1
|
Wu Y, Arroyo-Currás N. Nucleic Acid-based Electrochemical Sensors Facilitate the Study of DNA Binding by Platinum (II)-based Antineoplastics. Angew Chem Int Ed Engl 2024; 63:e202312402. [PMID: 38227790 PMCID: PMC10939885 DOI: 10.1002/anie.202312402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
DNA crosslinking agents such as cisplatin and related platinum(II) analogs are effective drugs to treat solid tumors. However, these therapeutics can cause high toxicity in the body, and tumors can develop resistance to them. To develop less toxic and more effective DNA crosslinkers, medicinal chemists have focused on tuning the ligands in square planar platinum(II) complexes to modulate their bioavailability, targeted cell penetration, and DNA binding rates. Unfortunately, linking in vitro DNA binding capacity of DNA crosslinkers with their in vivo efficacy has proven challenging. Here we report an electrochemical biosensor strategy that allows the study of platinum(II)-DNA binding in real time. Our biosensors contain a purine-rich deoxynucleotide sequence, T6 (AG)10 , modified with a 5' hexylthiol linker for easy self-assembly onto gold electrodes. The 3' terminus is functionalized with the redox reporter methylene blue. Electron transfer from methylene blue to the sensor is a function of platinum(II) compound concentration and reaction time. Using these biosensors, we resolve DNA binding mechanisms including monovalent and bivalent binding, as well as base stacking. Our approach can measure DNA binding kinetics in buffers and in 50 % serum, offering a single-step, real-time approach to screen therapeutic compounds during drug development.
Collapse
Affiliation(s)
- Yao Wu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205 (United States)
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205 (United States)
| |
Collapse
|
2
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Positive Expression of Retinol-Binding Protein 4 Is Related to the Malignant Clinical Features Leading to Poor Prognosis of Glioblastoma. Genet Res (Camb) 2022; 2022:5435523. [PMID: 36632438 PMCID: PMC9807312 DOI: 10.1155/2022/5435523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 12/27/2022] Open
Abstract
Backgrounds Retinol-binding protein 4 (RBP4) is a monomeric-binding protein belonging to the lipocalin protein family, which has been reported to be dysregulated in several malignancies such as breast cancer and lung cancer. However, the expression and function of RBP4 in glioblastoma (GBM) are completely unknown. Materials and Methods TCGA datasets were used for analyzing the mRNA level of RBP4 in GBM and its clinical relevance. A retrospective GBM cohort (n = 73) was enrolled from our hospital to test the protein expression profile of RBP4 in GBM tissues as well as its correlation with patients' prognoses. Two human GBM cell lines, LN229 and U251, were collected to conduct overexpression and knockdown experiments targeting RBP4. The tumor-related effects of RBP4 in GBM were finally evaluated by proliferation and invasion assays. Results Both the higher mRNA level and protein level of RBP4 in GBM tissues were significantly correlated with poorer patients' overall survival. Multivariate analysis identified RBP4 as a novel independent prognostic predictor in GBM patients. Overexpression of RBP4 resulted in enhanced GBM proliferation capacity, which was consistent with clinical findings on the positive correlation between RBP4 level and tumor size. Meanwhile, overexpressing RBP4 promoted GBM cell migration and invasion, while silencing RBP4 led to the opposite results. Conclusions RBP4 overexpression in tumor tissues is correlated with poorer prognosis of GBM patients, which functions by promoting GBM proliferation and invasion, thus, may serve as an invaluable predictive biomarker and therapeutic target.
Collapse
|
4
|
Gao A, Wu Y, Yu J, Gong H, Jiang J, Yang C, Liu W, Qing C. Synthesis and anticancer activity of two highly water-soluble and ionic Pt(iv) complexes as prodrugs for Pt(ii) anticancer drugs. RSC Med Chem 2022; 13:594-598. [PMID: 35694692 PMCID: PMC9132197 DOI: 10.1039/d2md00004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
Two new Pt(iv) complexes featuring mesylate as the outer sphere anion, cis,trans,cis-[PtCl2(OH2)2(NH3)2](CH3SO3)2 (SPt-1) and cis,trans,cis-[PtCl2(OH2)2(1R,2R-DACH)](CH3SO3)2 (SPt-2), were synthesized and characterized by elemental analysis, 1H and 13C NMR, IR, and ESI-MS. Both complexes have excellent water-solubility, high molar conductivity and good water stability. They exhibit an irreversible two-electron reduction event with the peak potentials (E p) for the processes being -0.40 V for SPt-1 and -0.52 V for SPt-2. The biological tests reveal that SPt-2 possesses high in vitro anticancer activity against three human cancer cell lines (HCT-116, A549 and MKN-1) and its overall anticancer activity is slightly greater than that of oxaliplatin, whereas SPt-1 is less active than cisplatin. Moreover, the antitumor efficacy of SPt-2 on human colon carcinoma HCT-116 xenografts in nude mice is also greater than that of oxaliplatin, suggesting that SPt-2 deserves further evaluation as a prodrug for oxaliplatin.
