemin Choi
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
| | - Basanta Bhujel
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea
| | - Kyoung Tae Kim
- School of Medicine, Department of Neurosurgery, Kyungpook National University, Daegu 41944, Korea;
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
- Correspondence:
| |
Collapse
|
10
|
Wu H, Xie D, Yang Y, Yang Q, Shi X, Yang R. Ultrasound-Targeted Microbubble Destruction-Mediated miR-206 Overexpression Promotes Apoptosis and Inhibits Metastasis of Hepatocellular Carcinoma Cells Via Targeting PPIB. Technol Cancer Res Treat 2020; 19:1533033820959355. [PMID: 33111654 PMCID: PMC7607806 DOI: 10.1177/1533033820959355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Ultrasound-targeted microbubble destruction (UTMD) has been found to be an effective method for delivering microRNAs (miRNAs, miRs). The current study is aimed at discovering the potential anti-cancer effects of UTMD-mediated miR-206 on HCC. Methods: In our study, the expressions of miR-206 and peptidyl-prolyl cis-trans isomerase B (PPIB) in HCC tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). PPIB expressions in HCC and adjacent normal tissues were analyzed by gene expression profiling interactive analysis (GEPIA). MiR-206 mimic and mimic control were transfected into HCC cells using UTMD. Potential binding sites between miR-206 and PPIB were predicted and confirmed by TargetScan and dual-luciferase reporter assay, respectively. Cell migration, invasion, and apoptosis were detected by wound healing assay, Transwell, and flow cytometry, respectively. The expressions of apoptosis-related proteins (Bax, Bcl-2), Epithelial-to-mesenchymal (EMT) markers (E-cadherin, N-cadherin and Snail) and PPIB were measured by Western blot. Results: MiR-206 expression was downregulated while PPIB expression was upregulated in HCC, and PPIB was recognized as a target gene of miR-206 in HCC tissues. UTMD-mediated miR-206 inhibited HCC cell migration and invasion while promoting apoptosis via regulating the expressions of proteins related to apoptosis, migration, and invasion by targeting PPIB. Conclusion: Our results suggested that the delivery of UTMD-mediated miR-206 could be a potential therapeutic method for HCC treatment, given its effects on inhibiting cell migration and invasion and promoting cell apoptosis.
Collapse
Affiliation(s)
- Huating Wu
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Dawei Xie
- Department of General Surgery, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Yingxia Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Qing Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Xiajun Shi
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Rong Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| |
Collapse
|
11
|
Sharma D, Cartar H, Law N, Giles A, Farhat G, Oelze M, Czarnota GJ. Optimization of microbubble enhancement of hyperthermia for cancer therapy in an in vivo breast tumour model. PLoS One 2020; 15:e0237372. [PMID: 32797049 PMCID: PMC7428078 DOI: 10.1371/journal.pone.0237372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/24/2020] [Indexed: 11/18/2022] Open
Abstract
We have demonstrated that exposing human breast tumour xenografts to ultrasound-stimulated microbubbles enhances tumour cell death and vascular disruption resulting from hyperthermia treatment. The aim of this study was to investigate the effect of varying the hyperthermia and ultrasound-stimulated microbubbles treatment parameters in order to optimize treatment bioeffects. Human breast cancer (MDA-MB-231) tumour xenografts in severe combined immunodeficiency (SCID) mice were exposed to varying microbubble concentrations (0%, 0.1%, 1% or 3% v/v) and ultrasound sonication durations (0, 1, 3 or 5 min) at 570 kPa peak negative pressure and central frequency of 500 kHz. Five hours later, tumours were immersed in a 43°C water bath for varying hyperthermia treatment durations (0, 10, 20, 30, 40, 50 or 60 minutes). Results indicated a significant increase in tumour cell death reaching 64 ± 5% with combined treatment compared to 11 ± 3% and 26 ± 5% for untreated and USMB-only treated tumours, respectively. A similar but opposite trend was observed in the vascular density of the tumours receiving the combined treatment. Optimal treatment parameters were found to consist of 40 minutes of heat with low power ultrasound treatment microbubble parameters of 1 minute of sonification and a 1% microbubble concentration.
