1
|
Jiang H, Xu Y, Jiang Y, Li Y. FOXO3 Activation Prevents Cellular Senescence in Emphysema Induced by Cigarette Smoke. COPD 2023; 20:80-91. [PMID: 36656684 DOI: 10.1080/15412555.2022.2164262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
Because cigarette smoke can induce COPD/emphysema through accelerating senescence with or without an incomplete repair system. However, the pathogenesis of COPD following lung senescence induced by CS is not fully understood. Airspace enlargement and airway epithelial cell senescence are common finding during the COPD development. We investigated the lung tress response to CS and demonstrated that a stress-responsive transcription factor, FOXO3, was regulated by deacetylase. SIRT1 inhibited FOXO3 acetylation and FOXO3 degradation, leading to FOXO3 accumulation and activation in airway epithelial cells. CS exposure activated SIRT1 contributed to FOXO3 activation and functioned to protect lungs, as deletion of SIRT1 decreased CS-induced FOXO3 activation and resulted in more severe airway epithelial cells senescence airspace enlargement. Strikingly, deletion of FOXO3 during the development of COPD aggravated lung structural and functional damage, leading to a much more profound COPD phenotype. We show that deletion of FOXO3 resulted in decreased autophagic response and increased senescence, which may explain lung protection by FOXO3. Our study indicates that in the COPD, stress-responsive transcription factors can be activated for adaptions to counteract senescence insults, thus attenuating COPD development.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuanrui Xu
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yaona Jiang
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yaqing Li
- Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
2
|
Whitehead AK, Fried ND, Li Z, Neelamegam K, Pearson CS, LaPenna KB, Sharp TE, Lefer DJ, Lazartigues E, Gardner JD, Yue X. Alpha7 nicotinic acetylcholine receptor mediates chronic nicotine inhalation-induced cardiopulmonary dysfunction. Clin Sci (Lond) 2022; 136:973-987. [PMID: 35678315 PMCID: PMC10199464 DOI: 10.1042/cs20220083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022]
Abstract
Cigarette smoking remains the leading modifiable risk factor for cardiopulmonary diseases; however, the effects of nicotine alone on cardiopulmonary function remain largely unknown. Previously, we have shown that chronic nicotine vapor inhalation in mice leads to the development of pulmonary hypertension (PH) with right ventricular (RV) remodeling. The present study aims to further examine the cardiopulmonary effects of nicotine and the role of the α7 nicotinic acetylcholine receptor (α7-nAChR), which is widely expressed in the cardiovascular system. Wild-type (WT) and α7-nAChR knockout (α7-nAChR-/-) mice were exposed to room air (control) or nicotine vapor daily for 12 weeks. Consistent with our previous study, echocardiography and RV catheterization reveal that male WT mice developed increased RV systolic pressure with RV hypertrophy and dilatation following 12-week nicotine vapor exposure; in contrast, these changes were not observed in male α7-nAChR-/- mice. In addition, chronic nicotine inhalation failed to induce PH and RV remodeling in female mice regardless of genotype. The effects of nicotine on the vasculature were further examined in male mice. Our results show that chronic nicotine inhalation led to impaired acetylcholine-mediated vasodilatory response in both thoracic aortas and pulmonary arteries, and these effects were accompanied by altered endothelial nitric oxide synthase phosphorylation (enhanced inhibitory phosphorylation at threonine 495) and reduced plasma nitrite levels in WT but not α7-nAChR-/- mice. Finally, RNA sequencing revealed up-regulation of multiple inflammatory pathways in thoracic aortas from WT but not α7-nAChR-/- mice. We conclude that the α7-nAChR mediates chronic nicotine inhalation-induced PH, RV remodeling and vascular dysfunction.