Collapse
Affiliation(s)
- Anli Gao
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Yaxi Wu
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
- Department of Pharmacy, Yunnan New Kunhua Hospital Anning City Z044 Provincial Highway Kunming City 650301 China
| | - Juan Yu
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Hongyu Gong
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
| | - Jing Jiang
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Caihong Yang
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
| | - Weiping Liu
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Chen Qing
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
| |
Collapse
|
5
|
Peng K, Liang BB, Liu W, Mao ZW. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214210] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Kaspi-Kaneti AW, Bhandari S, Schubert A, Huang SD, Dunietz BD. Cyanide Bridged Platinum-Iron Complexes as Cisplatin Prodrug Systems: Design and Computational Study. Chemphyschem 2020; 22:106-111. [PMID: 33098742 DOI: 10.1002/cphc.202000748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/13/2020] [Indexed: 11/09/2022]
Abstract
The potential role of cyanide-bridged platinum-iron complexes as an anti-cancer Pt(IV) prodrug is studied. We present design principles of a dual-function prodrug that can upon reduction dissociate and release concurrently six cisplatin units and a ferricyanide anion per prodrug unit. The prodrug molecule is a unique complex of hepta metal centers consisting of a ferricyanide core with six Pt(IV) centers each bonded to the Fe(III) core through a cyano ligand. The functionality of the prodrug is addressed through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Ariela W Kaspi-Kaneti
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Srijana Bhandari
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Alexander Schubert
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.,Present address: Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Songping D Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
7
|
Shi H, Imberti C, Clarkson GJ, Sadler PJ. Axial functionalisation of photoactive diazido platinum(iv) anticancer complexes. Inorg Chem Front 2020; 7:3533-3540. [PMID: 33786191 PMCID: PMC7610473 DOI: 10.1039/d0qi00685h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mono-axial functionalised octahedral diazido Pt(iv) complexes trans, trans, trans-[Pt(py)2(N3)2(OR1)(OR2)] (OR1 = OH and OR2 = anticancer agent coumarin-3 carboxylate (cou, 2a), pyruvate dehydrogenase kinase (PDK) inhibitors 4-phenylbutyrate (PhB, 2b) or dichloroacetate (DCA, 2c)), and their di-axial functionalised analogues with OR1 = DCA and OR2 = cou (3a), PhB (3b), or DCA (3c) have been synthesised and characterised, including the X-ray crystal structures of complexes 2a, 3a, 3b and 3c. These complexes exhibit dark stability and have the potential to generate cytotoxic Pt(ii) species and free radicals selectively in cancer cells when irradiated. Mono-functionalised complexes 2a-2c showed higher aqueous solubility and more negative reduction potentials. Mono- and di-functionalised complexes displayed higher photocytotoxicity with blue light (1 h, 465 nm, 4.8 mW cm-2) than the parent dihydroxido complex 1 (OR1 = OR2 = OH) in A2780 human ovarian (IC50 0.9-2.9 μM for 2a-2c; 0.11-0.39 μM for 3a-3c) and A549 human lung cancer cells (5.4-7.8 μM for 2a-2c; 1.2-2.6 μM for 3a-3c) with satisfactory dark stability. Notably, no apparent dark cytotoxicity was observed in healthy lung MRC-5 fibroblasts for all complexes (IC50 > 20 μM). Significantly higher platinum cellular accumulation and photo-generated ROS levels were observed for the di-functionalised complexes compared with their mono-functionalised analogues when cancer cells were treated under the same concentrations.