Collapse
Affiliation(s)
- Deepa Sharma
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Departments of Medical Biophysics, and Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Holliday Cartar
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Niki Law
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Anoja Giles
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Golnaz Farhat
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Michael Oelze
- Department of Electrical and Computer Engineering, Beckman Institute, University of Chicago Illinois at Urbana Champaign, Illinois, United States of America
| | - Gregory J. Czarnota
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Departments of Medical Biophysics, and Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
12
|
Chen F, Li Y, Li M, Wang L. Long noncoding RNA GAS5 inhibits metastasis by targeting miR-182/ANGPTL1 in hepatocellular carcinoma. Am J Cancer Res 2019; 9:108-121. [PMID: 30755815 PMCID: PMC6356919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023] Open
Abstract
Intrahepatic and extrahepatic metastases are responsible for the majority of hepatocellular carcinoma (HCC)-related mortalities. Long noncoding RNAs (lncRNAs) exert important functions in modulating various tumor behaviors. However, the functions and mechanisms of lncRNAs in HCC metastasis remain largely unknown. In this study, downregulation of lncRNA growth arrest-specific 5 (GAS5) was observed in HCC tissues and cells, and predicted poor prognosis of patients with HCC. Through performing gain- and loss-of-function experiments, we found that GAS5 could obviously inhibit migration and invasion of HCC cells in vitro, and suppress tumor metastasis in vivo. Mechanistically, GAS5 functioned as a tumor suppressor in HCC metastasis through directly interacting with miR-182 and abrogating its oncogenic function in this setting. Moreover, GAS5 acted as a competing endogenous RNA (ceRNA) for miR-182 to upregulate the expression of anti-metastasis protein ANGPTL1. Finally, we demonstrated that using ultrasound targeted microbubble destruction (UTMD)-mediated GAS5 transfection could significantly decrease migratory and invasive abilities of HCC cells. Collectively, our study first reveals the mechanism of GAS5/miR-182/ANGPTL1 axis in suppressing HCC metastasis, which provides promising new avenues for therapeutic intervention against HCC progression.
Collapse
Affiliation(s)
- Fei Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| | - Yuhong Li
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| | - Meijun Li
- Medicine Department, The Third Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| | - Liang Wang
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| |
Collapse
|
13
|
Li X, Sun M, Men S, Shi Y, Ma L, An Y, Gao Y, Jin H, Liu W, Du Z. The Inflammatory Transcription Factor C/EBPβ Plays a Critical Role in Cardiac Fibroblast Differentiation and a Rat Model of Cardiac Fibrosis Induced by Autoimmune Myocarditis. Int Heart J 2018; 59:1389-1397. [DOI: 10.1536/ihj.17-446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xiu Li
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Menghua Sun
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Suzhen Men
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Yanan Shi
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Lijuan Ma
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Yongqiang An
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Yaqing Gao
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Hui Jin
- Department of Cardiology, The Second People's Hospital of Guangdong Province
| | - Wei Liu
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University
| | - Zuoyi Du
- Department of Cardiology, The Second People's Hospital of Guangdong Province
| |
Collapse
|
14
|
Zhang H, Chen Z, Du M, Li Y, Chen Y. Enhanced gene transfection efficiency by low-dose 25 kDa polyethylenimine by the assistance of 1.8 kDa polyethylenimine. Drug Deliv 2018; 25:1740-1745. [PMID: 30241446 PMCID: PMC6161618 DOI: 10.1080/10717544.2018.1510065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 11/22/2022] Open
Abstract
Gene therapy is a promising strategy for treatments of various diseases. Efficient and safe introduction of therapeutic genes into targeted cells is essential to realize functions of the genes. High-molecular-weight polyethylenimines (HMW PEIs) including 25 kDa branched PEI and 22 kDa linear PEI are widely used for in vitro gene transfection. However, high-gene transfection efficiency is usually accompanied with high cytotoxicity, which hampers their further clinical study. On the contrary, low-molecular-weight polyethylenimines (LMW PEIs) such as 1.8 kDa PEI and 800 Da PEI show good biocompatibility but their applications are limited by the poor DNA condensation capability. In this study, we find that 1.8 kDa PEI, but not 800 Da PEI combined with low-dose 25 kDa PEI could significantly promote gene transfection with low cytotoxicity. Plasmids encoding enhanced green fluorescence protein (EGFP) were delivered by the combined PEI and gene transfection efficiency was evaluated by microscopic observation and flow cytometry. Parameters including concentrations of 25 kDa PEI and 1.8 kDa PEI and preparation ways were further optimized. This study presents an efficient and safe combined PEI-based non-viral gene delivery strategy with potential for in vivo applications.
Collapse
Affiliation(s)
- Hui Zhang
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Chen
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Li
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhao Chen
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Qin D, Li H, Xie H. Ultrasound‑targeted microbubble destruction‑mediated miR‑205 enhances cisplatin cytotoxicity in prostate cancer cells. Mol Med Rep 2018; 18:3242-3250. [PMID: 30066866 PMCID: PMC6102709 DOI: 10.3892/mmr.2018.9316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/18/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding ~20 nucleotides long sequences that function in the initiation and development of a number of cancers. Ultrasound-targeted microbubble destruction (UTMD) is an effective method for microRNA delivery. The aim of the present study was to investigate the potential roles of UTMD-mediated miRNA (miR)-205 delivery in the development of prostate cancer (PCa). In the present study, miR-205 expression was examined by reverse transcription-quantitative polymerase chain reaction assay. miR-205 mimics were transfected into PC-3 cells using the UTMD method, and the PC-3 cells were also treated with cisplatin. Cell proliferation, apoptosis, migration and invasion abilities were detected using Cell Counting kit-8, flow cytometry, wound healing and Transwell assays, respectively. In addition, the protein expression levels of caspase-9, cleaved-caspase 9, cytochrome c (cytoc), epithelial (E)-cadherin, matrix metalloproteinase-9 (MMP-9), phosphorylated (p)-extracellular signal-regulated kinase (ERK) and ERK were measured by western blot analysis. The results of the present study demonstrated that miR-205 expression was low in human PCa cell lines compared with healthy cells and that UTMD-mediated miR-205 delivery inhibited PCa cell proliferation, migration and invasion, and promoted apoptosis modulated by cisplatin compared with UTMD-mediated miR-negative control group and miR-205-treated group. Furthermore, it was demonstrated that UTMD-mediated miR-205 transfection increased the expression of caspase-9, cleaved-caspase 9, cytochrome c and E-cadherin, and decreased the expression of MMP-9 and p-ERK. Therefore, UTMD-mediated miR-205 delivery may be a promising method for the treatment of PCa.