Collapse
Affiliation(s)
- Anna K. Whitehead
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Nicholas D. Fried
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Zhen Li
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Kandasamy Neelamegam
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Charlotte S. Pearson
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Kyle B. LaPenna
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Thomas E. Sharp
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Department of Medicine Section of Cardiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - David J. Lefer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Southeast Louisiana Veterans Health Care Systems, New Orleans, LA 70119, U.S.A
| | - Jason D. Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| |
Collapse
|
3
|
Ardiana M, Susetyo Pikir B, Santoso A, Oky Hermawan H, Jibril Al-Farabi M. The effect of subchronic cigarette smoke exposure on oxidative stress parameters and endothelial nitric oxide synthase in a rat aorta. ARYA ATHEROSCLEROSIS 2021; 17:1-7. [PMID: 35685232 PMCID: PMC9137237 DOI: 10.22122/arya.v17i0.2150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND The compounds in cigarette smoke are believed to cause oxidative stress, leading to endothelial dysfunction. Understanding the mechanism of endothelial dysfunction due to cigarette smoke is useful for the development of early and preventive therapy for cardiovascular diseases (CVDs) with smoking risk factors. METHODS In this experimental study, a posttest-only control group design was used. 20 Wistar rats were divided into two groups: a smoking group (exposed to 40 cigarettes per day for 4 weeks) and a control group. After the exposure, the animals were sacrificed and aortas were removed for measurement of malondialdehyde (MDA), superoxide dismutase (SOD), endothelial nitric oxide synthase (eNOS), intima-media thickness (IMT), and for histological analysis. RESULTS Exposure to cigarette smoke caused a significant decrease in SOD activity (24.28 ± 4.90; P = 0.027) and eNOS levels (50.81 ± 4.18; P = 0.014), but no significant effect on the level of MDA (17.08 ± 5.78; P = 0.551). Histological analysis showed an increase in IMT (13.27 ± 2.40; P = 0.000) and disorganization and vacuolation of smooth muscle cells in tunica media after exposure to cigarette smoke. The regression analysis showed a significant negative relationship between the eNOS level and IMT (β = -1.012, P = 0.009). CONCLUSION Subchronic exposure to cigarette smoke caused a decrease in SOD activity and eNOS levels, but no significant change in MDA levels. This study also indicated that smoking causes IMT thickening and pathological structural changes in the aorta. Another finding indicated that a decrease in eNOS levels could cause an increase in the IMT of the aorta.
Collapse
Affiliation(s)
- Meity Ardiana
- Lecturer, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - Budi Susetyo Pikir
- Professor, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - Anwar Santoso
- Lecturer, Department of Cardiology, Faculty of Medicine, University of Indonesia; National Cardiovascular Center, Harapan Kita Hospital, Jakarta, Indonesia
| | - Hanestya Oky Hermawan
- Resident, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | - Makhyan Jibril Al-Farabi
- Resident, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| |
Collapse
|
4
|
Li F, Zhang P, Zhang M, Liang L, Sun X, Li M, Tang Y, Bao A, Gong J, Zhang J, Adcock I, Chung KF, Zhou X. Hydrogen Sulfide Prevents and Partially Reverses Ozone-Induced Features of Lung Inflammation and Emphysema in Mice. Am J Respir Cell Mol Biol 2017; 55:72-81. [PMID: 26731380 DOI: 10.1165/rcmb.2015-0014oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S), a novel signaling gasotransmitter in the respiratory system, may have antiinflammatory properties in the lung. We examined the preventive and therapeutic effects of H2S on ozone-induced features of lung inflammation and emphysema. C57/BL6 mice were exposed to ozone or filtered air over 6 weeks. Sodium hydrogen sulfide (NaHS), an H2S donor, was administered to the mice either before ozone exposure (preventive effect) or after completion of 6 weeks of ozone exposure (therapeutic effect). The ozone-exposed mice developed emphysema, measured by micro-computed tomography and histology, airflow limitation, measured by the forced maneuver system, and increased lung inflammation with augmented IL-1β, IL-18, and matrix metalloproteinase-9 (MMP-9) gene expression. Ozone-induced changes were associated with increased Nod-like receptor pyrin domain containing 3 (NLRP3)-caspase-1 activation and p38 mitogen-activated protein kinase phosphorylation and decreased Akt phosphorylation. NaHS both prevented and reversed lung inflammation and emphysematous changes in alveolar space. In contrast, NaHS prevented, but did not reverse, ozone-induced airflow limitation and bronchial structural remodeling. In conclusion, NaHS administration prevented and partially reversed ozone-induced features of lung inflammation and emphysema via regulation of the NLRP3-caspase-1, p38 mitogen-activated protein kinase, and Akt pathways.