Collapse
Affiliation(s)
| | | | | | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
8
|
Retinol-Binding Protein 4 Accelerates Metastatic Spread and Increases Impairment of Blood Flow in Mouse Mammary Gland Tumors. Cancers (Basel) 2020; 12:cancers12030623. [PMID: 32156052 PMCID: PMC7139568 DOI: 10.3390/cancers12030623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Retinol-binding protein 4 (RBP4) is proposed as an adipokine that links obesity and cancer. We analyzed the role of RBP4 in metastasis of breast cancer in patients and in mice bearing metastatic 4T1 and nonmetastatic 67NR mammary gland cancer. We compared the metastatic and angiogenic potential of these cells transduced with Rbp4 (4T1/RBP4 and 67NR/RBP4 cell lines). Higher plasma levels of RBP4 were observed in breast cancer patients with metastatic tumors than in healthy donors and patients with nonmetastatic cancer. Increased levels of RBP4 were observed in plasma, tumor tissue, liver, and abdominal fat. Moreover, the blood vessel network was highly impaired in mice bearing 4T1 as compared to 67NR tumors. RBP4 transductants showed further impairment of blood flow and increased metastatic potential. Exogenous RBP4 increased lung settlement by 67NR and 4T1 cells. In vitro studies showed increased invasive and clonogenic potential of cancer cells treated with or overexpressing RBP4. This effect is not dependent on STAT3 phosphorylation. RBP4 enhances the metastatic potential of breast cancer tumors through a direct effect on cancer cells and through increased endothelial dysfunction and impairment of blood vessels within the tumor.
Collapse
|
9
|
|
10
|
Wang Y, Li H, Sun H. Metalloproteomics for Unveiling the Mechanism of Action of Metallodrugs. Inorg Chem 2019; 58:13673-13685. [DOI: 10.1021/acs.inorgchem.9b01199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yuchuan Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
11
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
13
|
Wang Q, Tan X, Liu Z, Li G, Zhang R, Wei J, Wang S, Li D, Wang B, Han J. Design and synthesis of a new series of low toxic naphthalimide platinum(IV) antitumor complexes with dual DNA damage mechanism. Eur J Pharm Sci 2018; 124:127-136. [PMID: 30153524 DOI: 10.1016/j.ejps.2018.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/23/2018] [Indexed: 01/31/2023]
Abstract
Naphthalimide platinum(IV) antitumor complexes with potential dual DNA damage mechanism were designed, synthesized and evaluated for antitumor activities. The incorporation of DNA targeted naphthalimide group to the platinum(IV) system exerts much positive impacts on their antitumor efficacy. The mechanism research reveals that the title compounds could interact with dsDNA in platinum(IV) form via the naphthalimide group and cause DNA lesion. The further reduction would release platinum(II) complexes and naphthalimide acids which would induce remarkable secondary damage to DNA. Furthermore, the naphthalimide platinum(IV) compounds could combine with human serum albumin via electrostatic force, which are favourable for their storage and transport in blood. Moreover, the title compounds exhibit higher accumulation in tumor cells, and exert lower toxic and higher safe properties than oxaliplatin in vivo.
Collapse
Affiliation(s)
- Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China.
| | - Xiaoxiao Tan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Guoshuai Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Shiben Wang
- College of Pharmacy, Liaocheng University, Liaocheng 252059, PR China
| | - Dacheng Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China.
| | - Bingquan Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| |
Collapse
|
14
|
Johnstone TC, Suntharalingam K, Lippard SJ. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem Rev 2016; 116:3436-86. [PMID: 26865551 PMCID: PMC4792284 DOI: 10.1021/acs.chemrev.5b00597] [Citation(s) in RCA: 1706] [Impact Index Per Article: 213.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.
Collapse
Affiliation(s)
- Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Dvořáková M, Jeřábková J, Procházková I, Lenčo J, Nenutil R, Bouchal P. Transgelin is upregulated in stromal cells of lymph node positive breast cancer. J Proteomics 2015; 132:103-11. [PMID: 26639304 DOI: 10.1016/j.jprot.2015.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/12/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Transgelin and transgelin-2 have been discussed as potential markers of various cancers. Here we identified increased transgelin level in lymph node positive vs. negative, low grade primary breast cancer tissues using 2-DE in the cohort of 12 patients. We further clinically validated 2-DE results in an independent cohort of 48 low grade breast cancer patients through untargeted and targeted proteomics analysis (iTRAQ-2D-LC-MS/MS, mTRAQ-SRM), at transcript level and using immunohistochemistry. Another group of 48 high grade tumors of different breast cancer subtypes was analyzed together with the low grade samples to test transgelin specificity for low grade tumors and to study transgelin relation to known molecular markers and histological features. The results confirmed transgelin connection with the lymph node metastasis. As a marker of a reactive tumor stroma, transgelin can be connected with the higher risk of metastasis development. Moreover, we observed significant down-regulation of transgelin in high vs. low grade tumors caused by decreased content of stromal cells (mainly expressing transgelin) in high grade tumor tissue. We also analyzed expression of transgelin-2 in the second cohort using proteomics and immunohistochemistry. Transgelin-2 was mainly expressed by epithelial cancer cells and its levels were increased in metastatic and poorly differentiated tumors. BIOLOGICAL SIGNIFICANCE Both transgelin and transgelin-2 have been previously described as potential markers of many types of cancer. We are specifying this connection to metastatic affection of lymph nodes and cell differentiation in breast cancer. In the wider context, the results of our study highlight tumor stroma as a source of cancer biomarkers and point out how measured levels of tissue markers can actually reflect cellular feature of cancer mass.