Collapse
Affiliation(s)
- Dingwen Qin
- Department of Imaging, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Haige Li
- Department of Imaging, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Honglin Xie
- Department of Urology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
16
|
Yu J, Chen Z, Yan F. Advances in mechanism studies on ultrasonic gene delivery at cellular level. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 142:1-9. [PMID: 30031881 DOI: 10.1016/j.pbiomolbio.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 01/23/2023]
Abstract
Ultrasound provides a means for intracellular gene delivery, contributing to a noninvasive and spatiotemporally controllable strategy suitable for clinical applications. Many studies have been done to provide mechanisms of ultrasound-mediated gene delivery at the cellular level. This review summarizes the studies on the important aspects of the mechanisms, providing an overview of recent progress in cellular experiment of ultrasound-mediated gene delivery.
Collapse
Affiliation(s)
- Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China.
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China.
| |
Collapse
|
17
|
Noble-Vranish ML, Song S, Morrison KP, Tran DM, Sun RR, Loeb KR, Keilman GW, Miao CH. Ultrasound-Mediated Gene Therapy in Swine Livers Using Single-Element, Multi-lensed, High-Intensity Ultrasound Transducers. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:179-188. [PMID: 30105275 PMCID: PMC6077835 DOI: 10.1016/j.omtm.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/26/2018] [Indexed: 01/21/2023]
Abstract
We have achieved significant enhancement of gene delivery into livers of large animals using ultrasound (US)-targeted microbubble (MB) destruction methods. An infusion of pGL4 (encoding a luciferase reporter gene) plasmid DNA (pDNA) and MBs into a portal-vein segmental branch of a porcine liver was exposed to US for 4 min. Therapeutic US induced cavitation of MBs to temporarily permeabilize the vascular endothelium and cell membranes, allowing entry of pDNA. We obtained a 64-fold enhancement in luciferase expression in pig livers compared to control without US using an unfocused, dual-element transducer (H105, center frequency [fc] = 1.10 MHz) at 2.7 MPa peak negative pressure (PNP). However, input electrical energy was limited, and modified transducers were designed to have spherical (H185A, fc = 1.10 MHz) or cylindrical foci (H185B, fc = 1.10 MHz; H185D, fc = 1.05 MHz) to enhance PNP output. The revised transducers required less electrical input to achieve 2.7 MPa PNP compared to H105, thereby allowing PNP outputs of up to 6.2 MPa without surpassing the piezo-material limitations. Subsequently, luciferase expression significantly improved up to 9,000-fold compared to controls with minor liver damage. These advancements will allow us to modify our current protocols toward minimally invasive US gene therapy.
Collapse
Affiliation(s)
- Misty L Noble-Vranish
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Shuxian Song
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | - Dominic M Tran
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ryan R Sun
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Keith R Loeb
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
18
|
Qian L, Thapa B, Hong J, Zhang Y, Zhu M, Chu M, Yao J, Xu D. The present and future role of ultrasound targeted microbubble destruction in preclinical studies of cardiac gene therapy. J Thorac Dis 2018; 10:1099-1111. [PMID: 29607187 DOI: 10.21037/jtd.2018.01.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple limitations for cardiac pharmacologic therapies like intolerance, individual variation in effectiveness, side effects, and high cost still remain, despite the recent progress in diagnosis and health support. Gene therapy is poised to be an attractive alternative in various ways for the future, refractory cardiac diseases being one aspect of it. As a novel therapy to deliver the objective gene to organs of living animals, ultrasound targeted microbubble destruction (UTMD) has therapeutic potential in cardiovascular disorders. UTMD, which binds microbubbles with DNA or RNA carriers into the shell and destroys the located microbubbles with low frequency and high mechanical index ultrasound can release target agents to specific organs. UTMD has the ability to transfect markedly through sonoporation, cavitation and other effects by way of intravenous injection that is minimally invasive and highly specific for gene deliverance. Here, we have summarized the present role of UTMD in pre-clinical studies of cardiac gene therapy which covers myocardial infarction, regeneration, ischaemia/reperfusion injury, hypertension, diabetic cardiomyopathy, adriamycin cardiomyopathy and some discussion for further studies.