Collapse
Affiliation(s)
- Feng Li
- 1 Department of Respiratory Medicine and
| | | | - Min Zhang
- 1 Department of Respiratory Medicine and
| | - Li Liang
- 2 Department of Respiratory Medicine, Shanghai Third People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | - Min Li
- 3 Experimental Research Center, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yueqin Tang
- 3 Experimental Research Center, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Aihua Bao
- 1 Department of Respiratory Medicine and
| | - Jicheng Gong
- 4 Division of Environmental Sciences and Policy, Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, North Carolina; and
| | - Junfeng Zhang
- 4 Division of Environmental Sciences and Policy, Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, North Carolina; and
| | - Ian Adcock
- 5 Airway Diseases Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- 5 Airway Diseases Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Xin Zhou
- 1 Department of Respiratory Medicine and
| |
Collapse
|
5
|
Białas AJ, Sitarek P, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P. The Role of Mitochondria and Oxidative/Antioxidative Imbalance in Pathobiology of Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7808576. [PMID: 28105251 PMCID: PMC5220474 DOI: 10.1155/2016/7808576] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/23/2016] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common preventable and treatable disease, characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. The major risk factor of COPD, which has been proven in many studies, is the exposure to cigarette smoke. However, it is 15-20% of all smokers who develop COPD. This is why we should recognize the pathobiology of COPD as involving a complex interaction between several factors, including genetic vulnerability. Oxidant-antioxidant imbalance is recognized as one of the significant factors in COPD pathogenesis. Numerous exogenous and endogenous sources of ROS are present in pathobiology of COPD. One of endogenous sources of ROS is mitochondria. Although leakage of electrons from electron transport chain and forming of ROS are the effect of physiological functioning of mitochondria, there are various intra- and extracellular factors which may increase this amount and significantly contribute to oxidative-antioxidative imbalance. With the coexistence with impaired antioxidant defence, all these issues lead to oxidative and carbonyl stress. Both of these states play a significant role in pathobiology of COPD and may account for development of major comorbidities of this disease.
Collapse
Affiliation(s)
- Adam Jerzy Białas
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Łódź, Poland
| | - Joanna Miłkowska-Dymanowska
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Wojciech Jerzy Piotrowski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Paweł Górski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| |
Collapse
|
6
|
Grunig G, Baghdassarian A, Park SH, Pylawka S, Bleck B, Reibman J, Berman-Rosenzweig E, Durmus N. Challenges and Current Efforts in the Development of Biomarkers for Chronic Inflammatory and Remodeling Conditions of the Lungs. Biomark Insights 2016; 10:59-72. [PMID: 26917944 PMCID: PMC4756863 DOI: 10.4137/bmi.s29514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 02/06/2023] Open
Abstract
This review discusses biomarkers that are being researched for their usefulness to phenotype chronic inflammatory lung diseases that cause remodeling of the lung's architecture. The review focuses on asthma, chronic obstructive pulmonary disease (COPD), and pulmonary hypertension. Bio-markers of environmental exposure and specific classes of biomarkers (noncoding RNA, metabolism, vitamin, coagulation, and microbiome related) are also discussed. Examples of biomarkers that are in clinical use, biomarkers that are under development, and biomarkers that are still in the research phase are discussed. We chose to present examples of the research in biomarker development by diseases, because asthma, COPD, and pulmonary hypertension are distinct entities, although they clearly share processes of inflammation and remodeling.
Collapse
Affiliation(s)
- Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Aram Baghdassarian
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Serhiy Pylawka
- College of Dental Medicine, Columbia University, New York, NY, USA
| | - Bertram Bleck
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Joan Reibman
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Nedim Durmus
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Vlahos R, Bozinovski S. Recent advances in pre-clinical mouse models of COPD. Clin Sci (Lond) 2014; 126:253-65. [PMID: 24144354 PMCID: PMC3878607 DOI: 10.1042/cs20130182] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/17/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
Abstract
COPD (chronic obstructive pulmonary disease) is a major incurable global health burden and will become the third largest cause of death in the world by 2020. It is currently believed that an exaggerated inflammatory response to inhaled irritants, in particular cigarette smoke, causes progressive airflow limitation. This inflammation, where macrophages, neutrophils and T-cells are prominent, leads to oxidative stress, emphysema, small airways fibrosis and mucus hypersecretion. The mechanisms and mediators that drive the induction and progression of chronic inflammation, emphysema and altered lung function are poorly understood. Current treatments have limited efficacy in inhibiting chronic inflammation, do not reverse the pathology of disease and fail to modify the factors that initiate and drive the long-term progression of disease. Therefore there is a clear need for new therapies that can prevent the induction and progression of COPD. Animal modelling systems that accurately reflect disease pathophysiology continue to be essential to the development of new therapies. The present review highlights some of the mouse models used to define the cellular, molecular and pathological consequences of cigarette smoke exposure and whether they can be used to predict the efficacy of new therapeutics for COPD.