Collapse
Affiliation(s)
- Monika Dvořáková
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jarmila Jeřábková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Iva Procházková
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic
| | - Juraj Lenčo
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Rudolf Nenutil
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic
| | - Pavel Bouchal
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
16
|
Májek P, Riedelová-Reicheltová Z, Suttnar J, Pečánková K, Cermák J, Dyr JE. Plasma proteome changes associated with refractory anemia and refractory anemia with ringed sideroblasts in patients with myelodysplastic syndrome. Proteome Sci 2013; 11:14. [PMID: 23566303 PMCID: PMC3635902 DOI: 10.1186/1477-5956-11-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/04/2013] [Indexed: 11/17/2022] Open
Abstract
Background Refractory anemia and refractory anemia with ringed sideroblasts are two myelodysplastic syndrome (MDS) subgroups linked with anemia. MDS is a group of heterogeneous oncohematological bone marrow disorders characterized by ineffective hematopoiesis, blood cytopenias, and progression of the disease toward acute myeloid leukemia. The aim of this study was to search for plasma proteome changes in MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. Results A total of 26 patient and healthy donor plasma samples were depleted of fourteen high-abundant plasma proteins, separated with 2D electrophoresis, and statistically processed with Progenesis SameSpots software. 55 significantly differing spots were observed and corresponded to 39 different proteins identified by nanoLC-MS/MS. Changes in the fragments of the inter-alpha-trypsin inhibitor heavy chain H4 protein were observed. Using mass spectrometry-based relative label-free quantification of tryptic peptides, there were differences in alpha-2-HS-glycoprotein peptides, while no differences were observed between the control and patient sample groups for retinol-binding protein 4 peptides. Conclusions This study describes plasma proteome changes associated with MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. Changes observed in the inter-alpha-trypsin inhibitor heavy chain H4 fragments were in agreement with our previous studies of other MDS subgroups: refractory cytopenia with multilineage dysplasia and refractory anemia with excess blasts subtype 1. Mass spectrometry-based relative quantification of retinol-binding protein 4 peptides has shown that there are differences in the modification of this protein between refractory anemia with excess blasts subtype 1 patients and MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. Alpha-2-HS-glycoprotein seems to be a new potential MDS biomarker candidate.
Collapse
Affiliation(s)
- Pavel Májek
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague 2, 128 20, Czech Republic.
| | | | | | | | | | | |
Collapse
|
17
|
Bouchal P, Dvorakova M, Scherl A, Garbis SD, Nenutil R, Vojtesek B. Intact protein profiling in breast cancer biomarker discovery: protein identification issue and the solutions based on 3D protein separation, bottom-up and top-down mass spectrometry. Proteomics 2013; 13:1053-8. [PMID: 23303686 DOI: 10.1002/pmic.201200121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 10/31/2012] [Accepted: 12/17/2012] [Indexed: 11/07/2022]
Abstract
Proteomics profiling of intact proteins based on MALDI-TOF MS and derived platforms has been used in cancer biomarker discovery studies. This approach suffers from a number of limitations such as low resolution, low sensitivity, and that no knowledge is available on the identity of the respective proteins in the discovery mode. Nevertheless, it remains the most high-throughput, untargeted mode of clinical proteomics studies to date. Here we compare key protein separation and MS techniques available for protein biomarker identification in this type of studies and define reasons of uncertainty in protein peak identity. As a result of critical data analysis, we consider 3D protein separation and identification workflows as optimal procedures. Subsequently, we present a new protocol based on 3D LC-MS/MS with top-down at high resolution that enabled the identification of HNRNP A2/B1 intact peptide as correlating with the estrogen receptor expression in breast cancer tissues. Additional development of this general concept toward next generation, top-down based protein profiling at high resolution is discussed.
Collapse
Affiliation(s)
- Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|