Collapse
Affiliation(s)
- Lijun Qian
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Barsha Thapa
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jian Hong
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanmei Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Menglin Zhu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Chu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
19
|
Tian XQ, Ni XW, Xu HL, Zheng L, ZhuGe DL, Chen B, Lu CT, Yuan JJ, Zhao YZ. Prevention of doxorubicin-induced cardiomyopathy using targeted MaFGF mediated by nanoparticles combined with ultrasound-targeted MB destruction. Int J Nanomedicine 2017; 12:7103-7119. [PMID: 29026304 PMCID: PMC5627735 DOI: 10.2147/ijn.s145799] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The present study seeks to observe the preventive effects of doxorubicin-induced cardiomyopathy (DOX-CM) in rats using targeted non-mitogenic acidic fibroblast growth factor (MaFGF) mediated by nanoparticles (NP) combined with ultrasound-targeted MB destruction (UTMD). DOX-CM rats were induced by intraperitoneally injected doxorubicin. Six weeks after intervention, the indices from the transthoracic echocardiography and velocity vector imaging showed that the left ventricular function in the MaFGF-loaded NP (MaFGF-NP) + UTMD group was significantly improved compared with the DOX-CM group. The increased malondialdehyde and decreased superoxide dismutase were observed in the DOX-CM group, while a significant increase in superoxide dismutase and a decrease in malondialdehyde were detected in the groups treated with MaFGF-NP + UTMD. From the Masson staining, the MaFGF-NP + UTMD group showed a significant difference from the DOX-CM group. The cardiac collagen volume fraction and the ratio of the perivascular collagen area to the luminal area number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling positive cells in the MaFGF-NP + UTMD group decreased to 8.9%, 0.55-fold, compared with the DOX-CM group (26.5%, 1.7-fold). From terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling staining, the results showed the strongest inhibition of apoptosis progress in MaFGF-NP + UTMD group. The immunohistochemical staining of the TGF-β1 in MaFGF-NP + UTMD group reached 3.6%, which was much lower than that of the DOX-CM group (12.6%). These results confirmed that the abnormalities, including left ventricular dysfunction, myocardial fibrosis, cardiomyocytes apoptosis and oxidative stress, could be suppressed by twice weekly MaFGF treatments for 6 consecutive weeks (free MaFGF or MaFGF-NP+/UTMD), with the strongest improvements observed in the MaFGF-NP + UTMD group. Western blot analyses of the heart tissue further revealed the highest pAkt levels, highest anti-apoptosis protein (Bcl-2) levels and strongest reduction in proapoptosis protein (Bax) levels in the MaFGF-NP + UTMD group. This study confirmed the preventive effects of DOX-CM in the rats with MaFGF-NP and UTMD by retarding myocardial fibrosis, inhibiting oxidative stress, and decreasing cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Xin-Qiao Tian
- Department of Ultrasonography, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou.,Department of Pharmacology, College of Pharmaceutical Sciences, Wenzhou Medical University
| | - Xian-Wei Ni
- Department of Ultrasonography, The Second Affiliated Hospital of Wenzhou Medical University
| | - He-Lin Xu
- Department of Pharmacology, College of Pharmaceutical Sciences, Wenzhou Medical University
| | - Lei Zheng
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - De-Li ZhuGe
- Department of Pharmacology, College of Pharmaceutical Sciences, Wenzhou Medical University
| | - Bin Chen
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cui-Tao Lu
- Department of Pharmacology, College of Pharmaceutical Sciences, Wenzhou Medical University
| | - Jian-Jun Yuan
- Department of Ultrasonography, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou
| | - Ying-Zheng Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Wenzhou Medical University
| |
Collapse
|
20
|
Wang HL, Zhou XH, Li ZQ, Fan P, Zhou QN, Li YD, Hou YM, Tang BP. Prevention of Atrial Fibrillation by Using Sarcoplasmic Reticulum Calcium ATPase Pump Overexpression in a Rabbit Model of Rapid Atrial Pacing. Med Sci Monit 2017; 23:3952-3960. [PMID: 28811460 PMCID: PMC5569926 DOI: 10.12659/msm.904824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent research suggests that abnormal Ca2+ handling plays a role in the occurrence and maintenance of atrial fibrillation (AF). Therefore, Ca2+ release and ingestion depend on properties of the ryanodine receptor (RyR) and sarcoplasmic reticulum Ca2+ATPase2a (SERCA2a). This study aimed to detect whether SERCA2a gene overexpression has a preventive effect on atrial fibrillation caused by rapid pacing right atrium. MATERIAL AND METHODS Forty-eight New Zealand white rabbits were randomly divided into a control group, AF group, AAV9/GFP group, and AAV9/SERCA2a group. The right atrium was rapidly paced at 600 beats/min for 30 days after an intraperitoneal injection of an adeno-associated virus expressing the SERCA2a gene and GFP. The AF induction rate and the effective refraction period (ERP) were measured after 0, 4, 8, 12, and 24 h of pacing. Western blot analysis was used to test for the expression of SERCA2a. Changes in atrial tissue structure were observed by H&E staining and electron microscopy. RESULTS The AF induction rate was higher in the AF groups than in the AAV9/SERCA2a group at different time points of pacing. After 12 h of pacing, ERP was significantly prolonged in the AAV9/SERCA2a group compared to the AF and AAV9/GFP groups (p<0.05). SERCA2a protein expression was significantly lower in the AF and AAV9/GFP groups compared to the control group (p<0.05), while expression was significantly higher in the AAV9/SERCA2a group than in the AF and AAV9/GFP groups (p<0.05). The myocardial structure of the AAV9/SERCA2a group was significantly improved compared with the AF group, indicating that SERCA2a overexpression relieved the structural remodeling of atrial fibrillation. CONCLUSIONS SERCA2a overexpression is capable of suppressing ERP shortening and AF induced by rapid pacing atrium. SERCA2a gene therapy is expected to be a new anti-atrial fibrillation strategy.