Collapse
Key Words
- acute exacerbations of chronic obstructive pulmonary disease (aecopd)
- chronic obstructive pulmonary disease (copd)
- emphysema
- inflammation
- skeletal muscle wasting
- smoking
- aecopd, acute exacerbations of copd
- bal, bronchoalveolar lavage
- balf, bal fluid
- copd, chronic obstructive pulmonary disease
- gm-csf, granulocyte/macrophage colony-stimulating factor
- gold, global initiative on chronic obstructive lung disease
- gpx, glutathione peroxidase
- hdac, histone deacetylation
- il, interleukin
- ltb4, leukotriene b4
- mapk, mitogen-activated protein kinase
- mcp-1, monocyte chemotactic protein-1
- mmp, matrix metalloproteinase
- ne, neutrophil elastase
- nf-κb, nuclear factor κb
- nrf2, nuclear erythroid-related factor 2
- o2•−, superoxide radical
- onoo−, peroxynitrite
- pde, phosphodiesterase
- pi3k, phosphoinositide 3-kinase
- ros, reactive oxygen species
- rv, rhinovirus
- slpi, secretory leucocyte protease inhibitor
- sod, superoxide dismutase
- tgf-β, transforming growth factor-β
- timp, tissue inhibitor of metalloproteinases
- tnf-α, tumour necrosis factor-α
- v/q, ventilation/perfusion
Collapse
Affiliation(s)
- Ross Vlahos
- *Lung Health Research Centre, Department of Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Steven Bozinovski
- *Lung Health Research Centre, Department of Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Hwang JW, Yao H, Caito S, Sundar IK, Rahman I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 2013; 61:95-110. [PMID: 23542362 PMCID: PMC3762912 DOI: 10.1016/j.freeradbiomed.2013.03.015] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 12/06/2012] [Accepted: 03/20/2013] [Indexed: 12/31/2022]
Abstract
Sirtuin 1 (SIRT1) regulates inflammation, aging (life span and health span), calorie restriction/energetics, mitochondrial biogenesis, stress resistance, cellular senescence, endothelial functions, apoptosis/autophagy, and circadian rhythms through deacetylation of transcription factors and histones. SIRT1 level and activity are decreased in chronic inflammatory conditions and aging, in which oxidative stress occurs. SIRT1 is regulated by a NAD(+)-dependent DNA repair enzyme, poly(ADP-ribose) polymerase-1 (PARP1), and subsequent NAD(+) depletion by oxidative stress may have consequent effects on inflammatory and stress responses as well as cellular senescence. SIRT1 has been shown to undergo covalent oxidative modifications by cigarette smoke-derived oxidants/aldehydes, leading to posttranslational modifications, inactivation, and protein degradation. Furthermore, oxidant/carbonyl stress-mediated reduction of SIRT1 leads to the loss of its control on acetylation of target proteins including p53, RelA/p65, and FOXO3, thereby enhancing the inflammatory, prosenescent, and apoptotic responses, as well as endothelial dysfunction. In this review, the mechanisms of cigarette smoke/oxidant-mediated redox posttranslational modifications of SIRT1 and its roles in PARP1 and NF-κB activation, and FOXO3 and eNOS regulation, as well as chromatin remodeling/histone modifications during inflammaging, are discussed. Furthermore, we have also discussed various novel ways to activate SIRT1 either directly or indirectly, which may have therapeutic potential in attenuating inflammation and premature senescence involved in chronic lung diseases.