Collapse
Affiliation(s)
- Hong li Wang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Xian hui Zhou
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Zhi qiang Li
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Ping Fan
- Department of Heart Function, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Qi na Zhou
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Yao dong Li
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Yue mei Hou
- Department of Geriatrics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital South Campus, Shanghai, P.R. China
| | - Bao peng Tang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| |
Collapse
|
21
|
Liang G, Vo D, Nguyen PK. Fundamentals of Cardiovascular Molecular Imaging: a Review of Concepts and Strategies. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9403-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Abstract
Ultrasound targeted microbubble destruction (UTMD) is a novel technique that is used to deliver a gene or other bioactive substance to organs of living animals in a noninvasive manner. Plasmid DNA binding with cationic liposome into nanoparticles are assembled into the shell of microbubbles, which are circulated by intravenous injection. Intermittent bursts of ultrasound with low frequency and high mechanical index destroys the microbubbles and releases the nanoparticles into targeted organ to transfect local organ cells. Cell-specific promoters can be used to further enhance cell specificity. Here we describe UTMD applied to cardiac gene delivery.
Collapse
Affiliation(s)
- Shuyuan Chen
- Division of Cardiology, Department of Internal Medicine, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, TX, 75226, USA
| | - Paul A Grayburn
- Division of Cardiology, Department of Internal Medicine, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, TX, 75226, USA.
| |
Collapse
|
23
|
Yang SL, Tang KQ, Tao JJ, Wan AH, Lin YD, Nan SL, Guo QK, Shen ZY, Hu B. Delivery of CD151 by Ultrasound Microbubbles in Rabbit Myocardial Infarction. Cardiology 2016; 135:221-227. [PMID: 27522674 DOI: 10.1159/000446639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/04/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES We aimed to evaluate whether ultrasound (US) and microbubble-mediated delivery of Cluster of Differentiation 151 (CD151) could enhance the therapeutic effects of CD151 on myocardial infarction (MI). METHODS A rabbit model of MI was established by a modified Fujita method. Then, 50 MI rabbits were randomly divided into 5 groups, including G1 (CD151 plasmid and physiological saline in the presence of US); G2 (CD151 and Sonovue in the presence of US); G3 (CD151 and Sonovue in the absence of US); G4 (Sonovue in the absence of US), and a control group (physiological saline in the absence of US). After 14 days of treatment, the expression of CD151 was detected by Western blot. Besides, vessel density of peri-infarcted myocardium was measured by immunohistochemistry, and cardiac function was analyzed by echocardiography. RESULTS The rabbit model of MI was established successfully. CD151 injection increased the expression of CD151 and microvessel density in the myocardium of MI rabbits. Heart function was significantly improved by CD151, which exhibited increased left ventricular ejection fraction, left ventricular fractional shortening and a reduced Tei index. Besides, US Sonovue significantly increased the expression efficiency of CD151. CONCLUSION US microbubble was an effective vector for CD151 delivery. CD151 might be an effective therapeutic target for MI.
Collapse
Affiliation(s)
- Shao-Ling Yang
- Ultrasound in Medicine Departments, Shanghai Fengxian Central Hospital/Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu B, Qiao Q, Han X, Jing H, Zhang H, Liang H, Cheng W. Targeted nanobubbles in low-frequency ultrasound-mediated gene transfection and growth inhibition of hepatocellular carcinoma cells. Tumour Biol 2016; 37:12113-12121. [PMID: 27216880 DOI: 10.1007/s13277-016-5082-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/15/2016] [Indexed: 01/06/2023] Open
Abstract
The use of SonoVue combined with ultrasound exposure increases the transfection efficiency of short interfering RNA (siRNA). The objective of this study was to prepare targeted nanobubbles (TNB) conjugated with NET-1 siRNA and an antibody GPC3 to direct nanobubbles to hepatocellular carcinoma cells. SMMC-7721 human hepatocellular carcinoma cells were treated with six different groups. The transfection efficiency and cellular apoptosis were measured by flow cytometry. The protein and messenger RNA (mRNA) expression were measured by Western blot and quantitative real-time PCR, respectively. The migration and invasion potential of the cells were determined by Transwell analysis. The results show that US-guided siRNA-TNB transfection effectively enhanced gene silencing. In summary, siRNA-TNB may be an effective delivery vector to mediate highly effective RNA interference in tumor treatment.
Collapse
Affiliation(s)
- Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, China
| | - Qiang Qiao
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, China
| | - Xue Han
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, China
| | - Hao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Hongjian Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
25
|
Chen F, Li Y, Feng Y, He X, Wang L. Evaluation of Antimetastatic Effect of lncRNA-ATB siRNA Delivered Using Ultrasound-Targeted Microbubble Destruction. DNA Cell Biol 2016; 35:393-7. [PMID: 27027475 DOI: 10.1089/dna.2016.3254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common human malignancies around the world. The poor prognosis and high recurrence rate of HCC are largely the result of the high frequencies of intrahepatic and extrahepatic metastases. However, the treatment of metastasis is very limited. Ultrasound-targeted microbubble destruction (UTMD) technology has been recognized as a promising technology for drug and gene delivery in vivo and in vitro. Long noncoding RNA activated by transforming growth factor-β (TGF-β; lncRNA-ATB) was recently identified, which was upregulated in HCC metastases and associated with poor prognosis of HCC patients. In this study, we used microbubbles for UTMD-mediated siRNA transfection to silence lncRNA-ATB expression. We found that UTMD-mediated siRNA transfection significantly inhibited lncRNA-ATB expression and ZEB1 and ZEB2 expression and suppressed cell migration and invasion. We also demonstrated that transfecting siRNA against lncRNA-ATB by using UTMD was more efficient than that by using lipidosome. UTMD-mediated siRNA transfection against lncRNA-ATB may be a promising therapy for HCC metastasis.
Collapse
Affiliation(s)
- Fei Chen
- 1 Department of Ultrasound, The First Affiliated Hospital of Liaoning Medical University , Jinzhou, China
| | - Yuhong Li
- 1 Department of Ultrasound, The First Affiliated Hospital of Liaoning Medical University , Jinzhou, China
| | - Yanhong Feng
- 1 Department of Ultrasound, The First Affiliated Hospital of Liaoning Medical University , Jinzhou, China
| | - Xiuli He
- 1 Department of Ultrasound, The First Affiliated Hospital of Liaoning Medical University , Jinzhou, China
| | - Liang Wang
- 2 Department of Hepatobiliary Surgery, The First Affiliated Hospital of Liaoning Medical University , Jinzhou, China
| |
Collapse
|
26
|
Bischof C, Krishnan J. Exploiting the hypoxia sensitive non-coding genome for organ-specific physiologic reprogramming. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1782-90. [PMID: 26851074 DOI: 10.1016/j.bbamcr.2016.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/11/2016] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
In this review we highlight the role of non-coding RNAs in the development and progression of cardiac pathology and explore the possibility of disease-associated RNAs serving as targets for cardiac-directed therapeutics. Contextually, we focus on the role of stress-induced hypoxia as a driver of disease development and progression through activation of hypoxia inducible factor 1α (HIF1α) and explore mechanisms underlying HIFα function as an enforcer of cardiac pathology through direct transcriptional coupling with the non-coding transcriptome. In the interest of clarity, we will confine our analysis to cardiac pathology and focus on three defining features of the diseased state, namely metabolic, growth and functional reprogramming. It is the aim of this review to explore possible mechanisms through which HIF1α regulation of the non-coding transcriptome connects to spatiotemporal control of gene expression to drive establishment of the diseased state, and to propose strategies for the exploitation of these unique RNAs as targets for clinical therapy. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Corinne Bischof
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jaya Krishnan
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Castle J, Feinstein SB. Drug and Gene Delivery using Sonoporation for Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:331-8. [DOI: 10.1007/978-3-319-22536-4_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Su Q, Li L, Liu Y, Zhou Y, Wang J, Wen W. Ultrasound-targeted microbubble destruction-mediated microRNA-21 transfection regulated PDCD4/NF-κB/TNF-α pathway to prevent coronary microembolization-induced cardiac dysfunction. Gene Ther 2015; 22:1000-6. [DOI: 10.1038/gt.2015.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 11/09/2022]
|
29
|
Liu Y, Li L, Su Q, Liu T, Ma Z, Yang H. Ultrasound-Targeted Microbubble Destruction Enhances Gene Expression of microRNA-21 in Swine Heart via Intracoronary Delivery. Echocardiography 2015; 32:1407-16. [PMID: 25613289 DOI: 10.1111/echo.12876] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Ultrasound-targeted microbubble destruction (UTMD) has proved to be a promising method for gene delivery. However, the feasibility and efficacy of UTMD-mediated gene delivery to the heart of large animals remain unclear. The present study was to explore the probability of increasing the transfection of microRNA-21 (miR-21) in swine heart by UTMD, and to search for the most suitable transfection conditions. METHODS We first optimized ultrasound intensity for successful miR-21 delivery. After intravenous injection of miR-21/microbubble mixture (miR-21/MB), transthoracic ultrasound irradiation (US) was