Collapse
Affiliation(s)
- Jae-woong Hwang
- Lung Biology and Disease Program, Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hongwei Yao
- Lung Biology and Disease Program, Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Samuel Caito
- Lung Biology and Disease Program, Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Isaac K Sundar
- Lung Biology and Disease Program, Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Irfan Rahman
- Lung Biology and Disease Program, Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
9
|
Leberl M, Kratzer A, Taraseviciene-Stewart L. Tobacco smoke induced COPD/emphysema in the animal model-are we all on the same page? Front Physiol 2013; 4:91. [PMID: 23720629 PMCID: PMC3654205 DOI: 10.3389/fphys.2013.00091] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is one of the foremost causes of death worldwide. It is primarily caused by tobacco smoke, making it an easily preventable disease, but facilitated by genetic α-1 antitrypsin deficiency. In addition to active smokers, health problems also occur in people involuntarily exposed to second hand smoke (SHS). Currently, the relationship between SHS and COPD is not well established. Knowledge of pathogenic mechanisms is limited, thereby halting the advancement of new treatments for this socially and economically detrimental disease. Here, we attempt to summarize tobacco smoke studies undertaken in animal models, applying both mainstream (direct, nose only) and side stream (indirect, whole body) smoke exposures. This overview of 155 studies compares cellular and molecular mechanisms as well as proteolytic, inflammatory, and vasoreactive responses underlying COPD development. This is a difficult task, as listing of exposure parameters is limited for most experiments. We show that both mainstream and SHS studies largely present similar inflammatory cell populations dominated by macrophages as well as elevated chemokine/cytokine levels, such as TNF-α. Additionally, SHS, like mainstream smoke, has been shown to cause vascular remodeling and neutrophil elastase-mediated proteolytic matrix breakdown with failure to repair. Disease mechanisms and therapeutic interventions appear to coincide in both exposure scenarios. One of the more widely applied interventions, the anti-oxidant therapy, is successful for both mainstream and SHS. The comparison of direct with indirect smoke exposure studies in this review emphasizes that, even though there are many overlapping pathways, it is not conclusive that SHS is using exactly the same mechanisms as direct smoke in COPD pathogenesis, but should be considered a preventable health risk. Some characteristics and therapeutic alternatives uniquely exist in SHS-related COPD.
Collapse
Affiliation(s)
- Maike Leberl
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine Denver, CO, USA
| | | | | |
Collapse
|
10
|
Vohra PK, Hoeppner LH, Sagar G, Dutta SK, Misra S, Hubmayr RD, Mukhopadhyay D. Dopamine inhibits pulmonary edema through the VEGF-VEGFR2 axis in a murine model of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2011; 302:L185-92. [PMID: 22003095 DOI: 10.1152/ajplung.00274.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The neurotransmitter dopamine and its dopamine receptor D2 (D2DR) agonists are known to inhibit vascular permeability factor/vascular endothelial growth factor (VEGF)-mediated angiogenesis and vascular permeability. Lung injury is a clinical syndrome associated with increased microvascular permeability. However, the effects of dopamine on pulmonary edema, a phenomenon critical to the pathophysiology of both acute and chronic lung injuries, have yet to be established. Therefore, we sought to determine the potential therapeutic effects of dopamine in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Compared with sham-treated controls, pretreatment with dopamine (50 mg/kg body wt) ameliorated LPS-mediated edema formation and lowered myeloperoxidase activity, a measure of neutrophil infiltration. Moreover, dopamine significantly increased survival rates of LPS-treated mice, from 0-75%. Mechanistically, we found that dopamine acts through the VEGF-VEGFR2 axis to reduce pulmonary edema, as dopamine pretreatment in LPS-treated mice resulted in decreased serum VEGF, VEGFR2 phosphorylation, and endothelial nitric oxide synthase phosphorylation. We used D2DR knockout mice to confirm that dopamine acts through D2DR to block vascular permeability in our lung injury model. As expected, a D2DR agonist failed to reduce pulmonary edema in D2DR(-/-) mice. Taken together, our results suggest that dopamine acts through D2DR to inhibit pulmonary edema-associated vascular permeability, which is mediated through VEGF-VEGFR2 signaling and conveys protective effects in an ALI model.