applied from the left anterior chest using different intensities (1, 2, and 3 W/cm(2)). Then the efficacy of UTMD-mediated miR-21 delivery into myocardium via intracoronary injection was explored. Solution of miR-21/MB was infused intravenously or intracoronarily with US over the heart. Swine undergoing phosphate-buffered saline (PBS) injection, miR-21/MB injection via ear vein or coronary artery without US served as the control. The dynamic changes of left ventricular ejection fraction (LVEF) and serum troponin I (cTnI) after UTMD were detected, then the left ventricular myocardium was harvested for hematoxylin and eosin (H&E) staining 4 days later; the expression levels of miR-21 and programmed cell death 4 (PDCD4) were detected by quantitative real time polymerase chain reaction (qRT-PCR) and Western blot, respectively. RESULTS Results showed that pulse ultrasound at an intensity of 2 W/cm(2) and a 50% duty ratio for 20 minutes, there was no increase in serum cTnI, no histological sign of myocardial damage, and no noted cardiac dysfunction with relatively higher miR-21 expression (P < 0.05). Compared to miR-21/MB alone, UTMD significantly increased gene expression in myocardium regardless of the delivery routes (P < 0.05). Interestingly, the transfection efficiency was found to be a little bit higher with intracoronary injection than that with intravenous injection, though the dose for intracoronary injection was half of the intravenous injection (P < 0.05). CONCLUSION Under suitable conditions, UTMD can efficiently enhance gene expression in swine heart regardless of the delivery routes. The intravenous injection might be superior to intracoronary injection with less invasiveness and lower requirement of the technique. And for those undergoing percutaneous coronary intervention, intracoronary injection seems to be another alternative.
Collapse
Affiliation(s)
- Yangchun Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiang Su
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiying Ma
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huafeng Yang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Liu Z, Donahue JK. The Use of Gene Therapy for Ablation of Atrial Fibrillation. Arrhythm Electrophysiol Rev 2014; 3:139-44. [PMID: 26835081 DOI: 10.15420/aer.2014.3.3.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation is the most common clinically significant cardiac arrhythmia, increasing the risk of stroke, heart failure and morbidity and mortality. Current therapies, including rate control and rhythm control by antiarrhythmic drugs or ablation therapy, are moderately effective but far from optimal. Gene therapy has the potential to become an attractive alternative to currently available therapies for atrial fibrillation. Various gene transfer vectors have been developed for cardiovascular disease with viral vectors being most widely used due to their high efficiency. Several gene delivery methods have been employed on different therapeutic targets. With increasing understanding of arrhythmia mechanisms, novel therapeutic targets have been discovered. This review will evaluate state-of-art gene therapy strategies and approaches including sinus rhythm restoration and ventricular rate control that could eventually prevent or eliminate atrial fibrillation in patients.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - J Kevin Donahue
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; Department of Cardiovascular Medicine, University of Massachusetts Medical School. Worcester, Massachusetts, US
| |
Collapse
|
31
|
Gao R, Zhou X, Yang Y, Wang Z. Transfection of wtp53 and Rb94 genes into retinoblastomas of nude mice by ultrasound-targeted microbubble destruction. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2662-2670. [PMID: 25218456 DOI: 10.1016/j.ultrasmedbio.2014.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Using ultrasound-targeted microbubble destruction (UTMD), we transfected both wild-type p53 (wtp53) and Rb94 genes into retinoblastomas (RBs) of nude mice to investigate the inhibitory role of these two genes in RB development. The 40 tumor-bearing mice, which had been established by sub-retinal injection of an HXO-Rb44 cell suspension, were randomly divided into five groups: blank control group (C); blank plasmid group (M); wtp53 plasmid group (p53); Rb94 plasmid group (Rb94); wtp53 + Rb94 plasmid group (p53 + Rb94). For preparation of the DNA-loaded microbubbles, a pre-determined amount of blank plasmid, pVIVO1-p53, pVIVO1-Rb94 or pVIVO1-p53-Rb94 was added and mixed with the microbubbles. Then, these DNA-loaded microbubbles were respectively transfected into the animal model by UTMD. Vascular endothelial growth factor level and microvessel density of the tumor were determined by immunohistochemical staining. Apoptosis of tissues was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Expression of wtp53 and Rb94 at both the gene and protein levels was detected by RT-PCR (reverse transcription polymerase chain reaction) and Western blot, respectively. Transfection of both genes had greater inhibitory effects on RB development and resulted in lower levels of vascular endothelial growth factor, lower microvessel density and more obvious apoptosis than single-gene transfection (p < 0.05). The results indicate that the transfection of both genes into the RB by UTMD more strongly inhibited RB growth than transfection of a single gene.