Collapse
Affiliation(s)
- Pawan K Vohra
- Dept. of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Guggenheim 1334, 200 First St. S.W., Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim SY, Lee JH, Huh JW, Ro JY, Oh YM, Lee SD, An S, Lee YS. Cigarette smoke induces Akt protein degradation by the ubiquitin-proteasome system. J Biol Chem 2011; 286:31932-43. [PMID: 21778238 PMCID: PMC3173210 DOI: 10.1074/jbc.m111.267633] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/13/2011] [Indexed: 11/06/2022] Open
Abstract
Emphysema is one of the characteristic features of chronic obstructive pulmonary disease, which is caused mainly by cigarette smoking. Recent data have suggested that apoptosis and cell cycle arrest may contribute to the development of emphysema. In this study, we addressed the question of whether and how cigarette smoke affected Akt, which plays a critical role in cell survival and proliferation. In normal human lung fibroblasts, cigarette smoke extract (CSE) caused cell death, accompanying degradation of total and phosphorylated Akt (p-Akt), which was inhibited by MG132. CSE exposure resulted in preferential ubiquitination of the active Akt (myristoylated), rather than the inactive (T308A/S473A double mutant) Akt. Consistent with cytotoxicity, CSE induced a progressive decrease of phosphorylated human homolog of mouse double minute homolog 2 (p-HDM2) and phosphorylated apoptosis signal regulating kinase 1 (p-ASK1) with concomitant elevation of p53, p21, and phosphorylated p38 MAPK. Forced expression of the active Akt reduced both CSE-induced cytotoxicity and alteration in HDM2/p53/p21 and ASK1/p38 MAPK, compared with the inactive Akt. Of note, CSE induced expression of the tetratrico-peptide repeat domain 3 (TTC3), known as a ubiquitin ligase for active Akt. TTC3 siRNAs suppressed not only CSE-induced Akt degradation but also CSE-induced cytotoxicity. Accordingly, rat lungs exposed to cigarette smoke for 3 months showed elevated TTC3 expression and reduced Akt and p-Akt. Taken together, these data suggest that cigarette smoke induces cytotoxicity, partly through Akt degradation via the ubiquitin-proteasome system, in which TTC3 acts as a ubiquitin ligase for active Akt.
Collapse
Affiliation(s)
- Sun-Yong Kim
- From the Division of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746
| | - Ji-Hyun Lee
- the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Pochon CHA University, Seongnam 463-712
| | - Jin Won Huh
- the Department of Pulmonary and Critical Care Medicine, Asthma Center, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, and
| | - Jai Youl Ro
- From the Division of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746
| | - Yeon-Mock Oh
- the Department of Pulmonary and Critical Care Medicine, Asthma Center, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, and
| | - Sang-Do Lee
- the Department of Pulmonary and Critical Care Medicine, Asthma Center, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, and
| | - Sungkwan An
- the Functional Genoproteome Research Centre, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yun-Song Lee
- From the Division of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746
| |
Collapse
|
12
|
Wheat LA, Haberzettl P, Hellmann J, Baba SP, Bertke M, Lee J, McCracken J, O'Toole TE, Bhatnagar A, Conklin DJ. Acrolein inhalation prevents vascular endothelial growth factor-induced mobilization of Flk-1+/Sca-1+ cells in mice. Arterioscler Thromb Vasc Biol 2011; 31:1598-606. [PMID: 21527748 DOI: 10.1161/atvbaha.111.227124] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Acrolein is a toxic chemical present in tobacco, wood, and coal smoke, as well as automobile exhaust. Because exposure to these pollutants is associated with an increase in cardiovascular disease risk, we studied the effects of acrolein on Flk-1(+)/Sca-1(+) cells that are involved in vascular repair. METHODS AND RESULTS In adult male C57BL/6 mice, inhalation of acrolein (1 part per million [ppm], 6 hours/day for 4 days or 5 ppm for 2 or 6 hours) led to the formation of protein-acrolein adducts in the bone marrow and diminished levels of plasma nitric oxide metabolites and circulating Flk-1(+)/Sca-1(+) but not Sca-1(+)-only cells. Acrolein exposure increased the number of apoptotic Flk-1(+)/Sca-1(+) cells in circulation and increased bone marrow-derived cells with endothelial characteristics (DiI-ac-low-density lipoprotein [DiI-acLDL]/UE-lectin and Flk-1(+)/Sca-1(+)) in culture. Deficits in the circulating levels of Flk-1(+)/Sca-1(+) cells were reversed after 7 days of recovery in acrolein-free air. Exposure to acrolein blocked vascular endothelial growth factor (VEGF)/AMD3100-stimulated mobilization of Flk-1(+)/Sca-1(+) but not Sca-1(+)-only cells and prevented VEGF-induced phosphorylation of Akt and endothelial nitric oxide synthase in the aorta. CONCLUSIONS Inhalation of acrolein increases apoptosis and suppresses the circulating levels of Flk-1(+)/Sca-1(+) cells while increasing these cells in the bone marrow and preventing their mobilization by VEGF. Exposure to acrolein-rich pollutants could impair vascular repair capacity.