Collapse
Affiliation(s)
- Ruiqi Gao
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Ophthalmology, Dujiangyan Medical Center, Sichuan, China
| | - Xiyuan Zhou
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yingxue Yang
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Institute of Ultrasonic Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| |
Collapse
|
32
|
Liang W, Zhang W, Zhao S, Li Q, Yang Y, Liang H, Ceng R. A study of the ultrasound-targeted microbubble destruction based triplex-forming oligodexinucleotide delivery system to inhibit tissue factor expression. Mol Med Rep 2014; 11:903-9. [PMID: 25355395 PMCID: PMC4262506 DOI: 10.3892/mmr.2014.2822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
The efficiency of cellular uptake of triplex‑forming oligodexinucleotides (TFO), and the inhibition of tissue factor (TF) is low. The aim of the present study was to improve the absorption of TFO, and increase the inhibition of TF induced by shear stress both in vitro and in vivo, by using an ultrasound‑targeted microbubble destruction (UTMD)‑based delivery system. TFO‑conjugated lipid ultrasonic microbubbles (TFO‑M) were first constructed and characterised. The absorption of TFO was observed by a fluorescence‑based method, and the inhibition of TF by immunofluorescence and quantitative polymerase chain reaction. ECV304 human umbilical vein endothelial cells were subjected to fluid shear stress for 6 h after treatment with TFO conjugated lipid ultrasonic microbubbles without sonication (TFO‑M group); TFO alone; TFO conjugated lipid ultrasonic microbubbles, plus immediate sonication (TFO+U group and TFO‑M+U group); or mock treated with 0.9% NaCl only (SSRE group). The in vivo experiments were established in a similar manner to the in vitro experiments, except that TFO or TFO‑M was injected into rats through the tail vein. Six hours after the preparation of a carotid stenosis model, the rats were humanely sacrificed. The transfection efficiency of TFO in the TFO‑M+U group was higher as compared with the TFO‑M and TFO+U group (P<0.01). The protein and mRNA expression of TF in the TFO‑M+U group was significantly decreased both in vitro and in vivo (P<0.01), as compared with the TFO‑M, TFO+U and SSRE groups. The UTMD‑based TFO delivery system promoted the -absorption of TFO and the inhibition of TF, and was therefore considered to be favorable for preventing thrombosis induced by shear stress.
Collapse
Affiliation(s)
- Weihua Liang
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Weiwei Zhang
- Deparment of Neurology, General Hospital of Beijing PLA Military Region, Beijing 100700, P.R. China
| | - Shifu Zhao
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Qianning Li
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Yiming Yang
- Department of Internal Medicine, The Sixteenth Hospital of PLA, Altay, Xinjiang 836500, P.R. China
| | - Hua Liang
- Department of Internal Medicine, 66083 Clinic of Beijing Military Region, Beijing 102488, P.R. China
| | - Rongchuan Ceng
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
33
|
Castellani C, Angelini A, de Boer OJ, van der Loos CM, Fedrigo M, Frigo AC, Meijer-Jorna LB, Li X, Ploegmakers HJP, Tona F, Feltrin G, Gerosa G, Valente M, Thiene G, van der Wal AC. Intraplaque hemorrhage in cardiac allograft vasculopathy. Am J Transplant 2014; 14:184-92. [PMID: 24354875 DOI: 10.1111/ajt.12517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/11/2013] [Accepted: 09/23/2013] [Indexed: 01/25/2023]
Abstract
Plaque hemorrhage, inflammation and microvessel density are key determinants of plaque vulnerability in native coronary atherosclerosis (ATS). This study investigates the role of intraplaque hemorrhage (IPH) and its relation with inflammation and microvessels in cardiac allograft vasculopathy (CAV) in posttransplanted patients. Seventy coronary plaques were obtained from 12 patients who died because of CAV. For each patient we collected both native heart and the allograft, at the time of transplantation and autopsy, respectively. Intralesion inflammation, microvessels and IPH were assessed semi-quantitatively. IPH was observed in 21/35 (60%) CAV lesions and in 8/35 (22.9%) native ATS plaques, with a strong association between fibrocellular lesions and IPH (p = 0.0142). Microvessels were detected in 26/35 (74.3%) of CAV lesions with perivascular leakage as sign of endothelial damage in 18/26 (69.2%). IPH was strongly associated with microvessels (p < 0.0001). Inflammation was present in 31/35 (88.6%) of CAV lesions. CAV IPH+ lesions were characterized by presence of both fresh and old hemorrhage in 12/21 (57.1%). IPH, associated with microvessel damage and inflammation, is an important feature of CAV. Fresh and old intralesion hemorrhage suggests ongoing remodeling processes promoting the lesion progression and vulnerability.
Collapse
Affiliation(s)
- C Castellani
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Julie A Wolfram
- Department of Medicine, MetroHealth Campus of Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|