Collapse
Affiliation(s)
- Laura A Wheat
- Diabetes and Obesity Center, Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
de Torres JP, Casanova C, Pinto-Plata V, Varo N, Restituto P, Cordoba-Lanus E, Baz-Dávila R, Aguirre-Jaime A, Celli BR. Gender differences in plasma biomarker levels in a cohort of COPD patients: a pilot study. PLoS One 2011; 6:e16021. [PMID: 21267454 PMCID: PMC3022655 DOI: 10.1371/journal.pone.0016021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/03/2010] [Indexed: 11/18/2022] Open
Abstract
Rationale Little is known about gender differences in plasma biomarker levels in patients with chronic obstructive pulmonary disease (COPD). Hypothesis There are differences in serum biomarker levels between women and men with COPD. Objective Explore gender differences in plasma biomarker levels in patients with COPD and smokers without COPD. Methods We measured plasma levels of IL-6, IL-8, IL-16, MCP-1, MMP-9, PARC and VEGF in 80 smokers without COPD (40 males, 40 females) and 152 stable COPD patients (76 males, 76 females) with similar airflow obstruction. We determined anthropometrics, smoking history, lung function, exercise tolerance, body composition, BODE index, co-morbidities and quality of life. We then explored associations between plasma biomarkers levels and the clinical characteristics of the patients and also with the clinical and physiological variables known to predict outcome in COPD. Results The plasma biomarkers level explored were similar in men and women without COPD. In contrast, in patients with COPD the median value in pg/mL of IL-6 (6.26 vs 8.0, p = 0.03), IL-16 (390 vs 321, p = 0.009) and VEGF (50 vs 87, p = 0.02) differed between women and men. Adjusted for smoking history, gender was independently associated with IL-16, PARC and VEGF levels. There were also gender differences in the associations between IL-6, IL-16 and VEGF and physiologic variables that predict outcomes. Conclusions In stable COPD patients with similar airflow obstruction, there are gender differences in plasma biomarker levels and in the association between biomarker levels and important clinical or physiological variables. Further studies should confirm our findings.
Collapse
Affiliation(s)
- Juan P de Torres
- Pulmonary Department, Clínica Universidad de Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Edirisinghe I, Rahman I. Cigarette smoke-mediated oxidative stress, shear stress, and endothelial dysfunction: role of VEGFR2. Ann N Y Acad Sci 2010; 1203:66-72. [PMID: 20716285 DOI: 10.1111/j.1749-6632.2010.05601.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2), a tyrosine kinase receptor, is activated by VEGF and fluid shear stress (FSS), and its downstream signaling is important in regulation of endothelial functions, such as cell migration, endothelium-dependent relaxation, and angiogenesis. Inhibition of VEGFR2 augments cigarette smoke (CS)-induced oxidative stress and inflammatory responses leading to endothelial dysfunction. CS-derived reactive oxygen/nitrogen species interact with VEGFR2, causing posttranslational modifications that render VEGFR2 inactive for downstream signaling, resulting in endothelial dysfunction. CS-mediated oxidants/carbonyl stress decreases SIRT1 levels and causes eNOS acetylation, which has ramifications in endothelial dysfunction. CS also affects endothelial cell survival pathway by disrupting VEGF- and FSS-mediated VEGFR2/PI3-kinase signaling, leading to decreased Akt phosphorylation and eNOS acetylation. We describe here the mechanisms whereby CS alters VEGF- and FSS-mediated VEGFR2-eNOS signaling, which may have implications for understanding the pathogenesis of pulmonary and cardiovascular diseases.
Collapse
Affiliation(s)
- Indika Edirisinghe
- National Center for Food Safety and Technology, Illinois Institute of Technology, Summit Argo, Illinois, USA
| | | |
Collapse
|